NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

AIR FORCE/56780/22 February 1973 — 100
EVALUATION OF MOLECULAR WEIGHT
FROM EQUILIBRIUM SEDIMENTATION

PART VII MATHEMATICAL ANALYSIS OF THE REGULARIZATION
TECHNIQUE INCORPORATED INTO QUADRATIC PROGRAMING

DONALD R. WIFF
MATATIAHU T. GEHATIA
THOMAS E. DUVALL

Approved for public release; distribution unlimited.
FOREWORD

This report was prepared by the Polymer Branch of the Nonmetallic Materials Division. The work was initiated under Project No. 7342, "Fundamental Research on Macromolecular Materials and Lubrication Phenomena," Task No. 734203, "Fundamental Principles Determining the Behavior of Macromolecules," Subtask No. 734203-05, "Physical Chemistry of High Polymers", with Dr. M. T. Gehatia acting as subtask scientist. Coauthors are Mr. T. E. Duvall, ASD Computer Science Center (4950/VNCS), and Dr. D. R. Wiff, Research Institute, University of Dayton, The work was administered under the direction of the Air Force Materials Laboratory, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio.

The report covers research conducted from September 1971 to May 1972. The manuscript was released by the authors in June 1972 for publication as a technical report.

This technical report has been reviewed and is approved.

R. L. VAN DEUSEN
Chief, Polymer Branch
Nonmetallic Materials Division
Air Force Materials Laboratory
ABSTRACT

The equation relating molecular weight distribution of a polymer to the experimental function of concentration appearing in equilibrium sedimentation with the ultracentrifuge is nonsolvable because it is an Improperly Posed Problem in the Hadamard sense. For a simple distribution this equation has been solved by applying a method of regularization. To solve a nonsymmetrical bimodal and a trimodal distribution, the technique of regularization had to be incorporated into a linear programming. In the current work the regularization technique has been incorporated into quadratic programming. This new combined method proved to be more adequate to solve, also more complex distributions such as tri-, tetra-, and pentamodal. In addition this technique is cheaper, because it requires less computer time than the regularization incorporated into linear programming.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II ILL-POSED PROBLEM AND REGULARIZATION</td>
<td>4</td>
</tr>
<tr>
<td>III QUADRATIC PROGRAMING</td>
<td>7</td>
</tr>
<tr>
<td>IV REGULARIZATION OF ILL-POSED INTEGRAL EQUATIONS OF THE FIRST KIND</td>
<td>11</td>
</tr>
<tr>
<td>V INCORPORATION OF REGULARIZATION INTO QUADRATIC PROGRAMING</td>
<td>15</td>
</tr>
<tr>
<td>VI APPLICATION AND RESULTS</td>
<td>18</td>
</tr>
<tr>
<td>VII CONCLUSIONS</td>
<td>20</td>
</tr>
<tr>
<td>APPENDIX: QUADRATIC PROGRAM ALGORITHM</td>
<td>21</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>25</td>
</tr>
<tr>
<td>PROGRAM LISTING</td>
<td>41</td>
</tr>
</tbody>
</table>
ILLUSTRATIONS

| FIGURE | PAGE |
|--------|------|---|
| 1. Unimodal Distribution by Variational Calculus without Regularization | 33 |
| 2. Unimodal Distribution by Variational Calculus with Regularization | 34 |
| 3. Unimodal Distribution by Regularization and Quadratic Programming. Solid Curve is the Original Distribution, Circles the Resulting Distribution Based on a 41-Point Mesh | 35 |
| 4. Asymmetrical Bimodal Distribution, Solid Line Represents the Original Distribution, Circles the Distribution by Using a 41-Point Mesh and Regularization with Quadratic Programming. The Histogram to 1/10 Scale Represent Results Using Quadratic Programming without Regularization | 36 |
| 5. Symmetrical Trimodal Distribution, Solid Line the Original Distribution, the Circles Quadratic Programming and Regularization, the Histogram to 1/10 Scale Using Only Quadratic Programming | 37 |
| 6. Symmetrical Tetramodal Distribution, Solid Line the Original Distribution, the Circles Quadratic Programming with Regularization, the Histogram to 1/10 Scale Only Quadratic Programming | 38 |
| 7. Symmetrical Pentamodal Distribution, Solid Line the Original Distribution, the Circles Quadratic Programming with Regularization, the Histogram to 1/10 Scale Only Quadratic Programming. | 39 |
| 8. Deviations of the Computed curve $\tilde{u}(\xi^*)$ and $\bar{u}(\xi^*)$ from the "true" $\tilde{u}(\xi)$ as a function of ξ | 40 |
TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>Computational Results for the Unimodal Distribution from a 41-Point Mesh</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>II Computational Results for the Asymmetrical Bimodal Distribution from a 59-Point Mesh</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>III Computational Results for the Trimodal Distribution from a 41-Point Mesh</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>IV Computational Results for the Tetramodal Distribution from a 53-Point Mesh</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>V Computational Results for the Pentamodal Distribution from a 59-Point Mesh</td>
<td>32</td>
</tr>
</tbody>
</table>
The increased use of polymeric materials by the U.S. Air Force has placed an ever increasing demand upon the reliability e.g., strength, of these materials. Many bulk property characteristics: density, shear modulus, stress modulus, high temperature resistance, tenacity, etc. are dependent upon the distribution of molecular weights of the macromolecular chains composing the material.

There are many interacting morphological patterns - tie molecules, degrees of crystallinity, varying degrees of order-which manifest various bonding energies and/or intra-molecular interactions. These affect the strength of a polymeric material in the bulk state. However, if the molecular weight is too low, the strength can be affected as a result of pure thermal (Brownian) motion. An extremely high molecular weight might, on the other hand, inhibit relaxation or even hinder the process-ability of the material. If molecular weight affects the final bulk state properties to such a degree, a distribution of molecular weights adds another variable that can greatly affect the reliability of these materials.

For these reasons, a mathematical procedure for obtaining a molecular weight distribution (MWD) from equilibrium sedimentation data was necessary.

There exist differential and integral equations describing important physical or technological systems which in general cannot be solved by usual mathematical means and even by approximation because they belong to the class of improperly posed problems (IPP). To this class also belongs the equation which relates MWD to the concentration function provided by the technique of equilibrium sedimentation.

The notion of an IPP (improperly posed problem or incorrectly formulated problem) goes back to Hadamard (Reference 1) in conjunction
with the Cauchy problems of potential and a number of inverse problems for differential and integral equations. In the recent decade IPP's have been intensively investigated. The following considerations with respect to ill-posedness of a mathematical problem and the ways leading to their solution is based on the ideas of Phillips (Reference 2), John (References 3, 4), Lavrentiev (Reference 5), Tikhonov (References 6-21), Ivanov (References 22-26), and others (References 27-42). Among the class of IPP there exists a subclass of regularizable IPP which can be solved by applying a method of regularization.

To the subclass of regularizable IPP also belong the equation mentioned before associated with MWD determination via equilibrium sedimentation. Because of the need to correlate a MWD with physical and mechanical properties of synthetic polymers an attempt has been made in this laboratory to solve this particular equation. The progress of this work has been described in a series of technical reports AFML-TR-67-121, Parts I through VI. The first attempts to derive an MWD from these equations without using the regularization technique were unsatisfactory (Parts I through III). In part IV regularization was successfully applied and good results were obtained in case of a unimodal distribution. To solve more complex distributions, such as symmetrical and asymmetrical bimodal and symmetrical trimodal, regularization was incorporated into a linear programing algorithm (Part V). In Part VI this method was experimentally verified. An artificial and a priori known distribution of polystyrene samples was investigated. The resulting distribution was in very good agreement with the one artificially prepared.

This regularization - linear programing technique seemed limited to a maximum trimodal multiplicity. In addition, a large amount of valuable digital computer time was consumed in search for appropriate regularizing parameters.

Therefore the present report (Part VII) extends the previously discussed modifications to include regularization into quadratic programing. The required computation time is greatly diminished and the
multiplicity capable of being resolved now includes a tetramodal MWD. This paper is divided into sections, such that, once the mathematical definition of an ill-posed problem is specified, the technique of regularization used later in the discussion, will be explained. This technique leads to better results if it is incorporated in the quadratic programming. However, before discussing this latest refined combination of methods, a brief discussion of a quadratic programming technique follows. Then the actual Fredholm integral of the First Kind used along with examples of its ill-posedness is illustrated. Finally, the incorporation of regularization into quadratic programming with its application to a specific kernel will be presented.

The preceding AFML-TR-67-121 reports previously referred are:

Part I, M. T. Gehatia (June 1967).
Part V, D. R. Wiff and M. T. Gehatia (February 1971).
Part VI, M. T. Gehatia and D. R. Wiff (November 1971).
ILL-POSED PROBLEM AND REGULARIZATION

Let F and U be some complete metric spaces. Let A_f be a function with domain of definition F and the range of values U. Consider the equation

$$A_f = U = Q \left[\xi, f(m) \right]$$

(1)

The problem of solving Equation 1 for a set $\{f\}$ given a set $\{u\}$ and knowing the functional form of A is a properly posed problem if the following conditions are satisfied:

- (la) The solution of Equation 1 exists for any $u \in U$.
- (lb) The solution of Equation 1 is unique in F.
- (lc) The solution of Equation 1 depends continuously on u in the metrics of F and U. In such a case there exists a function O_u defined and continuous over all U, and O is an inverse operator of A, where

$$O_u = A^{-1} u = f = R \left[m, u(\xi) \right]$$

(2)

If even one of the conditions (la), (lb) or (lc) is not satisfied [$u = A_f$] is an IPP. In such a case the function O either does not exist or it is not stable and not reliable. Many expressions of mathematical physics include linear operations. In this case U and F are Banach Spaces and A is a linear operator. The Banach Spaces U and F encountered in most cases are the known functional spaces C^k, L_p, W^b_p, H^q_p, S_p, . . . with the carriers in some n-dimensional space of the independent variables or on any part of the spaces of independent variables. The first requirement of correctness is that the problem under consideration should not be overdetermined; second that the solution is unique, since the right-hand side of Equation 1 are real quantities obtained by measurements;
and the third condition requires the continuity of the inverse function O_u. It was felt for a long time that if at any point u the function O_u was discontinuous, then the solution f could not be uniquely recovered from the right hand side u. Hadamard introduced the notion of well-posedness by giving an example of an IPP which became a classical textbook example. This example was the famous Cauchy problem for the Laplace equation. Hadamard did not believe that an IPP represents any real physical system. This later conclusion proved to be erroneous, and many real equations of mathematical physics lead to problems which are improperly posed in the sense of Hadamard.

We now formulate an approach to the question of well-posedness of problems of the type under consideration. The approach consists of changing the notion of correctness by having requirements different from (1a), (1b), and (1c) above. In addition to the spaces U and F and the operator A, let there be given some closed set $\phi \subset U$. According to Tikhonov, the solution of Equation 1 is properly posed if

1. It is "a priori" known that the solution f exists for some class of data and belongs to the given set ϕ, $f \in \phi$.
2. The solution is unique in a class of functions belonging to ϕ.
3. Arbitrarily small changes in u do not carry the solution f out of ϕ corresponding to arbitrarily small changes in the solution f.

Upon denoting ϕ_A the image of ϕ after the application to the space F of the operator A, requirement (2c) can be restated as

1. The solution of Equation 1 depends continuously on the right-hand side of u on the set ϕ_A.

If ϕ is a compact set than according to Tikhonov, if Equation 1 satisfies (2a), and (2b), there exists a function $\alpha(\tau)$, where τ is a variable parameter, such that

1. $\alpha(\tau)$ is a continuous nondecreasing function with $\alpha(0) = 0$.

5
(b) for any \(f_1, f_2 \in \phi \) satisfying the inequality \(\rho (Af_1, Af_2) \leq \varepsilon \)
where \(\rho (\psi \phi) \) is the metric or measure of distance between \(\psi \) and \(\phi \) and \(\varepsilon \) is a constant, then the following holds

\[
\rho (f_1, f_2) \leq \alpha (\varepsilon)
\]

That is, if a problem is improperly posed in the metric spaces \(F \) and \(U \), it becomes properly posed in the usual sense if \(F \) is replaced by the subspaces \(\phi \) and \(\phi_A \).

The reason for examining the spaces \(F, U \) together with \(\phi, \phi_A \) is due to the fact that in real problems the errors introduced from experimental measurements into the determination of a set \(\{ u \} \) usually result in some \(u \) being outside \(\phi_A \). The regularization technique formulated by Tikhonov gives the possibility of constructing an approximate solution with a certain guaranteed degree of accuracy even though the exact solution of Equation 1 with approximate data either does not exist or greatly deviates from the "true" solution.
Consider the quadratic programming problem of finding \(\{x_i\} \), \(i = 1, \ldots, n \) which maximizes

\[
\sum_{i=1}^{n} b_i x_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} x_i x_j g_{ij}
\]

subject to

\[
\sum_{i} c_{ki} x_i \leq d_k \quad ; \quad k = 1, \ldots, m
\]

and the non-negativity conditions

\[
x_i \geq 0 \quad i = 1, \ldots, n
\]

where \(g_{ij} \) are the elements of a symmetric, positive semi-definite matrix, i.e.,

\[
g_{ij} = g_{ji}
\]
and

\[\sum_{j=1}^{n} \sum_{k=1}^{n} g_{kj} x_j x_k \geq 0 \]

(7)

for all \(x_j \). It is always possible to write a quadratic function in the form of Equation 3 such that Equation 6 is satisfied. The restriction Equation 7 ensures that the solution of Equation 3 is convex. There have been many algorithms devised for solving this problem. A few of these are one due to Dantzig (Reference 43), one due to Thiel and Van de Panne (Reference 44), another due to Lemke (Reference 45); two based on extensions of the simplex algorithm encountered in linear programing one by Wolfe (Reference 46) and another by Beale (References 47, 48). In addition, there are excellent review articles and/or books written on the details involved in solving Equations 3, 4, and 5 (References 49-54).

In matrix notation Equations 3 through 5 can be written as maximize,

\[B'X - \frac{1}{2} X'GX \]

(8)

subject to

\[CX \leq D \]

(9)

and

\[X \geq 0 \]

(10)

where \(G \) is positive semi-definite, i.e., \(X'GX \geq 0 \) for all values of \(X \). Here the "prime" indicates the transpose.

The well-known Kuhn-Tucker conditions assert that \(X \) is a solution if and only if there exists a vector \(W \) such that
\[W \geq 0 \]

(11)

\[W'D - W'C \, X = 0 \]

(12)

\[GX + C'W - B \geq 0 \]

(13)

and

\[X'GX + X'C'W - X'B = 0 \]

(14)

By making the following substitutions

\[V = GX + C'W - B \geq 0 \]

(15)

and

\[Y = D - C \, X \geq 0 \]

(16)

the Kuhn-Tucker conditions can then be stated as finding \(X, W, V \) and \(Y \), all \(\geq 0 \), such that

\[
\begin{bmatrix}
-G & 0 & E & -C' \\
C & E & 0 & 0
\end{bmatrix}
\begin{bmatrix}
X \\
Y \\
V \\
W
\end{bmatrix}
=
\begin{bmatrix}
-B \\
D
\end{bmatrix}
\]

(17)

where \(E \) are unit matrices and such that

\[
[VW]
\begin{bmatrix}
X \\
Y
\end{bmatrix} =
V'X + W'Y = 0
\]

(18)
In the following sections the method used to incorporate the regularization technique of Tikhonov into the quadratic programing scheme outlined above will be discussed.
SECTION IV
REGULATION OF ILL-POSED INTEGRAL EQUATIONS
OF THE FIRST KIND

As an example of the application of Tikhonov's regularization technique, consider a Fredholm integral equation of the first kind,

\[u(\xi) = \int_{M_0}^{M_1} K(\xi, m)f(m)\,dm, \xi_0 \leq \xi \leq \xi_1 \]

(19)

Assuming that certain \(u(\xi) \) functions exist which do not have corresponding \(f(m) \) solutions fulfilling conditions (1a), (1b), and (1c), means Equation 19 is an IPP. Then upon application of Tikhonov's ideas (Equation 2) to a special function \(\bar{u}(\xi) \) there corresponds a solution:

\[\bar{f}(m) = R[m, u(\xi)] \]

(20)

Also let an approximating function \(\bar{u}(\xi) \) for \(\bar{u}(\xi) \) be given, such that \(||\bar{u} - \bar{u}|| < \delta \), where \(\delta \) is known. It is then required to find \(\bar{f}(m) \), an approximation to \(\bar{f}(m) \) with an assigned precision \(||\bar{f} - \bar{f}|| < \varepsilon \) if \(\delta \) is sufficiently small. Letting \(M_0 = 0; M_1 = M_{\text{max}} \), \(\xi_0 = 0 \) and \(\xi_1 = 1 \), assuming \(K(\xi, m) \) is continuous and if for \(\bar{u}(\xi) = 0 \) there exists just one solution \(\bar{f}(m) = 0 \); then instead of using the conventional functional of calculus of variations

\[N[f(m); \bar{u}(\xi)] = \int_{0}^{1} \left\{ Q[\xi, f(m)] - \bar{u}(\xi) \right\}^2 \,d\xi \]

(21)
Tikhonov suggests application of the functional

$$M_n^\alpha [f(m) ; u(\xi)] = N [f(m) ; u(\xi)] + \alpha \Omega^{(n)} [f(m)]$$ \hspace{1cm} (22)

where \(\Omega^{(n)}\) is the regularizing functional

$$\Omega^{(n)}(f) = \int_0^{M_{\text{max}}} \left\{ \sum_{i=0}^{N+1} P_i(m) \left[f^{(i)}(m) \right]^2 \right\} \, \text{d}m$$ \hspace{1cm} (23)

the \(P_i(m)\) are positive continuous functions, \(f^{(i)}\) is the \(i\)th derivative with respect to \(m\) and \(\alpha\) is an arbitrary parameter which minimizes the functional \(M_n^\alpha\).

Application of the Eulerian equation and applying boundary conditions results in

$$L_n^\alpha[f] = \alpha \left\{ \sum_{i=0}^{N+1} (-1)^{i+1} \frac{d^i}{dm^i} \left[P_i(m) \frac{df}{dm} \right] \right\}$$

$$- \left\{ \int_0^{M_{\text{max}}} K(m, \xi) f(\xi) \, d\xi - \bar{s}(m) \right\} = 0$$ \hspace{1cm} (24)

with boundary conditions

$$\pi^\ell (m) = \left\{ \sum_{i=\ell+1}^{N+1} (-1)^{i-\ell-1} \left[P_i(m) f^{(i)}(m) \right]^{(i-\ell-1)} \right\}_{M=0, M_{\text{max}}} = 0$$ \hspace{1cm} (25)

\((\ell = 1, 2, \ldots, N + 1)\)
where

$$K(m, \xi) = \int_0^1 K(\xi, m) K(\xi, \xi) \, d\xi$$ \hspace{1cm} (26)

and

$$\bar{u}(m) = \int_0^1 K(\xi, m) \bar{u}(\xi) \, d\xi$$ \hspace{1cm} (27)

This procedure was applied to a kernel of the form

$$K(\xi, s) = \beta s e^{-\beta s} \xi / (1 - e^{-\beta s})$$ \hspace{1cm} (28)

appearing in the theory of equilibrium sedimentation of polydisperse system, by initially assuming \(\bar{f}(s) = \text{const.} \times s^2(1-s)^2 \), the set \(\{\bar{u}\} \) was computed using Equation 19. \(M_n^f \) of Equation 22 was then minimized by application of the regularizing technique resulting in the approximate solution \(\bar{f}_\alpha(s) \). Figures 1 and 2 show the results of the computation without regularization and with regularization, respectively (Reference 55).

During the application of this technique to a specific physical problem it was observed that when \(\bar{f}(m) \) was multimodal (bimodal or higher) then portions of \(\bar{f}_\alpha(m) \) were negative. From physical considerations of the problem of determining a molecular weight distribution from data obtained from an ultracentrifuge equilibrium sedimentation experiment for which the kernel in Equation 28 is applicable, all \(\bar{f}_\alpha(m) \) should be positive. Using these considerations regularization was incorporated into (LP) linear programing (Reference 56) using Dantzig's Simplex algorithm (Reference 57). The regularized LP technique gave good results up through a trimodal distribution. For higher multimodal distributions
the computed $\tilde{\mathcal{P}}(m)$ were very erratic and the computational error was large. However, since the functional to be minimized (Equation 22) is quadratic, it seemed only natural to apply quadratic programming.

In the following the incorporation of regularization into the quadratic programming algorithm given by Boot (Reference 54) is discussed.
In all applications involving the kernel given by Equation 28 it has been found that sufficiently satisfactory results were obtained when the \(P_i(m) \)'s in Equation 23 were equated to constants. Therefore the functional in Equation 22 to be minimized was restricted to become

\[
M_n^0 [f(m); \Omega(\xi)] = N [f(m); \Omega(\xi)] + \sum_n a_n \Omega^{(n)} [f] \tag{29}
\]

where now

\[
\Omega^{(n)} [f] = \int_0^{M_{\text{max}}} [f^{(n)}(m)]^2 dm \tag{30}
\]

\(f^{(n)}(m) \) being the \(n \)th derivative of \(f(m) \) with respect to \(m \), \(f^{(n)}(m) = \frac{d^n f(m)}{dm^n} \). The \(n \)th derivative of \(f(m) \) for \(n = 1, 2, 3, \ldots \) can be approximated by various numerical techniques. In this specific case, assume \(h \) is the constant increment associated with the mesh for \(m \). Then \(f^{(n)}j \) can be approximated by

\[
f^{(n)}j = \frac{1}{h^n} \sum_{k=0}^n \binom{n}{k} (-1)^k f_{j-p+k} \tag{31}
\]

where \(\binom{n}{k} \) are the binomial coefficients; and \(p = n \) for \(n \) odd; and \(p = n-1 \) for \(n \) even. Then Equation 30 becomes

\[
\Omega^{(n)} [f] = \frac{1}{h^{n-1}} \sum_{j=1}^J \sum_{l=1}^J \sum_{k=0}^n \binom{n}{k} (-1)^{k} f_{j-p+k} f_{i-p+l} \tag{32}
\]
which in matrix notation will be

\[\Omega^{(n)} [f] = \mathbf{f}' \Lambda^{(n)} \mathbf{f} \]

(33)

where \(\Lambda \) is a matrix whose elements are zero except for diagonal and near off diagonal elements for which if \(r = j - p + k \) and \(s = i - p + 1 \) (as in Equation 32) then

\[\lambda_{r,s}^{(n)} = \sum_{k=0}^{n} \sum_{l=0}^{n} \binom{n}{k} \binom{n}{l} (-1)^{k+l} \]

(34)

with the boundary conditions \(1 \leq r \leq J \) and for \(s < 1 \), then \(s = |s| + 1 \) or \(s > J \), then \(s = 2J - s + 1 \).

Next consider Equation 21. Let us express this in matrix notation, where as in Equation 1 the operator (kernel multiplied by appropriate integration constants for numerical evaluation) will be designated by \(\mathbf{A} = \{a_{ij}\}; \mathbf{u} = \{u_{i}\} i = 1,2,...,I; \) and \(\mathbf{f} = \{f_{j}\} j = 1,2,...,J. \) Thus Equation 21 can be expressed as

\[\sum_{i=1}^{I} \left(\sum_{j=1}^{J} a_{ij} f_{j} - u_{i} \right)^{2} = \mathbf{f}' \mathbf{A}' \mathbf{Af} - 2 \mathbf{u}' \mathbf{Af} + \mathbf{u}' \mathbf{u} \]

(35)

Neglecting the last term in Equation 35 which is a constant, and using the result of Equation 33, the functional \(M_{n}^{\alpha} \) of Equation 29 expressed in matrix notation is

\[M_{n}^{\alpha} = \mathbf{f}' \mathbf{A}' \mathbf{Af} - 2 \mathbf{u}' \mathbf{Af} + \sum_{n} \alpha_{n} \mathbf{f}' \Lambda^{(n)} \mathbf{f} \]

(36)
or upon dividing by 2 to be in correspondence with Equations 3 and 8 and multiplying by (-1), the functional to be maximized will be

\[
\tilde{M}_n^\alpha = u' \alpha f - \frac{1}{2} f' \left[A' A + \sum_n \alpha_n A^{(n)} \right] f
\]

(Equation 8), subject to \(\sum_j t_j f_j \leq \text{const. and all } f_j \geq 0. \)

This is now a suitable quadratic program formulation. In the following a particular kernel will be used and a computer simulation experiment where-in analogous experimental data \(\{ \bar{u} : \bar{u} = \alpha \bar{f} \} \) is generated from an assumed set \(\{ \bar{f} \} \) and the back solution, determining \(\tilde{f} \) from \(\bar{u} \) will be discussed. Since in a real experimental situation the original \(\bar{f} \) would be unknown, \(\bar{f} \) and \(\tilde{f} \) are presented only for illustrative purposes. All computations were performed so as to choose that set of \(\alpha_n \)'s (usually a single \(\alpha_n \) sufficed) which yielded a minimum for \(||\bar{u} - u|| \) i.e., the error criterion was to choose that \(\{ \tilde{f} \}_{\alpha_n} \) in correspondence with \(\inf \{ ||\bar{u} - \bar{u}|| \}. \)
The first step in proving the utility of Equation 37 was to establish a kernel which represented an IPP in a real physical situation. Such an expression is Equation 28. The computational work was then related to the following integral equation of the first-kind.

\[u(\xi) = \int_0^{m_{\text{max}}} \frac{\beta m e^{-\beta m}}{1 - e^{-\beta m}} f(m) \, dm \]

(38)

where \(\beta = \text{const.} \) and \(0 \leq \xi \leq 1 \). In all cases \(\beta = 4 \times 10^{-5} \). For unimodal and trimodal distributions, \(\tilde{f}(m) \), a 41-point mesh was used for \(\xi \) and \(m \); for a tetramodal distribution a 51-point mesh and for an asymmetrical bimodal and pentamodal a 59-point mesh was used. That is, if \(N \) equals the number of intervals in our mesh then \(\xi = \frac{n_1}{N} \) where, \(n_1 = 1, 2, \ldots, N - 1 \) and \(m = \frac{n_2 m_{\text{max}}}{N} \) for all \(n_2 = 1, 2, \ldots, N - 1 \). All integrations were performed using Simpson's quadrature formula for equidistant points. It was felt that in real problems this would be sufficient and it was not the purpose of this research to study how to minimize machine round-off errors.

An initial functional distribution \(\tilde{f}(m) \), unimodal through pentamodal, was assumed. Then Equation 38 was used to compute a set of values for \(\tilde{u}(\xi) \). These were then assumed to be our experimental values.

Next, quadratic programing with regularization was applied (Equation 37). For a given \(\alpha_n \), the corresponding set \(\{ \tilde{f}_n \} \) which minimized \(\| \tilde{u} - \tilde{u} \| \) was computed. Then through application of Equation 38 the corresponding set \(\{ u(\xi) \} \) was evaluated. The \(\alpha_n \) which yielded \(\inf \| \tilde{u} - \tilde{u} \| \) was the final \(\alpha_n \) used. Further searching for an \(\alpha_n \) with more significant digits would have decreased the error analysis criterion but for our purposes two significant figures were considered satisfactory. Finally the initial \(f(m) \) and the \(\tilde{f}(m) \) were plotted in order to compare the distributions.
These distributions along with the computed data are presented in Figures 2 through 7 and Tables I through V, respectively. To show the need for regularization some figures are presented with the results obtained when no regularization - only quadratic programing was used. In addition it should be noted that the fewer points per mode the less the precision. This is especially noticeable when comparing the unimodal and pentamodal distributions. In the former, 41 points were used per mode whereas in the latter there were only about 11 or 12 points per mode. Due to round-off errors, storage space in a high speed digital computer, and computational time the present computation was limited to using no more than about 11 points per mode for the pentamodal distribution. As a demonstration of this necessity to sample a sufficient number of molecular weights, the following test was performed. Starting with nine molecular weights the initial \(\tilde{f}(m^*) \) was computed. From these functional values the corresponding set \(\tilde{u}(\xi^*) \) was inferred on a 41-point mesh. This number of values was used to compute the corresponding set \(\tilde{\alpha}(m^*) \), in the same fashion as \(\tilde{f}(m^*) \). Finally, the set \(\tilde{\alpha}(m^*) \) was used to compute an analogous set \(\bar{u}(\xi^*) \). Figure 8 shows a comparison of \(\tilde{u}(\xi) \) computed from the \(\tilde{f}(m) \) with 41 molecular weight (Figure 3) with \(\bar{u}(\xi^*) \) and \(\bar{u}(\xi^*) \) computed using a nine-point molecular weight mesh.
The need for knowing the molecular weight distribution of synthetic polymers first led the authors to the ill-posed inverse problem associated with Equation 38. Scientists have investigated the feasibility of this determination for the past 30 to 40 years. All types of well founded mathematical theories were applied, but each would, in general, only be applicable for specific types of distributions. It was only recently realized that, instead of apologizing for the kernel of Equation 38 being ill-conditioned, the entire problem was mathematically ill-posed in the Hadamard sense. It should be challenging to derive another expression for determining a molecular weight distribution from equilibrium sedimentation data which might be a well-posed problem. Meantime, (since time and economics prevented such a diversion) application of Tikhonov's technique of regularization has enabled reliable results to be obtained. Good results were obtained for unimodal through tetramodal distributions. Poor results were obtained for a pentamodal distribution. The results indicate that even if the experimental data \(u(\xi) \) are precise, a "poor fit" MWD will be obtained if the sampling size of molecular weights is too small. It can be estimated that a lower limit on the number of molecular weights per mode or per peak has to be about 20 in order to obtain a good "fit". Ten molecular weights per peak gave poor results. To assure such a good "fit" a bimodal distribution would require a 40-point mesh minimum. Unfortunately, because of the computer storage limitations, as well as an extensive computation time, the mesh could not exceed 61 points. This number was adequate to compute a trimodal, barely adequate to compute a tetramodal distribution, and entirely inadequate to compute a pentamodal distribution. Considering these limitations, the computation of higher multimodal distributions were not attempted.

In addition, a larger molecular weight mesh would also require a corresponding larger number of discernible \(u(\xi) \). For the ultracentrifugal techniques this would require the use of longer column lengths for solutions investigated.
APPENDIX

QUADRATIC PROGRAM ALGORITHM

Computer programs were written to solve the following problems. Find the values of \(x_1, x_2, \ldots, x_n \) that maximize

\[
\begin{pmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n
\end{pmatrix}

- \frac{1}{2} \left(\begin{array}{c}
 b_1 \\
 b_2 \\
 \vdots \\
 b_n
\end{array} \right)

\left(\begin{array}{c}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n
\end{array} \right)

\]

subject to

\[
\begin{bmatrix}
 c_{11} & c_{12} & \cdots & c_{1n} \\
 c_{21} & c_{22} & \cdots & c_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 c_{k1} & c_{k2} & \cdots & c_{kn}
\end{bmatrix}

\begin{pmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n
\end{pmatrix}

\leq

\begin{pmatrix}
 d_1 \\
 d_2 \\
 \vdots \\
 d_k
\end{pmatrix}

\]

\(x_i \geq 0 \quad i = 1, 2, \ldots, n \)

where

\[
\begin{bmatrix}
 b_{11} & b_{12} & \cdots & b_{1n} \\
 b_{21} & b_{22} & \cdots & b_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 b_{n1} & b_{n2} & \cdots & b_{nn}
\end{bmatrix}

\]

is positive semi-definite

In matrix form we have:

Find the value of \(x' \) that maximizes

\[
A'x - \frac{1}{2} x' Bx
\]
subject to

\[
\begin{align*}
C X &\leq D \\
X &\geq 0
\end{align*}
\]

where \(B \) is positive semi-definite, i.e., \(X'BX \geq 0 \) for all values of \(X \).

This problem can be reformulated by introducing \(k \) non-negative slack variables \((y_1, y_2, \ldots, y_k)' = Y \) (Reference 53), and stating the problem as:

Find the values of \(X, Y \) that maximize

\[
\begin{bmatrix} A & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \end{bmatrix} - \frac{1}{2} \begin{bmatrix} X & Y \end{bmatrix} \begin{bmatrix} B & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \end{bmatrix}
\]

subject to

\[
\begin{align*}
\begin{bmatrix} C & I \end{bmatrix} \begin{bmatrix} X \\ Y \end{bmatrix} &= D \\
X &\geq 0 \\
Y &\geq 0
\end{align*}
\]

Using the Kuhn-Tucker conditions, it can be shown that \([X Y]' \) where prime denotes transpose, is the solution to this problem if and only if

1. \([X Y]' \geq 0 \)
2. There exists a vector \([V W] \) of non-negative elements such that

\[
[V W]' \begin{bmatrix} X \\ Y \end{bmatrix} = V'X + W'Y = 0
\]
3. The vectors \([X Y]' \) and \([V W]' \) satisfy the system of linear equations

\[
\begin{bmatrix} -B & 0 & I & -C' \\ C & I & 0 & 0 \end{bmatrix} \begin{bmatrix} X \\ Y \\ V \\ W \end{bmatrix} = \begin{bmatrix} -A \\ D \end{bmatrix}
\]

Dantzig's algorithm as presented by Boot (Reference 53) is used. The procedure begins with a basic feasible standard form solution \((X Y V W)' = (0 D -A 0)' \) of the system of linear equations above. The system of linear equations has \(m + k \) equations and \(2(m + k) \) unknowns.
A basic solution is a solution determined by setting \(m + k \) of the variables equal to zero and solving the remaining variables. A basic feasible solution is a basic solution that has only non-negative values for \([X Y]\). Standard and nonstandard basic feasible solutions are defined as follows. Let \(Z' = [X Y]' \) and \(U' = [V W]' \). If a basic feasible solution is such that no pair of corresponding \(Z \) and \(U \) variables consist of two nonzero elements, the solution is in **standard form**, otherwise the basic feasible solution is in **nonstandard form**.

In a basic feasible solution of the system of linear equations, the variables that are set equal to zero are called **nonbasis** variables, the remaining are called **basis** variables and comprise the basis. The algorithm consists of adding a variable to the basis and deleting a variable from the basis. This is better explained by writing the system of linear equations as a linear combination of vectors equal to a vector.

Let \(P_m \) equal the \(m^{th} \) column of the matrix

\[
\begin{bmatrix}
-B & 0 & I & -C' \\
C & I & O & O
\end{bmatrix}
\]

and let \(P'_0 = [-A D] \). Then the system of linear equations can be written

\[
Z_1 P_1 + Z_2 P_2 + \ldots + Z_{n+k} P_{n+k+1} + U_1 P_{n+k+1} + U_2 P_{n+k+2} + \ldots + U_{n+k} P_{2n+2k} = P_0
\]

Let \(P_m, m = 1, 2, \ldots, n + k \) be the values of the basis variables and let \(j_m = \) the subscript of the associated \(P \) vector for the \(m^{th} \) basis variable \(m = 1, 2, \ldots, n + k \)

The rules for **adding a variable to the basis** are:

1. If the basic feasible solution is in standard form, that particular non-basic \(Z \)-variable should enter the basis whose corresponding \(U \) has (in absolute value) the largest negative \(P \).

2. If the basis feasible solution is nonstandard and \((Z_k, U_k)\) is the nonbasic pair, then \(U_k \) should enter the basis.
Let the P vector corresponding to the variable that is to enter the basis be represented by $(T_1 \ T_2 \ ... \ T_{n+k})'$. The rules for deleting a variable from the basis are:

1. If the basic feasible solution is standard, let Z_h be the variable that is to enter the basis. Find the value of m that corresponds to the smallest positive ratio P_m/T_m while only considering those m's such that $j_m \in \{1, 2, ..., n + k, n + k + h\}$.

2. If the basic feasible solution is nonstandard, let (Z_h, U_h) correspond to the pair that are both basic. Find the value of m that corresponds to the smallest positive ratio P_m/T_m while only considering those m's such that $j_m \in \{1, 2, ..., n + k, n + k + h\}$

The algorithmic recycling is terminated when all of the basic variables are nonnegative, i.e., when $P_m \geq 0; m = 1, 2, ..., n + k.$
REFERENCES

7. A. N. Tikhonov, ibid, 155, No. 3, 501 (1963), (russ).
8. A. N. Tikhonov, ibid, 153, No. 1, 49 (1963), (russ).
10. A. N. Tikhonov, ibid, 156, No. 6, (1965), (russ).
11. A. N. Tikhonov, ibid, 161, No. 5, (1965), (russ).
12. A. N. Tikhonov, ibid, 162, No. 4, 763, (1965), (russ).
16. A. N. Tikhonov, ibid, 6, No. 1 81 (1966), (russ).
REFERENCES CONTINUED

34. C. N. Megrelian, Uspehy Mat. Nauk, Vol. 11, No. 5,3 (1956), (russ).

REFERENCES CONTINUED

TABLE I

Computational Results for the Unimodal Distribution

From a 41-Point Mesh

<table>
<thead>
<tr>
<th>No.</th>
<th>m</th>
<th>(f(m) \times 10^6)</th>
<th>(\sigma(m) \times 10^6)</th>
<th>(\overline{u}(\xi))</th>
<th>(\overline{\sigma}(\xi))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3,571</td>
<td>0.108</td>
<td>0.200</td>
<td>3.2052</td>
<td>3.2061</td>
</tr>
<tr>
<td>3</td>
<td>10,714</td>
<td>0.880</td>
<td>0.791</td>
<td>2.7151</td>
<td>2.7159</td>
</tr>
<tr>
<td>5</td>
<td>17,857</td>
<td>2.200</td>
<td>2.170</td>
<td>2.3069</td>
<td>2.3075</td>
</tr>
<tr>
<td>7</td>
<td>25,000</td>
<td>3.858</td>
<td>3.931</td>
<td>1.9660</td>
<td>1.9664</td>
</tr>
<tr>
<td>9</td>
<td>32,143</td>
<td>5.670</td>
<td>5.737</td>
<td>1.6806</td>
<td>1.6809</td>
</tr>
<tr>
<td>11</td>
<td>39,286</td>
<td>7.474</td>
<td>7.460</td>
<td>1.4410</td>
<td>1.4413</td>
</tr>
<tr>
<td>13</td>
<td>46,429</td>
<td>9.135</td>
<td>9.061</td>
<td>1.2393</td>
<td>1.2396</td>
</tr>
<tr>
<td>15</td>
<td>53,571</td>
<td>10.542</td>
<td>10.477</td>
<td>1.0692</td>
<td>1.0694</td>
</tr>
<tr>
<td>17</td>
<td>60,714</td>
<td>11.609</td>
<td>11.623</td>
<td>0.9252</td>
<td>0.9254</td>
</tr>
<tr>
<td>19</td>
<td>67,857</td>
<td>12.274</td>
<td>12.356</td>
<td>0.8031</td>
<td>0.8033</td>
</tr>
<tr>
<td>21</td>
<td>75,000</td>
<td>12.500</td>
<td>12.578</td>
<td>0.6992</td>
<td>0.6993</td>
</tr>
<tr>
<td>23</td>
<td>82,143</td>
<td>12.274</td>
<td>12.276</td>
<td>0.6106</td>
<td>0.6107</td>
</tr>
<tr>
<td>25</td>
<td>89,286</td>
<td>11.609</td>
<td>11.523</td>
<td>0.5348</td>
<td>0.5349</td>
</tr>
<tr>
<td>27</td>
<td>96,429</td>
<td>10.542</td>
<td>10.438</td>
<td>0.4698</td>
<td>0.4699</td>
</tr>
<tr>
<td>29</td>
<td>103,570</td>
<td>9.135</td>
<td>9.095</td>
<td>0.4139</td>
<td>0.4140</td>
</tr>
<tr>
<td>31</td>
<td>110,710</td>
<td>7.474</td>
<td>7.554</td>
<td>0.3657</td>
<td>0.3658</td>
</tr>
<tr>
<td>33</td>
<td>117,860</td>
<td>5.670</td>
<td>5.813</td>
<td>0.3240</td>
<td>0.3241</td>
</tr>
<tr>
<td>35</td>
<td>125,000</td>
<td>3.858</td>
<td>3.912</td>
<td>0.2879</td>
<td>0.2880</td>
</tr>
<tr>
<td>37</td>
<td>132,140</td>
<td>2.200</td>
<td>2.076</td>
<td>0.2565</td>
<td>0.2566</td>
</tr>
<tr>
<td>39</td>
<td>139,290</td>
<td>0.880</td>
<td>0.761</td>
<td>0.2291</td>
<td>0.2292</td>
</tr>
<tr>
<td>41</td>
<td>146,430</td>
<td>0.108</td>
<td>0.270</td>
<td>0.2052</td>
<td>0.2053</td>
</tr>
</tbody>
</table>

\(\alpha_2 = 5.8 \times 10^{-6} \)

\[\| \bar{u} - \bar{\sigma} \| = 3.35 \times 10^{-4} \]

\(\xi = \text{Number}/43 \)
TABLE II

COMPUTATIONAL RESULTS FOR THE ASYMMETRICAL BIMODAL DISTRIBUTION FROM A 59-POINT MESH

<table>
<thead>
<tr>
<th>No.</th>
<th>m</th>
<th>(f(m) \times 10^6)</th>
<th>(\tilde{\gamma}(m) \times 10^6)</th>
<th>(\tilde{u}(\xi))</th>
<th>(\tilde{u}(\xi))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2,500</td>
<td>0.173</td>
<td>0.110</td>
<td>2.8642</td>
<td>2.8644</td>
</tr>
<tr>
<td>3</td>
<td>7,500</td>
<td>1.388</td>
<td>1.565</td>
<td>2.5625</td>
<td>2.5727</td>
</tr>
<tr>
<td>5</td>
<td>12,500</td>
<td>3.401</td>
<td>3.639</td>
<td>2.3163</td>
<td>2.3164</td>
</tr>
<tr>
<td>7</td>
<td>17,500</td>
<td>5.834</td>
<td>5.484</td>
<td>2.0906</td>
<td>2.0908</td>
</tr>
<tr>
<td>9</td>
<td>22,500</td>
<td>8.259</td>
<td>7.587</td>
<td>1.8915</td>
<td>1.8916</td>
</tr>
<tr>
<td>11</td>
<td>27,500</td>
<td>10.706</td>
<td>10.483</td>
<td>1.7144</td>
<td>1.7156</td>
</tr>
<tr>
<td>13</td>
<td>32,500</td>
<td>12.656</td>
<td>13.181</td>
<td>1.5594</td>
<td>1.5595</td>
</tr>
<tr>
<td>15</td>
<td>37,500</td>
<td>14.047</td>
<td>15.050</td>
<td>1.4208</td>
<td>1.4209</td>
</tr>
<tr>
<td>17</td>
<td>42,500</td>
<td>14.769</td>
<td>15.621</td>
<td>1.2975</td>
<td>1.2976</td>
</tr>
<tr>
<td>19</td>
<td>47,500</td>
<td>14.769</td>
<td>14.808</td>
<td>1.1875</td>
<td>1.1876</td>
</tr>
<tr>
<td>21</td>
<td>52,500</td>
<td>14.047</td>
<td>13.408</td>
<td>1.0891</td>
<td>1.0892</td>
</tr>
<tr>
<td>23</td>
<td>57,500</td>
<td>12.656</td>
<td>11.481</td>
<td>1.0010</td>
<td>1.0010</td>
</tr>
<tr>
<td>25</td>
<td>62,500</td>
<td>10.706</td>
<td>9.538</td>
<td>0.9218</td>
<td>0.9216</td>
</tr>
<tr>
<td>27</td>
<td>67,500</td>
<td>8.359</td>
<td>7.974</td>
<td>0.8506</td>
<td>0.8506</td>
</tr>
<tr>
<td>29</td>
<td>72,500</td>
<td>5.834</td>
<td>6.434</td>
<td>0.7863</td>
<td>0.7863</td>
</tr>
<tr>
<td>31</td>
<td>77,500</td>
<td>3.520</td>
<td>4.863</td>
<td>0.7282</td>
<td>0.7282</td>
</tr>
<tr>
<td>33</td>
<td>82,500</td>
<td>2.316</td>
<td>3.853</td>
<td>0.6756</td>
<td>0.6756</td>
</tr>
<tr>
<td>35</td>
<td>87,500</td>
<td>2.385</td>
<td>2.926</td>
<td>0.6278</td>
<td>0.6278</td>
</tr>
<tr>
<td>37</td>
<td>92,500</td>
<td>3.670</td>
<td>2.530</td>
<td>0.5844</td>
<td>0.5844</td>
</tr>
<tr>
<td>39</td>
<td>97,500</td>
<td>5.057</td>
<td>3.567</td>
<td>0.5448</td>
<td>0.5448</td>
</tr>
<tr>
<td>41</td>
<td>102,500</td>
<td>6.184</td>
<td>5.749</td>
<td>0.5086</td>
<td>0.5086</td>
</tr>
<tr>
<td>43</td>
<td>107,500</td>
<td>6.914</td>
<td>7.600</td>
<td>0.4755</td>
<td>0.4755</td>
</tr>
<tr>
<td>45</td>
<td>112,500</td>
<td>7.167</td>
<td>7.632</td>
<td>0.4452</td>
<td>0.4452</td>
</tr>
<tr>
<td>47</td>
<td>117,500</td>
<td>6.914</td>
<td>6.817</td>
<td>0.4173</td>
<td>0.4173</td>
</tr>
<tr>
<td>49</td>
<td>122,500</td>
<td>6.184</td>
<td>6.124</td>
<td>0.3917</td>
<td>0.3917</td>
</tr>
<tr>
<td>51</td>
<td>127,500</td>
<td>5.057</td>
<td>4.902</td>
<td>0.3681</td>
<td>0.3681</td>
</tr>
<tr>
<td>53</td>
<td>132,500</td>
<td>3.670</td>
<td>3.765</td>
<td>0.3463</td>
<td>0.3463</td>
</tr>
<tr>
<td>55</td>
<td>137,500</td>
<td>2.212</td>
<td>2.483</td>
<td>0.3261</td>
<td>0.3261</td>
</tr>
<tr>
<td>57</td>
<td>142,500</td>
<td>0.929</td>
<td>0.964</td>
<td>0.3075</td>
<td>0.3074</td>
</tr>
<tr>
<td>59</td>
<td>147,500</td>
<td>0.119</td>
<td>0.000</td>
<td>0.2902</td>
<td>0.2901</td>
</tr>
</tbody>
</table>

\(\alpha_2 = 7.9 \times 10^{-7}\) \quad \| \tilde{u} - \tilde{u} \| = 8.73 \times 10^{-5}\)

\(\alpha_3 = 5.6 \times 10^{-10}\) \quad \xi = \text{Number}/61
TABLE III

COMPUTATIONAL RESULTS FOR THE TRIMODAL DISTRIBUTION

FROM A 41-POINT MESH

<table>
<thead>
<tr>
<th>No</th>
<th>m</th>
<th>$f(m) \times 10^6$</th>
<th>$\phi(m) \times 10^6$</th>
<th>$\bar{u}(\xi)$</th>
<th>$\bar{u}(\xi)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3,571</td>
<td>0.585</td>
<td>0.839</td>
<td>3.2501</td>
<td>3.2524</td>
</tr>
<tr>
<td>3</td>
<td>10,714</td>
<td>3.964</td>
<td>3.584</td>
<td>3.7147</td>
<td>2.7165</td>
</tr>
<tr>
<td>5</td>
<td>17,857</td>
<td>7.918</td>
<td>8.440</td>
<td>2.2798</td>
<td>2.2812</td>
</tr>
<tr>
<td>7</td>
<td>25,000</td>
<td>10.452</td>
<td>10.613</td>
<td>1.9252</td>
<td>1.9264</td>
</tr>
<tr>
<td>9</td>
<td>32,143</td>
<td>10.553</td>
<td>9.861</td>
<td>1.6351</td>
<td>1.6360</td>
</tr>
<tr>
<td>11</td>
<td>39,286</td>
<td>8.182</td>
<td>7.536</td>
<td>1.3967</td>
<td>1.3975</td>
</tr>
<tr>
<td>15</td>
<td>53,571</td>
<td>2.939</td>
<td>4.344</td>
<td>1.0372</td>
<td>1.0379</td>
</tr>
<tr>
<td>17</td>
<td>60,714</td>
<td>6.171</td>
<td>6.339</td>
<td>0.9017</td>
<td>0.9022</td>
</tr>
<tr>
<td>19</td>
<td>67,857</td>
<td>0.546</td>
<td>8.499</td>
<td>0.7884</td>
<td>0.7889</td>
</tr>
<tr>
<td>21</td>
<td>75,000</td>
<td>10.834</td>
<td>9.239</td>
<td>0.6932</td>
<td>0.6937</td>
</tr>
<tr>
<td>23</td>
<td>82,143</td>
<td>9.546</td>
<td>8.936</td>
<td>0.6129</td>
<td>0.6133</td>
</tr>
<tr>
<td>25</td>
<td>89,286</td>
<td>6.171</td>
<td>7.550</td>
<td>0.5447</td>
<td>0.5452</td>
</tr>
<tr>
<td>27</td>
<td>96,429</td>
<td>2.939</td>
<td>5.541</td>
<td>0.4867</td>
<td>0.4871</td>
</tr>
<tr>
<td>29</td>
<td>103,570</td>
<td>4.283</td>
<td>4.221</td>
<td>0.4369</td>
<td>0.4373</td>
</tr>
<tr>
<td>31</td>
<td>110,710</td>
<td>8.182</td>
<td>5.608</td>
<td>0.3941</td>
<td>0.3945</td>
</tr>
<tr>
<td>33</td>
<td>117,860</td>
<td>10.553</td>
<td>0.552</td>
<td>0.3570</td>
<td>0.3574</td>
</tr>
<tr>
<td>35</td>
<td>125,000</td>
<td>10.452</td>
<td>11.789</td>
<td>0.3248</td>
<td>0.3252</td>
</tr>
<tr>
<td>37</td>
<td>132,140</td>
<td>7.918</td>
<td>8.845</td>
<td>0.2966</td>
<td>0.2970</td>
</tr>
<tr>
<td>39</td>
<td>139,290</td>
<td>3.964</td>
<td>3.223</td>
<td>0.2719</td>
<td>0.2723</td>
</tr>
<tr>
<td>41</td>
<td>146,430</td>
<td>0.585</td>
<td>0.787</td>
<td>0.2501</td>
<td>0.2504</td>
</tr>
</tbody>
</table>

$a_2 = 1.0 \times 10^{-6}$ \quad || \bar{u} - \bar{\phi} || = 8.5029 \times 10^{-4}$

$a_3 = 3.2 \times 10^{-9}$ \quad $\xi = \text{Number}/43$

$a_4 = 1.0 \times 10^{-6}$
TABLE IV

COMPUTATIONAL RESULTS FOR THE TETRAMODAL DISTRIBUTION
FROM A 53-POINT MESH

| No. | m | $f(m) \times 10^6$ | $F(m) \times 10^6$ | $\bar{u}(\xi)$ | $\vartheta(\xi)$ |
|-----|------|------------------|------------------|----------------|----------------|}
1	2,778	0.592	0.000	3.2556	3.2556
3	8,333	3.991	3.374	2.8297	2.8297
5	13,889	7.910	11.405	2.4678	2.4678
7	19,444	10.329	12.895	2.1595	2.1595
9	25,000	10.251	6.929	1.8964	1.8963
11	30,556	7.706	0.000	1.6712	1.6711
13	36,111	3.807	2.223	1.4780	1.4780
15	41,667	3.064	8.468	1.3120	1.3119
17	47,222	6.616	13.273	1.1688	1.1688
19	52,778	9.731	13.488	1.0450	1.0450
21	58,333	10.583	9.582	0.9378	0.9378
23	63,889	8.841	3.356	0.8446	0.8445
25	69,444	5.199	0.000	0.7633	0.7633
27	75,000	2.754	0.593	0.6923	0.6923
29	80,556	5.199	3.511	0.6300	0.6300
31	86,111	8.841	11.522	0.5752	0.5753
33	91,667	10.583	16.024	0.5269	0.5270
35	97,222	9.731	14.384	0.4842	0.4842
37	102,780	6.616	7.620	0.4463	0.4463
39	108,330	3.064	1.743	0.4126	0.4126
41	113,890	3.807	0.000	0.3824	0.3825
43	119,440	7.706	1.256	0.3555	0.3555
45	125,000	10.251	9.745	0.3312	0.3313
47	130,560	10.329	16.270	0.3094	0.3095
49	136,110	7.910	10.028	0.2897	0.2898
51	141,670	3.991	2.310	0.2718	0.2719
53	147,220	0.592	0.000	2.556	2.557

$a_2 = 2.1 \times 10^{-7} \quad \| \bar{u} - \vartheta \| = 4.0120 \times 10^{-5} $

$a_3 = 7.0 \times 10^{-10} \quad \xi = \text{Number/55}$
TABLE V

COMPUTATIONAL RESULTS FOR THE PENTAMODAL DISTRIBUTION FROM A 59-POINT MESH

<table>
<thead>
<tr>
<th>No.</th>
<th>m</th>
<th>$\bar{f}(m) \times 10^6$</th>
<th>$\bar{r}(m) \times 10^6$</th>
<th>$\bar{u}(\xi)$</th>
<th>$\bar{v}(\xi)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3,000</td>
<td>0.593</td>
<td>2.609</td>
<td>3.8132</td>
<td>3.8089</td>
</tr>
<tr>
<td>3</td>
<td>9,000</td>
<td>3.853</td>
<td>2.747</td>
<td>3.2709</td>
<td>3.2683</td>
</tr>
<tr>
<td>5</td>
<td>15,000</td>
<td>7.245</td>
<td>8.257</td>
<td>2.8166</td>
<td>2.8153</td>
</tr>
<tr>
<td>7</td>
<td>21,000</td>
<td>8.742</td>
<td>12.430</td>
<td>2.4351</td>
<td>2.4347</td>
</tr>
<tr>
<td>9</td>
<td>27,000</td>
<td>7.606</td>
<td>9.559</td>
<td>2.1138</td>
<td>2.1141</td>
</tr>
<tr>
<td>11</td>
<td>33,000</td>
<td>4.391</td>
<td>5.370</td>
<td>1.8425</td>
<td>1.8433</td>
</tr>
<tr>
<td>13</td>
<td>39,000</td>
<td>2.281</td>
<td>2.880</td>
<td>1.6128</td>
<td>1.6139</td>
</tr>
<tr>
<td>15</td>
<td>45,000</td>
<td>4.922</td>
<td>3.231</td>
<td>1.4177</td>
<td>1.4190</td>
</tr>
<tr>
<td>17</td>
<td>51,000</td>
<td>7.923</td>
<td>7.604</td>
<td>1.2516</td>
<td>1.2529</td>
</tr>
<tr>
<td>19</td>
<td>57,000</td>
<td>8.687</td>
<td>4.621</td>
<td>1.1096</td>
<td>1.1110</td>
</tr>
<tr>
<td>21</td>
<td>63,000</td>
<td>6.843</td>
<td>4.082</td>
<td>0.9880</td>
<td>0.9892</td>
</tr>
<tr>
<td>23</td>
<td>69,000</td>
<td>3.329</td>
<td>6.802</td>
<td>0.8834</td>
<td>0.8845</td>
</tr>
<tr>
<td>25</td>
<td>75,000</td>
<td>2.592</td>
<td>10.928</td>
<td>0.7931</td>
<td>0.7941</td>
</tr>
<tr>
<td>27</td>
<td>81,000</td>
<td>5.935</td>
<td>5.983</td>
<td>0.7150</td>
<td>0.7159</td>
</tr>
<tr>
<td>29</td>
<td>87,000</td>
<td>8.410</td>
<td>0.000</td>
<td>0.6471</td>
<td>0.6478</td>
</tr>
<tr>
<td>31</td>
<td>93,000</td>
<td>8.410</td>
<td>4.985</td>
<td>0.5879</td>
<td>0.5885</td>
</tr>
<tr>
<td>33</td>
<td>99,000</td>
<td>5.935</td>
<td>11.253</td>
<td>0.5362</td>
<td>0.5366</td>
</tr>
<tr>
<td>35</td>
<td>105,000</td>
<td>2.592</td>
<td>20.421</td>
<td>0.4907</td>
<td>0.4910</td>
</tr>
<tr>
<td>37</td>
<td>111,000</td>
<td>3.329</td>
<td>1.102</td>
<td>0.4507</td>
<td>0.4509</td>
</tr>
<tr>
<td>39</td>
<td>117,000</td>
<td>6.843</td>
<td>0.000</td>
<td>0.4153</td>
<td>0.4154</td>
</tr>
<tr>
<td>41</td>
<td>123,000</td>
<td>8.687</td>
<td>0.000</td>
<td>0.3839</td>
<td>0.3838</td>
</tr>
<tr>
<td>43</td>
<td>129,000</td>
<td>7.923</td>
<td>0.000</td>
<td>0.3560</td>
<td>0.3558</td>
</tr>
<tr>
<td>45</td>
<td>135,000</td>
<td>4.922</td>
<td>14.118</td>
<td>0.3310</td>
<td>0.3308</td>
</tr>
<tr>
<td>47</td>
<td>141,000</td>
<td>2.281</td>
<td>4.616</td>
<td>0.3087</td>
<td>0.3083</td>
</tr>
<tr>
<td>49</td>
<td>147,000</td>
<td>4.391</td>
<td>1.905</td>
<td>0.2886</td>
<td>0.2881</td>
</tr>
<tr>
<td>51</td>
<td>153,000</td>
<td>7.606</td>
<td>14.409</td>
<td>0.2704</td>
<td>0.2699</td>
</tr>
<tr>
<td>53</td>
<td>159,000</td>
<td>8.742</td>
<td>7.154</td>
<td>0.2540</td>
<td>0.2534</td>
</tr>
<tr>
<td>55</td>
<td>165,000</td>
<td>7.245</td>
<td>0.000</td>
<td>0.2391</td>
<td>0.2385</td>
</tr>
<tr>
<td>57</td>
<td>171,000</td>
<td>3.853</td>
<td>0.000</td>
<td>0.2256</td>
<td>0.2249</td>
</tr>
<tr>
<td>59</td>
<td>177,000</td>
<td>0.593</td>
<td>7.073</td>
<td>0.2132</td>
<td>0.2125</td>
</tr>
</tbody>
</table>

\[a_2 = 4.0 \times 10^{-10} \quad \| \bar{u} - \bar{v} \| = 1.1093 \times 10^{-3} \]

\[a_3 = 1.5 \times 10^{-8} \quad \xi = \text{Number/61} \]
Figure 1. Unimodal Distribution by Variational Calculus without Regularization
Figure 2. Unimodal Distribution by Variational Calculus with Regularization
Figure 3. Unimodal Distribution by Regularization and Quadratic Programming. Solid line distribution based on a 41-point,

\[a_2 = 5.8 \times 10^{-5} \]

where \(m = 3.489 \times 10^{-9} \).
\[\alpha_2 = 7.9 \times 10^{-7} \]
\[\alpha_3 = 5.6 \times 10^{-10} \]

Histogram is \(\frac{1}{10} \) scale.

Figure 4. Asymmetrical Bimodal Distribution. Solid line represents the original distribution, circles the distribution by using a 41-point mesh and regularization with quadratic programing. The histogram to 1/10 scale represent results using quadratic programing without regularization.
Figure 5. Symmetrical Trimodal Distribution, Solid Line the Original Distribution, the Circles Quadratic Programming and Regularization, the Histogram to 1/10 Scale Using Only Quadratic Programming.
Figure 6. Symmetrical Tetramodal Distribution, Solid Line the Original Distribution, the Circles Quadratic Programming with Regularization, the Histogram to 1/10 Scale Only Quadratic Programming.
Figure 7. Symmetrical Pentamodal Distribution, Solid Line the Original Distribution, the Circles Quadratic Programming with Regularization, the Histogram to 1/10 Scale Only Quadratic Programming

$\alpha_2 = 4.0 \times 10^{-10}$

$\alpha_3 = 1.5 \times 10^{-8}$
Figure 8. Deviations of the Computed Curve $\bar{u}(\xi^{*})$ and $\sigma(\xi^{*})$ from the "true" $\bar{u}(\xi)$ and $\sigma(\xi)$, as a Function of ξ^{*}.
PROGRAM LISTING
PROGRAM REQUAD

PURPOSE

PROGRAM READS ALPHA(NLAST) AS DATA FROM NFIRST THROUGH NCODE. THEN PROGRAM CONTINUES FROM NCODE+1 THROUGH NUPP SEARCHING FOR MINIMUM FOR EACH DERATIVE RETAINING PREVIOUS VALUES. IF NCODE = 0, SEARCH BEGINS WITH NFIRST. IF NFLAG GT 0 PROGRAM READS ONE VALUE OF ALPHA AND COMPUTES FOR ONLY THIS ONE VALUE.

USAGE

PROGRAM REQUAD(TAPE5, OUTPUT, TAPE6=OUTPUT)

PROGRAM REQUAD(TAPE5, OUTPUT, TAPE6=OUTPUT)
COMMON/ZYT/J, XK, S, X, Z, BK, B, ZP, A, ALPHA, R, XX, UP, DLX, DLS,
*IMAX, NMAX, NF
1IRST, NLAST, FACTO, TCOST, TPIV

DIMENSIONS FOR COMMON

DIMENSION U(60), XK(60, 60), S(60), X(60), Z(60), BK(60, 60),
*B(60), ZP(60)
A, A(60, 60), ALPHA(10), R(60), XX(60), UP(60)
DIMENSION IBASIS(60), RESULT(60)

READ(5, 200)
WRITE(6, 1000)
WRITE(6, 200)
WRITE(6, 1001)

NMAX AND IMAX MUST BE ODD INTEGERS
READ(5, 201) NNMAX, IMAX, W1, W2
NMAX = NNMAX - 2
LMAX = NMAX + 1
IMAX = IMAX
DLS = FLOAT(NNMAX-1)/(W2-W1)
DLX = FLOAT(IMAX-1)
DO 1 I = 1, IMAX
X(I) = FLOAT(I-1)/DLX
1 CONTINUE
COF = 0.
DO 2 I = 1, NMAX
S(I) = W1 + FLOAT(I)/DLS
F1 = 0.
IF(S(I) GT W2 OR S(I) LT W1) GO TO 53
A1 = (S(I) - W1)**2
A2 = (S(I) - W2)**2

42
F1 = A1*A2
53 Z(I) = F1
KNUM = I/2
JNUM = (I+1)/2
IF(JNUM.NE.KNUM) GO TO 51
SIG = 2.
GO TO 52
51 SIG = 4.
52 COF = COF + SIG*Z(I)/(3.*DLS)
2 CONTINUE
DO 5 I = 1,NMAX
5 Z(I) = Z(I)/COF
C XSIG = LAMBDA IN THE THEORY, SEE FUJITA'S EQUATION
READ(5,103) XSIG
DO 4 I = 1,NMAX
COEF = 0.
DO 3 J = 1,NMAX
A1 = XSIG*S(J)
A2 = A1
A3 = EXP(-A1*X(I))
A4 = EXP(-A1)
A5 = 1. - A4
A6 = A2*A3/A5
XK(I,J) = A5
KNUM = J/2
JNUM = (J+1)/2
IF(JNUM.NE.KNUM) GO TO 42
SIG = 2.
GO TO 43
42 SIG = 4.
43 COEF = COEF + SIG*XK(I,J)*Z(J)/(3.*DLS)
3 CONTINUE
C CALCULATION OF U(ZI) BY SIMPSON'S FORMULA
4 U(I) = COEF
CALL REG2
81 CONTINUE
READ(5,101) NCODE,NFIRST,NUPP,NFLAG,FACTO,TCOST,TPIV
DO 30 NLAST = NFIRST,NUPP
IF(NLAST.LE.NCODE) GO TO 31
IF(NFLAG.GT.0) GO TO 40
READ(5,100) LPHA1,LPHA2
LXP = IABS(LPHA2 - LPHA1) + 1
NUM = 0
DO 20 II = 1,LXP
IXP = LPHA1 + II - 1
DO 21 KL = 1,9
ALPHA(NLAST) = FLOAT(KL)*10.**IXP
21 CONTINUE
C OBTAIN MODIFIED MATRIX
CALL REG3
C OBTAIN INVERSE SOLUTION
CALL QUAD1(RESULT,IBASIS)
DO 33 I = 1,LMAX
33 ZP(I) = 0.
DO 32 I = 1,LMAX
 J = IBASIS(I)
 IF(J.GT.LMAX) GO TO 32
 ZP(J) = RESULT(I)
32 CONTINUE
C EVALUATE ERROR
CALL REG4(UAVG)
WRITE(6,4000) ALPHA(NLAST),UAVG
4000 FORMAT(1H ,1P2E12.5)
IF(KL.EQ.10.AND.II.EQ.1) GO TO 22
IF(UAVG.GE.AVG1) GO TO 28
AVG1 = UAVG
C STORE MINIMUM ERROR AND CORRESPONDING ALPHA
XM = ALPHA(NLAST)
NX = IXP
NUM = 0
GO TO 21
22 AVG1 = UAVG
C STORE FIRST ALPHA USED AND ASSOCIATED ERROR
XM = ALPHA(NLAST)
NX = IXP
GO TO 21
28 CONTINUE
21 CONTINUE
20 CONTINUE
23 CONTINUE
IF(XM.EQ.10.*NX) GO TO 60
XMM = XM - 10.*NX
GO TO 62
60 XMM = 9.*10.**(NX-1)
62 CONTINUE
DO 25 I = 1,20
 ALPHA(NLAST) = XMM + FLOAT(I-1)*10.**(NX-1)
CALL REG3
CALL QUAD1(RESULT,IBASIS)
DO 55 K = 1,LMAX
55 ZP(K) = 0.
DO 56 K = 1,LMAX
 J = IBASIS(K)
 IF(J.GT.LMAX) GO TO 55
 ZP(J) = RESULT(K)
56 CONTINUE
CALL REG4(UAVG)
IF(I.EQ.1) GO TO 26
IF(UAVG.GE.AVG1) GO TO 25
AVG1 = UAVG
XM = ALPHA(NLAST)
GO TO 25
26 AVG1 = UAVG
XM = ALPHA(NLAST)
25 CONTINUE
27 ALPHA(NLAST) = XM
GO TO 61
40 READ(5,102) ALPHA(NLAST)
3 IF COMPUTATION PROCEEDS FOR ONLY ONE ALPHA BEGIN
3 HERE
61 CONTINUE
3 OBTAIN MODIFIED MATRIX
CALL REG3
3 OBTAIN INVERSE SOLUTION
CALL QUADI(RESULT,IBASIS)
DO 34 I = 1,LMAX
34 ZP(I) = 0.
DO 35 I = 1,LMAX
J = IBASIS(I)
IF(J.GT.LMAX) GO TO 35
ZP(J) = RESULT(I)
35 CONTINUE
3 EVALUATE ERROR
CALL REG4(UAVG)
DO 24 I = 1,IMAX
3 Z(I) = ORIGINAL DISTRIBUTION
3 ZP(I) = BACK SOLUTION
3 U(I) = CORRESPONDS TO INPUT DATA, COMPUTED USING
3 Z(I)
3 UP(I) = BACK SOLUTION COMPUTATION
3 S(I) = VARIABLE FOR Z(I), CORRESPONDING TO
3 MOLECULAR WEIGHT
WRITE(6,2001) I,ZP(I),I,Z(I),I,UP(I),I,U(I),I,S(I)
24 CONTINUE
WRITE(6,2000) (I,ALPHA(I),I = NFIRST,NLAST)
WRITE(6,2002) UAVG
WRITE(6,104) XSIG
WRITE(6,1000)
GO TO 30
31 READ(5,102) ALPHA(NLAST)
30 CONTINUE
READ(5,100) IT1,IT2
IF(IT1.EQ.0) GO TO 99
GO TO 81
99 CONTINUE
WRITE(6,1001)
WRITE(6,7000)
STOP
45
SUBROUTINE REG4(UAVG)

PURPOSE
 THIS SUBROUTINE PROCESSES THE COMPUTED ZP(I),
 CALCULATES UP(I) AND THE ERROR CRITERION

USAGE
 CALL REG4(UAVG)

SUBROUTINE REG4(UAVG)
COMMON/ZYT/UXKSXZBKBZPAALPHARXXUPDLXDLS,
*IMAX,NMAX,NF
FIRST,NLAST,FACTO,TCOST,TPIV
DIMENSIONS FOR COMMON
DIMENSION U(60),XK(60,60),S(60),X(60),Z(60),BK(60,60),
*B(60),ZP(60)
A(60,60),ALPHA(10),R(60),XX(60),UP(60)
UAV = 0.
DO 40 I = 1,IMAX
 COEF = 0.
 DO 41 J = 1,NMAX
 KNUM = J/2
 JNUM = (J+1)/2
 IF(JNUM.NE.KNUM) GO TO 43
 SIG = 2.
 GO TO 44
 40 CONTINUE
 41 CONTINUE
 42 CONTINUE
 43 CONTINUE
 44 CONTINUE

END
AFML-TR-67-121
PART VII

43 SIG = 4.
44 COEF = COEF + SIG*XK(I,J)*ZP(J)/(3.*DLS)
41 CONTINUE
 UP(I) = COEF
 UAV = UAV + (UP(I)-U(I))***2
40 CONTINUE
 UAVG = SQRT(UAV/FLOAT(IMAX))
99 RETURN
END

SUBROUTINE REG2

PURPOSE
 THIS SUBROUTINE INTEGRATES XK(I,J)*XK(I,J) OVER ZI-VALUES TO OBTAIN NEW MATRIX BK(I,J)

USAGE
 CALL REG2

SUBROUTINE REG2
COMMON/ZYT/U,XK,S,X,Z,BK,B,ZP,A,ALPHA,R,XX,UP,DLX,DLS,
*IMAX,NMAX,NF
FIRST,NLAST,FACTO,TCOST,TPIV
DIMENSIONS FOR COMMON
 DIMENSION U(60),XK(60,60),S(60),X(60),Z(60),BK(60,60),
 *B(60),ZP(60)
 A(60,60),ALPHA(10),R(60),XX(60),UP(60)

SIMPSON RULE

 DO 5 I = 1,NMAX
 DO 5 J = 1,NMAX
 COEF1 = 0.
 COEF = 0.
 DO 20 K = 1,IMAX
 IF(K.EQ.1.OR.K.EQ.IMAX) GO TO 21
 IF(K.EQ.2.OR.K.EQ.IMAX-1) GO TO 23
 KNUM = K/2
 JNUM = (K+1)/2
 IF(JNUM.EQ.KNUM) GO TO 23
 22 SIG = 2.
 GO TO 24
 21 SIG = 1.
 GO TO 24
 23 SIG = 4.
 24 A1 = SIG*XK(K,I)*XK(K,J)/(3.*DLX)
 IF(I.GT.1) GO TO 7
A2 = SIG*XX(K,J)*U(K)/(3.*DLX)
COEF1 = COEF1 + A2
7 COEF = COEF + A1
20 CONTINUE
 IF(I.GT.1) GO TO 8
 B(J) = COEF1
8 BK(I,J) = COEF/DLS
5 CONTINUE
RETURN
END

**

SUBROUTINE REG3

PURPOSE
 THIS SUBROUTINE INTRODUCES THE REGULARIZATION TERMS IN THE MATRIX BK(I,J).
 THE FINAL REGULARIZED MATRIX IS A(I,J)

USAGE
 CALL REG3

SUBROUTINE REG3
 COMMON/ZYT/U,XK,S,X,Z,BK,B,ZP,A,ALPHA,R,XX,UP,DLX,DLS,
 *IMAX,NMAX,NF
 FIRST,NLAST,FACTO,TCOL,TPIV
 DIMENSIONS FOR COMMON
 DIMENSION U(60),XX(60,60),X(60),Z(60),BK(60,60),
 *B(60),ZP(60)
 1,A(60,60),ALPHA(10),R(60),XX(60),UP(60)
 DO 51 I = 1,NMAX
 DO 51 J = 1,NMAX
51 A(I,J) = 0.
 DO 9 I = 1,NMAX
 DO 9 J = 1,NMAX
 A(I,J) = BK(I,J)
9 CONTINUE
 DO 63 N = NFIRST,NLAST
 DO 60 I = 1,NMAX
 NUM = N + 1
 DO 60 J = 1,NUM
 DO 60 K = 1,NUM
 NB = N/2
 LABEL1 = I - NB + J - 1
 LABEL2 = I - NB + K - 1
 IF(LABEL1,GT,NMAX,OR,LABEL1,LT,1) GO TO 60
 A1 = CALC(N,J,DLS)
 A2 = CALC(N,K,DLS)
 60 CONTINUE
FUNCTION CALC

PURPOSE
 THIS FUNCTION SUBROUTINE EVALUATES THE
 COEFFICIENTS (BINOMIAL), ETC.
 CALLED BY REG3

USAGE
 X=CALC(N,K,DLS)

FUNCTION CALC(N,K,DLS)

 LL = 2*N
 L = K - 1
 M = N - L
 IF(K.EQ.1.OR.K.EQ.N+1) GO TO 10
 I1 = 1
 I2 = 1
 I3 = 1
 DO 1 I = 1,L
 1 I1 = I1*I
 DO 3 I = 1,N
 3 I3 = I*I3
 DO 2 I = 1,M
 2 I2 = I*I2
 X1 = I3/(I1*I2)
 X2 = (-1.)**K
 CALC = X1*X2
 GO TO 99
 10 IF(K.EQ.1) GO TO 11
 X1 = -1.
 CALC = X1
 GO TO 99
11 X1 = (-1,)**K
CALC = X1
99 RETURN
END

SUBROUTINE QUAD1

PURPOSE

SUBROUTINES QUAD1 AND QUAD2 SOLVE THE QUADRATIC
PROGRAMMING PROBLEM, FIND THE VALUE OF X THAT
MAXIMIZES
A'X - 1/2 X'B X
SUBJECT TO
C X .LE. D
X .GE. 0

USING DANTZIG'S MODIFIED SIMPLEX ALGORITHM
(SEE JOHN C. G. BOOJ, QUADRATIC PROGRAMMING, RAND
MCNALLY, CHICAGO 1964, PP. 186-196)
QUAD1 DEFINES THE INITIAL SIMPLEX TABLEAU

USAGE
CALL QUAD1
(A,B,C,D,N,K,ROWS,COLS,ABCD,RESULT,ZERO1,BASIS)

DESCRIPTION OF PARAMETERS
A - INPUT VECTOR OF LENGTH N THAT DEFINES
THE LINEAR PART OF THE OBJECTIVE FUNCTION
B - INPUT MATRIX (N,N) THAT DEFINES THE
QUADRATIC PART OF THE OBJECTIVE FUNCTION
C - INPUT MATRIX (K,N) THAT DEFINES THE LEFT
HAND PART OF THE CONSTRAINTS
D - VECTOR OF LENGTH K THAT DEFINES THE RIGHT
HAND SIDE OF THE CONSTRAINTS
N - NUMBER OF ELEMENTS OF X
K - NUMBER OF CONSTRAINTS
ROWS - N+K, THE NUMBER OF ROWS IN THE INITIAL
SIMPLEX TABLEAU
COLS - 2*ROWS+1, THE NUMBER OF COLUMNS IN THE
INITIAL SIMPLEX TABLEAU
ABCD - THE INITIAL SIMPLEX TABLEAU, MATRIX OF
SIZE (ROWS,COLS)
RESULT - VECTOR OF LENGTH ROWS, THAT CONTAINS THE
RESULTS OF THE QUADRATIC PROGRAMMING
PROBLEM
BASIS - VECTOR OF LENGTH ROWS, CONTAINING THE
LOCATIONS OF THE BASIS VECTORS
THE BASIS VECTORS

SUBROUTINE QUAD1(RESULT,BASIS)
INTEGER ROWS, COLS, ZERO1, BASIS
COMMON/ZYT/U,XK,S,X,Z,BK,B,ZP,A,ALPHA,R,XX,UP,DLX,DLS,
*IMAX,NMAX,NF
1IRST,NLAST,FACTO,TCOST,TPIV
C DIMENSION FOR COMMON
DIMENSION U(60),XK(60,60),S(60),X(60),Z(60),BK(60,60),
* B(60), ZP(60)
1, A(60, 60), ALPHA(10), R(60), XX(60), UP(60)
COMMON/ZXT/ABCD
DIMENSION C(2,60), D(2), ABCD(60,121), RESULT(60), ZERO1(1
* 21), BASIS(60
1), IROW(121)
LOGICAL NOPIVT
COMMON/QUAD2C/NOPIVT
N = NMAX
K = 1
ROWS = NMAX + K
COLS = 2*(NMAX + K) + 1
DO 57 I = 1,NMAX
C(I,I) = FACTO/DLS
57 CONTINUE
D(1) = FACTO
C N VARIABLES K CONSTRAINTS
DO 1 I=1,ROWS
DO 1 J=1,COLS
1 ABCD(I,J)=0.0
DO 2 I=1,N
DO 2 J=1,N
2 ABCD(I,J) = -A(I,J)
DO 3 K1=1,K
I=N+K1
ABCD(I,I)=1.0
DO 3 J=1,N
3 ABCD(I,J)=C(K1,J)
DO 4 I=1,N
J=N+K+I
4 ABCD(I,J)=1.0
DO 5 K1=1,K
J=2*N+K+K1
DO 5 I=1,N
5 ABCD(I,J)=-C(K1,I)
J=COLS
DO 6 I=1,N
5 ABCD(I,J) = -B(I)
DO 7 K1=1,K
7 CONTINUE
C
I=N+K1
ABC(I,J)=D(K1)
DO 11 I=1,ROWS
DO 12 J=1, COLS
12 IRW(J)=ABCD(I,J)
11 CONTINUE
CALL QUAD2(ROWS, COLS, N, K, RESULT, ZERO1, BASIS, TPIV, TCOST *)
RETURN
END

SUBROUTINE QUAD2

PURPOSE
(SEE QUAD1)

USAGE
CALL QUAD2(ABCD, ROWS, COLS, N, K, RESULT, ZERO1, BASIS)

DESCRIPTION OF PARAMETERS
(SEE QUAD1)

SUBROUTINE QUAD2(ROWS, COLS, N, K, RESULT, ZERO1, BASIS, TPIV, TCOST *)
INTEGER COLS, ZERO1, ROWS, BASIS, COLN, PIVROW, PC, PR
COMMON/ZXT/ABCD
DIMENSION ABCD(60, 121), RESULT(60), ZERO1(121), BASIS(60)
REAL NUM, MULT
LOGICAL NOPIVT
COMMON/QUAD2C/NOPIVT

C CLEAR ZERO1 VECTOR
DO 2 I=1, COLS
2 ZERO1(I)=0

C INSERT (N+K) ONES INTO ZERO1(N+1)
DO 3 I=1, ROWS
J=N+I
3 ZERO1(J)=1

C LOAD N COLUMN NUMBERS FROM VARIABLE V(I) INTO BASIS(1)
DO 4 I=1, N
BASIS(I)=ROWS+I
4

C LOAD K COLUMN NUMBERS FROM VARIABLE L(N+1) INTO
C BASIS(N+1)
DO 9 I=1, K
J=N+I
9 BASIS(J)=J

C ASSUME A NON STANDARD TABLE
17 NONSTD=0

52
LOOK AT ZEROI VECTOR AND DETERMINE FOR A NONSTANDARD TABLE....

1. PC=COLUMN NUMBER OF THE MISSING V VARIABLE
2. IV=V COLUMN NUMBER OF THE BASIC PAIR
3. IF CONDITION 1 AND 2 ARE PRESENT SET NONSTD=1

DO 5 I=1,ROWS
 J=I+ROWS
 I1=ZEROI(I)+ZEROI(J)
 IF (I1-1) 6,5,7
5
 PC=J
 NONSTD=1
 GO TO 5

C
IS THIS A NON STANDARD TABLE
IF (NONSTD.EQ.1) GO TO 8

C
SCAN THE BASIS FOR IV,COLUMN NUMBER OF THE LARGEST NEGATIVE V(I) AND DETERMINE PC=COLUMN NUMBER OF L(I) TO BE ADDED TO THE BASIS

VNEG=0.0
DO 10 I=1,ROWS
 COLN=BASIS(I)
 IF (COLN.LE.ROWS) GO TO 10
 T1=ABCD(ICOLS)
 IF (T1.GE.VNEG) GO TO 10
 VNEG=T1
 IV=COLN
 PC=COLN-ROWS
10 CONTINUE

SLOOK AT THE V(IV) RATIO AND ALL J(I) RATIOS AND DETERMINE THE VARIABLE HAVING THE SMALLEST NON NEGATIVE VALUE. THIS COLUMN NUMBER IS PR (THE PIVOT ROW), THE VARIABLE TO BE REMOVED

RATIO=1.0E37
 NOPIVT=.TRUE.
 DO 11 I=1,ROWS
 COLN=BASIS(I)
 DEN=ABCD(I,PC)
 NUM=ABCD(I,ICOLS)
 IF(ABS(DEN) .LT. TPIV) GO TO 11
 IF (COLN.LE.ROWS) GO TO 13
 IF (COLN.NE.IV) GO TO 11
 T1=NUM/DEN
 NOPIVT=.FALSE.
 IF (T1.LE.0.0) GO TO 11
 IF (T1.GE.RATIO) GO TO 11
 PR=COLN
 PIVROW=I
11 CONTINUE
RATIO=T1
11 CONTINUE
C ADD AND DELETE THE PROPER VARIABLES FROM THE BASIS AND
C ZERO1 VECTORS
 ZERO1(PC)=1
 ZERO1(PR)=0
 BASIS(PIVROW)=PC
 PR=PIVROW
C NORMALIZE THE PIVOT ROW BY THE PIVOT ELEMENT
 DEN=ABCD(PR,PC)
 DO 14 J=1,COLS
 ABCD(PR,J)=ABCD(PR,J)/DEN
C ZERO OUT THE REMAINING ELEMENTS OF THE PIVOT COLUMN
 DO 18 I=1,ROWS
 IF (I.EQ.PR) GO TO 18
 MULT=-ABCD(I,PC)
 IF (MULT.EQ.0.0) GO TO 18
 DO 15 J=1,COLS
 15 ABCD(I,J)=ABCD(I,J)+MULT*ABCD(PR,J)
 18 CONTINUE
C ARE ANY OF THE BASIC VALUES STILL NEGATIVE
 DO 16 I=1,ROWS
 IF (ABCD(I,COLS) .LT. -ABS(TCOST)) GO TO 17
 16 CONTINUE
C TRANSFER THE LAST COLUMN TO THE SOLUTION VECTOR
 DO 1 I=1,ROWS
 RESULT(I)=ABCD(I,COLS)
 1 RETURN
END
THIS IS FOR A SYMMETRICAL UNIMODAL MOL. WEIGHT DIST. USIN
G REQUAD
4341 0.000000E 00 1.500000E 05
0.4000E-04
0 2 2 0 1.00E 00-1.00E-15 1.00E-18
-09-04
0 0
The equation relating molecular weight distribution of a polymer to the experimental function of concentration appearing in equilibrium sedimentation with the ultracentrifuge is nonsolvable because it is an Improperly Posed Problem in the Hadamard sense. For a simple distribution this equation has been solved by applying a method of regularization. To solve a nonsymmetrical bimodal and a trimodal distribution, the technique of regularization had to be incorporated into a linear programming. In the current work the regularization technique has been incorporated into quadratic programming. This new combined method proved to be more adequate to solve, also more complex distributions such as tri-, tetra-, and pentamodal. In addition, this technique is cheaper, because it requires less computer time than the regularization incorporated into linear programming.
<table>
<thead>
<tr>
<th>KEY WORDS</th>
<th>LINK A</th>
<th>LINK B</th>
<th>LINK C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ill-Posed Problem</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regularization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quadratic Programming</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ultracentrifugation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equilibrium Sedimentation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molecular Weight Distribution</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integral Equations of the First Kind</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Numerical Analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>