UNCLASSIFIED

AD NUMBER

AD830977

LIMITATION CHANGES

TO:
Approved for public release; distribution is unlimited.

FROM:
Distribution authorized to U.S. Gov't. agencies and their contractors; Critical Technology; FEB 1968. Other requests shall be referred to Air Force Office of Scientific Research, Arlington, VA. This document contains export-controlled technical data.

AUTHORITY

AFOSR ltr dtd 12 Nov 1971

THIS PAGE IS UNCLASSIFIED
AFOSR Interim Scientific Report
AFOSR 68-0470
Contract No. AF-AFOSR-922-67
Project No. 9713-01
November 1, 1967 through January 31, 1968
"COMBUSTION CHARACTERISTICS OF CRYSTALLINE OXIDIZERS"
Professor Harold C. Beachell
Principal Investigator
February, 1968

Research Sponsored by:
Air Force Office of Scientific Research
Office of Aerospace Research
United States Air Force
Research Monitored under the Technical Supervision of
Dr. B. T. Wolfson (SREP)
1400 Wilson Boulevard
Arlington, Virginia 22209

This document is subject to special export controls and each transmittal to foreign governments or foreign nationals may be made only with prior approval of AFOSR (SREP).
DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF COLOR PAGES WHICH DO NOT REPRODUCE LEGIBLY ON BLACK AND WHITE MICROFICHE.
FOREWORD

This research at the University of Delaware under Grant AF-AFOSR 922-67 for the period November 1, 1967, through January 31, 1968 was sponsored by the Air Force Office of Scientific Research, Office of Aerospace Research, United States Air Force.

Air Force Director for this program is Dr. B. T. Wolfson, Propulsion Division, Directorate of Engineering Sciences, Air Force Office of Scientific Research.

ABSTRACT

The crystalline oxidizers methyl, dimethyl, and trimethyl ammonium perchlorate have been prepared as rhombic crystals. The methyl A.P. has an atmospheric pressure burning rate two and one half times as fast as ammonium perchlorate. The thermal stability is comparable to that of A.P., although the methyl derivative is perfectly balanced chemically for a CH2/A.P. type system. The flame temperature is twice that of A.P.

This system of A.P. derivatives should prove useful in determining the value of bringing high temperature flames closer to propellant surfaces in the overall study of combustion dynamics.
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Introduction</td>
</tr>
<tr>
<td>II</td>
<td>Preparation of Substituted Ammonium Perchlorates</td>
</tr>
<tr>
<td>III</td>
<td>Differential Thermal Analysis</td>
</tr>
<tr>
<td>IV</td>
<td>Combustion Testing</td>
</tr>
<tr>
<td>V</td>
<td>Calculated Combustion Properties of Alkyl Substituted Ammonium Perchlorates</td>
</tr>
<tr>
<td>VI</td>
<td>Conclusions</td>
</tr>
<tr>
<td>VII</td>
<td>Future Work</td>
</tr>
</tbody>
</table>
Introduction

A fundamental understanding of the combustion characteristics of a range of physical conditions of crystalline oxidizers is important if complete knowledge pertaining to the combustion and stability characteristics of composite solid propellants is to be attained. This research involves theoretical and experimental studies of the burning of crystalline oxidizers ranging in physical form from large single crystals to low bulk density powders. A strandburner, window bomb and high-speed motion picture photography will be used to obtain burning rates versus pressure, and to record stability of combustion for a variety of particle sizes and pressure (density) packings of selected crystalline oxidizers (i.e., ammonium perchlorate) and analogous compounds. The study of large single crystal burning will remove particle size, shape and packing factors as complications. Data from low bulk density powder combustion studies, when compared with single crystal data, provides vital information about combustion zone thickness, ignition and conductivity contributions to the overall combustion phenomena. In addition, it is believed that simple combustion tests of powder oxidizer samples can serve as an efficient screening technique for determining whether chemical modifications have increased or decreased the intrinsic burning rate. Crystalline decomposition mechanisms observed during burning will be related to the oxidizer intrinsic burning rate and the basic properties of the oxidizer such as chemical nature, crystal type, and ion sizes. The validity of the models will be determined by correlation with the experimental data obtained.

Prior work in these laboratories, and also at Thiokol Chemical Corp., Atlantic Research Corp., Naval Weapons Center, China Lake and University of California have shown that anion or cation changes to the standard crystalline oxidizers can produce profound changes in combustion characteristics.

At University of Delaware, it was determined that simple alkyl substitutions for the hydrogens in the NH₂⁺ cation would provide materials useful in combustion evaluations. It was decided that mono-, di-, and trimethyl ammonium perchlorate should be the starting compounds. DTA data and oxidizer powder burning rates for each compound would be measured, and compared with A.F. as the control. There was little information available in the literature on these compounds. During the early 1900's, there were two studies (1, 2) of a series of alkyl ammonium perchlorates; one concentrating on solubilities - and one on explosion temperatures. Subsequently, there was a U.S. patent issued for methyl ammonium perchlorate as an explosive (3). Our interest was in combustion characteristics of these materials ... and no information was uncovered in that area.
II. Preparation of Substituted Ammonium Perchlorates

The most straightforward and safest method of preparing pure substituted A.P.'s was felt to be the neutralization reaction of amine with perchloric acid in water solution. The amines solutions (methyl, dimethyl and trimethyl) ranged from 40% to 25% by weight in water. The perchloric acid used was 24% by weight in water.

In the preparation of one gram mole of methyl ammonium perchlorate, the dropwise addition of dilute HClO₄ produced a maximum temperature rise of 20°C, even with ice bath cooling of the 1/2 liter reaction flask.

When reaction was completed, a rotary vacuum evaporator was applied to draw off excess amine and water. The sample was then recrystallized and dried in a vacuum desiccator. The crystals were rhombic and resembled ammonium perchlorate. The crystal density, based on an average of four determinations in methyl polysiloxane, was 1.6484 g/cc at 20.20°C. A rough estimate of sensitivity was obtained by subjecting samples of the methyl compound to hammer blows against a steel block, and qualitatively comparing results with pure A.P. Although the methyl ammonium perchlorate was harder to initiate than A.P.; when it did explode, it gave a louder report.

The dimethyl and trimethyl substituted compounds were prepared in essentially the same fashion.

The purified crystals were carefully removed from the final drying watchglasses, and ground in small quantities. The resulting powders were screened to obtain the -40 +50 mesh (350 micron) fraction and stored in sealed bottles. Based on solubilities, it is believed that methyl A.P. is more hygroscopic than A.P.; and dimethyl A.P. and trimethyl A.P. are less hygroscopic.

Further density, purity and stability determinations are needed.

III. Differential Thermal Analysis

The most meaningful single analytical test for oxidizer powders was felt to be D.T.A. DuPont Model 900 apparatus was used with a micro sample tube, at a heating rate of 20°C/min., and with glass beads as the thermal reference.

Figure 1 shows the standard D.T.A. thermogram for pure A.P. The single sharp endootherm showing orthorhombic to cubic transition appears at about 240°C. The single exotherm begins gradually at about 300°C, and peaks at about 405°C. (Impure
Figure 1

DTA ULTRA HIGH PURITY AMMONIUM PERCHLORATE

SIZE: Micro (3 mm depth) SCALE: 50°C/in. RUN NO. AP-1
REF: Glass bead 1 and 2°C/in.
RATE: 20°C/min.
START: 35.5°C.

T. °C (CORRECTED FOR CHROMEL ALUMEL THERMOCOUPLES)
A.P. also shows a sharp exotherm at 300-320°C.

Figure 2 is a thermogram for methyl ammonium perchlorate showing two sharp endotherms; one at 175°C, and one at 257°C. The exotherm begins at 300°C and peaks at 350°C; or about 55°C lower than A.P.

Figure 3, the dimethyl ammonium perchlorate thermogram, shows a single endotherm at about 172°C. At about 275°C, the exotherm begins and peaks at about 330°C; or about 75°C lower than A.P.

Figures 4 and 5 are thermograms for trimethyl ammonium perchlorate. The material in Figure 4 was not purified and shows an extra low temperature endotherm and a slight general shifting of the other peaks.

Figure 5 (trimethyl ammonium perchlorate - purified), shows the three sharp endotherms at 115°C, 200°C, and 260°C. The exotherm seems partially influenced by the last endotherm, but at any rate, peaks at about 310°C, or about 95°C below that of pure A.P.

Table 1 summarizes this data. With increasing alkyl substitution, there is a decrease in both initial endotherm, and in the exotherm. The thermograms show a decrease in thermal stability with increasing alkyl content. However, the most sensitive compound (trimethyl) is not considered hazardous from this point of view. More sophisticated impact sensitivity tests are needed next - and possibly friction tests. The simple tests with a hammer against a steel block show that these materials are not extremely sensitive to shock.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Endotherm(s) (°C)</th>
<th>Exotherm (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultra high purity ammonium perchlorate</td>
<td>240</td>
<td>405</td>
</tr>
<tr>
<td>Methyl ammonium perchlorate</td>
<td>175, 257</td>
<td>350</td>
</tr>
<tr>
<td>Dimethyl ammonium perchlorate</td>
<td>172</td>
<td>330</td>
</tr>
<tr>
<td>Trimethyl ammonium perchlorate</td>
<td>115, 200, 280</td>
<td>310</td>
</tr>
</tbody>
</table>
FIGURE 2

DTA MONOMETHYI
AMMONIUM PERCHLORATE

SIZE: Micro 2 mm depth. SCALE SETTING: 50°C/In. 1°C/in.

REP: Glass tubes

RATE: 20°C/min.
START: 39.1°C

T. °C (CORRECTED FOR CHROMEL ALUMEL THERMOCOUPLES)
IV. Combustion Testing

The first type of combustion test run in these laboratories, when investigating a new monopropellant, is the straw burning test of the powdered material. The important control features when running these tests to assure accuracy and reproducibility have been described. (4)

During this quarter, the atmospheric pressure burning rate for methyl ammonium perchlorate was determined. Pure A.P. was used as the control. The samples were -40 +50 mesh dry powders loaded to the pour density (1/2 of crystal density) in 6.5 mm diameter tubes. The burning rates obtained, in air, at ambient pressure, averaged from at least four tests, were:

\[
\begin{align*}
\text{NH}_4\text{ClO}_4 & \quad 0.043 \text{ inches/sec.} \\
\text{CH}_3\text{NH}_3\text{ClO}_4 & \quad 0.103 \text{ inches/sec.}
\end{align*}
\]

Thus the methyl derivative had a burning rate of about 2-1/2 times that of pure A.P. Visual observation of M.A.P. burning showed a flame height of ten to fifteen times higher than that of A.P. — and also a bright orange color as compared with A.P. 's faint blue color.

Whereas A.P. powder is relatively insensitive to tube diameter, the M.A.P. would not burn reproducibly in 4 mm i.d. or smaller tubes. When it did burn, there were burning pulsations with a frequency of about one every two seconds. The quiescent portion of the pulse indicates an incipient quenching condition. In the 6.5 mm tube, there were no pulsations. Thus under these test conditions the quench diameter was 4 mm. A good discussion of other aspects of quench diameters has been given by Von Elbe and McHale (5).

Preliminary tests with the di- and tri- substituted compounds indicates burning rates midway between A.P. and M.A.P. Further work will be conducted in the next quarter.

V. Calculated Combustion Properties of Alkyl Substituted Ammonium Perchlorates

Although the heat of formation of methyl ammonium perchlorate (MAP) has not yet been determined, we estimate it to be in the range of -60 to -80 Kcal/Mole.

Related perchlorates have values in this range. Ammonium perchlorate, for example, has a standard heat of formation (\(\Delta H_f^\circ\)) of about -70.7 Kcal/Mole. When one hydrogen is replaced with hydroxy, to give hydroxyammonium perchlorate, the value is -66.5 Kcal per Mole (Reference 5). Considerably further afield, the value for
Hydrazine diperchlorate is -72 Kcal/Mole.

A rough estimate of the heat of formation of MAP can be derived from the observed reaction conditions during synthesis, if we neglect solution effects. When a one mole quantity of MAP was prepared in a total aqueous reaction mixture of about a kilogram; an estimate of the temperature rise of the uncooled mixture was about 20°C. Taking the specific heat of the reaction mix as an average of 1 cal/gram °C, this would give a heat of reaction of -20 Kcal/Mole. The following estimate can then be made:

\[
\begin{align*}
\Delta H_f^\circ \text{ aqueous methylamine} & = -17.0 \text{ Kcal/Mole} \\
\Delta H_f^\circ \text{ aqueous perchloric acid} & = -30.0 \\
\Delta H_r \text{ of amine and acid} & = -20.0 \\
\Delta H_f^\circ \text{ methyl ammonium perchlorate} & = -67.0
\end{align*}
\]

Another estimate can be made if we treat MAP, \(\text{CH}_3\text{NH}_2\text{ClO}_4\), as \(\text{NH}_4\text{ClO}_4\) plus \((-\text{CH}_2-\) (as polyethylene).

There is little net energy change due to breaking and forming bonds as follows, to make the conversion from A.P. and polyethylene to MAP.

\[
\begin{align*}
1) & \quad \text{Breaking an NH bond in } \text{NH}_4^+ \quad = \quad +95 \\
2) & \quad \text{Breaking a (CH}_2\text{) unit from polyethylene} \quad = \quad +70 \\
3) & \quad \text{Forming a C-N bond, -CH}_2\text{NH}_2^+ \quad = \quad -79 \\
4) & \quad \text{Forming a C-H bond, CH}_3\text{NH}_2^+ \quad = \quad -67 \\
\text{Net energy change} & = \quad -1
\end{align*}
\]

Lattice energy changes have not been estimated, but the above transition only gives -1 Kcal/Mole. Thus it would seem that for thermochemical approximations, a heat of formation for MAP based on using the equivalent \(\Delta H_f^\circ\) contributions would be reasonable. Bond energies were taken and extrapolated from data by J.A. Kerr and K.S. Pitzer.
This latter estimate (-65.05) compared with the former (-67) gives us some confidence in being able to treat MAP as 10.6% CH₂ and 89.4% NH₄ClO₄ for the purpose of calculating monopropellant enthalpy balances during combustion. The values of interest like: adiabatic flame temperature, and the propulsion parameters of C*, Isp, and exhaust temperature when subjected to combustion at 68 atmospheres, with exhaust to sea level; may be obtained from the data of Dobbins (6). These values are shown in Table 2 compared with similar data for pure A.P. Table 3 shows more complete data for A.P.

Table 2

Combustion Properties Comparison for Monopropellants

<table>
<thead>
<tr>
<th></th>
<th>NH₄ClO₄</th>
<th>CH₂NH₃ClO₄</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A.P.</td>
<td>M.A.P.</td>
</tr>
<tr>
<td>Adiabatic flame temp. (68 ATM) (°K)</td>
<td>1403</td>
<td>3020</td>
</tr>
<tr>
<td>Adiabatic flame temp. (1 ATM) (°K)</td>
<td>1375</td>
<td>4960</td>
</tr>
<tr>
<td>C*, ft/sec.</td>
<td>3213</td>
<td>4960</td>
</tr>
<tr>
<td>Chamber M.W.</td>
<td>27.9</td>
<td>26.0</td>
</tr>
<tr>
<td>Exhaust Temp., 68 ATM/1 ATM, (°K)</td>
<td>620</td>
<td>1600</td>
</tr>
<tr>
<td>Specific Impulse, 68 ATM/1 ATM</td>
<td>156.7 sec.</td>
<td>252.0 sec.</td>
</tr>
</tbody>
</table>
Table 3

Ammonium Perchlorate Monopropellant Combustion Equilibrium Data

<table>
<thead>
<tr>
<th>Parameters</th>
<th>1 atm</th>
<th>34 atm</th>
<th>68 atm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat of Formation (Enthalpy)</td>
<td>-70.69 Kcal/mole</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial Temperature</td>
<td>298.15°K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Density</td>
<td>1.95 g/cc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temp., °K</td>
<td>1375</td>
<td>1397</td>
<td>1403</td>
</tr>
<tr>
<td>Temp., °F</td>
<td>2015</td>
<td>2054</td>
<td>2066</td>
</tr>
<tr>
<td>Enthalpy, cal/g</td>
<td>-601.6</td>
<td>-601.6</td>
<td>-601.6</td>
</tr>
<tr>
<td>Entropy, cal/g - °K</td>
<td>2.212</td>
<td>1.960</td>
<td>1.911</td>
</tr>
<tr>
<td>Average Molecular Wt.</td>
<td>27.691</td>
<td>27.871</td>
<td>27.930</td>
</tr>
<tr>
<td>Heat Capacity cal/g - °K</td>
<td>0.352</td>
<td>0.364</td>
<td>0.367</td>
</tr>
<tr>
<td>Ratio of Specific Heats cp/cv</td>
<td>1.264</td>
<td>1.259</td>
<td>1.258</td>
</tr>
</tbody>
</table>

Combustion Species

<table>
<thead>
<tr>
<th>Moles/100 grams</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl</td>
</tr>
<tr>
<td>HCl</td>
</tr>
<tr>
<td>ClO</td>
</tr>
<tr>
<td>Cl2</td>
</tr>
<tr>
<td>OH</td>
</tr>
<tr>
<td>H2O</td>
</tr>
<tr>
<td>NO</td>
</tr>
<tr>
<td>N2</td>
</tr>
<tr>
<td>O2</td>
</tr>
</tbody>
</table>

Additional products which were considered but whose mole fractions were less than 0.000005 for all assigned conditions: H, NH, H2, NH3, N and O.

Methyl ammonium perchlorate is seen to burn with a flame twice as hot as that of A.P. Actually, it is found to be at the peak of the flame temperature, C* and Isp curves for the CH3/AP system. Probably this perfect stoichiometric balancing to give maximum theoretical heat release, combined with complete flame premixing on the molecular level, explains the fast burning rate that was measured.

M.A.P is a near perfect monopropellant from an energy viewpoint, however, it may well catalyze the combustion of other propellant ingredients by bringing highly exothermic reactions much closer to the solid propellant surface.
VI. Conclusions

1. Alkyl substituted ammonium perchlorates are monopropellants, like A.P.

2. The methyl substituted perchlorates have a rhombic crystal form, and are not strongly hygroscopic.

3. The DTA exotherm for these substituted perchlorates is 50°C to 100°C lower than for A.P., with the lowering proportional to the alkyl content.

4. As a monopropellant, methyl ammonium perchlorate burns about two and a half times as fast as A.P., and with a much hotter and higher flame. (MAP = 0.103 in/sec.; AP = 0.043 in/sec.; both at atmospheric press.)

6. Whereas the A.P. powder burning quenching diameter is about 3 mm, the methyl substituted quench diameter is about 4 mm.

7. For most oxidizer powders studied, a 6.5 mm i.d. tube gives stable burning (although a 4 mm tube is satisfactory for A.P.)

8. As tube diam. is reduced, an unstable burning condition (pulsating burning) develops, with the period of pulsation inversely proportional to tube diameter. A 4 mm tube gives 30 pulses in about 60 sec., or one every 2 sec.

VII. Future Work

1. Further density, purity and stability determinations will be made on the substituted compounds.

2. Burning rates for dimethyl and trimethyl A.P. will be determined.

3. Correlations will be made between combustion products, flame temperatures, rates and reactant premixing conditions.

4. Reasons for combustion instability and quenching will be sought.
VIII. References

3. Lundsgard and Helbst, "Perchlorates of Methyl Substituted Ammonium Compounds, such as Methyl Ammonium Perchlorate Used in Detonators", U.S. Pat. 1,423,233; July 18, 1921.

The crystalline oxidizers methyl, dimethyl, and trimethyl ammonium perchlorate have been prepared as rhombic crystals. The methyl A.P. has an atmospheric pressure burning rate two and one half times as fast as ammonium perchlorate. The thermal stability is comparable to that of A.P., although the methyl derivative is perfectly balanced chemically for a CH₂/A.P. type system. The flame temperature is twice that of A.P.

The system of A.P. derivatives should prove useful in determining the value of bringing high temperature flames closer to propellant surfaces in the overall study of combustion dynamics.
<table>
<thead>
<tr>
<th>KEY WORDS</th>
<th>LINK A</th>
<th></th>
<th>LINK B</th>
<th></th>
<th>LINK C</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Combustion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solid Oxidizers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monopropellants</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ammonium Perchlorate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methyl Ammonium Perchlorate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethyl Ammonium Perchlorate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trimethyl Ammonium Perchlorate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Burning Rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quenching Diameters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combustion Stoichiometry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>