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1. Introduction

The last decade has witnessed a great surge of acadewic interest
in the dynamic behavior and stability of mechanical systems with fol-
lower (circulatory) forces, i.e. forces which are not derivable from a
potential, as evidenced by references [1] to [4]. It is a peculiar
common feature of much published analytical work on this subject that
the possible physical origin of such forces is not mentioned. The
follower forces are introduced into the analysis either through a
sketch, with forces being merely indicated by arrows, or through a
specified functional dependence of the forces on generalized coordi-
nates. Thus the purportedly physical problem is reduced immediately
to mathematical analysis and the relationship to mechanics becomes
most tenuous. The motivation for much of this type of work appears
to have been sheer curiosity in determining the sometimes unexpected
behavior of an imagined system, rather than a modeling and an explana-
tion of observed phenomena.

One of the possible ways to realize follower forces is by convey-
ing fluid through articulated or continuously flexible pipes. The
pioneering work in this class of mechanical systems with follower
forces was carried out by Benjamin [5]. He examined analytically and
experimentally a system with two degrees of freedom consisting of two
articulated pipe segments, constrained to motion in a plane like a
double pendulum, and conveylng fluid. It was found that, depending
upon the values of relevant parameters, the system could lose stability

by static buckling (passage to 2n adjacent equilibrium position,
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divergence) or by dynamic insvability (oscillations with increasing
ampiitude, flutter). Several other workers considered various aspects
of the dynamic bekavior of continuous pipes conveying fluid, as men~
tioned in [4]. However, the transition from one type of loss of stabil-
ity to another was not investigated systematically and quantitatively.

The purpose of the present investigation is to study the various
modes of instability of a wmechaunical system whose non-coiiservative
character arises in a completely natural manner, and to verify that
the transitions between the instability medes (as predicted by the
linearized dynamic equations of moticn) are indeed experimentally ob-
tainable. To this end, a spatial system of articulated pipes is con-
sidered. This system is a generalization of the plane one discussed
by Benjamin., Instability either by divergence or by flutter is pos-
sible,but due to the presence of an additional parameter which measures
the "out-of-planeness™ of the system, & wider variety of types of be-
havior is possible.

The feature of the spatial system chosen is that one can experi-
mentally observe the various modes of instability by simply varying
the "out-of-planeness” of the system. By contvast, ian Benjamin's work,
it was necessary tc use sets of pives of different mass densities to

observe different types of instability.

2. Yhe System

We consider here a gemeralization of Benjamin's system, allowing
the pipe segments to oscillate in two ditferentz planes. The system

consists of two straight pipe segments, with the upper segment pinned

T
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at its upper end O in such a manner that it is constrained to move in
a single vertical plane, the x-y plane as shown in Fig. 1. The lower
segment is pinned to the upper one at P such that an angle B is
formed between the z-axis and the normal tc the plane of motion of the
lower segment (i.e. the pin axis [ ). Thus for B = 0 the motion of
the two segments occurs in the same plane, while for B = 90° the planes
of motion are normal to one another.

An incompressible fluid enters the upper segment at ¢ and is dis~
charged at the free end of the lower segment. It will be assumed that
the rate of discharge of the fluid is constant. i.e. that the fluid
velocity is constant. At the joints, linear restoring springs and lin-

ear viscous damping are introduced.

3. The Equations of Motion

Following Benjamin [5], the equations of motion of the system with
two degrees of freedom under consideration may be derived from the La-
grangian form -

3R

4 ALy _ gL , D __ L -

where q; are the angles shown in Fig. 1 and qi are the correspond-
ing angular velocities and

R = Position vector of free end (see Fig. 1)

ét = Unit vector tangent to the free end
V' = Fluid flowrate relative to the pipes
L = Tl + T2 - V1 - V2
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=3
1]

1 Kinetic energy of the pipes alone

3
1l

9 Kinetic energy of the fluid instantaneously within the pipes

<3
[
I

= Potential energy of the pipes alone

<3
L1}

2 Potential energy of the fluid instantaneously within the pipes

A = Inside cross-sectional area of the pipes, assumed the same
for both segments

P = Mass density of the fluid

D = Rayleigh's Dissipation function.

In the following, the segments are assumed to be axisymmetric about the
center line of the flow channel. The derivation of the equations and
their linearization about the position of equilibrium 4 =4, = 0

is straightforward. The potential and kinetic energies are given by

_ , 2 2
V1 = - MA g acos qy - 0.5(1\1 Q" + K2 9, )

- My g[(LA +b cos q,) cos q; - b CB sin q; sin qz]

<3
I

g =P A LA g(0.5 LA cos ql)

-pA LB g[(LA + 0.5 Ly cos q2) cos qy - 0.5 Ly CB sia 4, sin qz]

21, = 1‘;‘2 qlz + MB{(SB §,(L, + b cos q2)]2

. . 2 . 2
+ [b 4, + Cp ql(b + LA cos qz)] + [LA 4y Cg sin q2] }

=B ,. 2 . . 2 =B . 2-B
+ In(q1 SB cos qz) + (q2 + CB ql) 122 + (ql SB sin qz) 133
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, 2 3.2 . . 2.3
z'rz-pAtv Ly + 1,7 §,7/3 + (4, + CB 4" Ly /3

2. . »
+ Ly (4, + 0B §;) (CB L, 4; cos q,)
+ L (3, L, C ‘)2+L(L " SB)Z
pldy Ly OB cos 4y pila 91
2 . 2 3,. 2
+ IA Ly~ cos qz(q1 SBY + Ly (q1 SB cos q2) /3

2 . . 2
+ L VO 4 2v L, Ly 4 C8 sin q, + LB(LA 4y CB sin qz) i

where

L3S

zz = Moment of inertia of upper segment with respect to =z axis

through point 0 (see Fig. 1)

Efl s 322 , 523 = Principal moments of inertia for the mass center

of the lower segment with respect tc 2 & and e, axes

MA R MB = Masses of upper and lower segments
LA , LB = Lengths of upper and lower segments

a = Distance from mass center of upper segment to point O

b = Distance from mass center of lower segment to point P

g = Acceleration of gravity

CB = cuas(B)

SR = sin(®)

Kl ’ K2 = Linear spring constants at upper anc iower joints
respectively

R1 » R2 = Linear viscous damping constants at upper and lower

joints respectively

The equations of motion are thea obtuined as

N
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[IA +1 +MBb + My L, +2N3bL

3 3
+p AL+ LT)/3 4 p AL, Ly(L, + L]

13 -'B 2 » 3 2
+q2[CB(111+MBb + 1y L, b+p AL 13+, AL Lg /2)1

+ & lp & V(L +LB) + Ry 1+ 4,[CB p A V(2L, Ly + Ly 21

+ ql[M g a-+ MB g(L +b) +05p A g(L + LB)

2 2 )

+ ron (7B 2 3
4 IcB(Ty, + My D"+ My DL, +p AL T/3+p AT, L

e =B 2 3
+ G,y + My b" + 5 A L;7/3)

2

. 2 s
+ ql[Cs pAvV LB ]+ qz[p AV LB

+ R2]
+ ql[CB(O.S pAg LB2 + My 8 b)]

+q2[0.SpAgLBZ+Mng+K2]=C

212)]

o e

(89

()

In the first part of the paper attention is restricted to the

idealized case in which the upper and lower segments are straight pipes

of uniform cross-section and no spring or damping forces act at the

joints. For this case:
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Following Benjamin [v1,we assume the pipes to have the

per unit length,

parameters

IA

z2

2
=M LA/3

A

=B 2
I;q =My Ly /12

as LA/2

b= LB/2

| ot TP o PN RS St AR G L WS e el

same mass density

n . Then,introducing the following non-dimensional

h
o = LA/LB
Y =3 p A/(n + pA)

>
v=yVv/ /15¢g Ly
* S
t =J/L.5 g/lg t

J

(3

the equations of motion are transformed to the non-dimensional form

b

e

(@ + 1)3

0.5 CB(2 + %)

(@ + 1)2 U

CB U

(o + 1)2

c8

*
where ( )' denotes d/dt .

-
0.5 CB(2 + %)

1

cB(l + 22) U

U

Ca(l +a uzly)

S

(4)
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4, Stability Aunalysis
We shall examine the nature of the solutions of the form
At
q =Q e, i=1,2 (5)
which, upon substitution into the equations of motion, leads to the
characteristic equation
A ea e aaZaa a+a =0 (6
4 3 2 1 0
where
A, =a” +a%(3 - 2.25 cBY) + (1 + %) 587 )
A, = Ul + 0?4 - 308%) + o sp? + 2582)
Ay = @+ D3+ @+ 1?+0H
2 2 2 D
- CB[(L+1.5) (2+al/y) + (1 +2a)U7]
- 2 2 3
A, = 2@ + 1) U - CB[2(@ + 1) U + U /y]
by = (@ + 1)2 - CBZ[! + aUZ/y] J

The position of equilibrium 9 =9, = 0 1is said to be stable provided

2

all the characteristic exponents have negative real parts. The well-
known Routh-Hurwitz [3] criterion, applied to the fourth order poly-

nomial at hand, assures stability if

Ai >0 i=0,1,...,4

) (8)
2
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If any of the above conditions are violated, the system will be un-

stable.

A simplification is possible since both A4 and A3 are always
positive. For small U , all Ai are positive. Suppose as U in-
creases Al vanishes, while the remaining Ai are positive. Then

X must be negative, and hence X wvanishes before A1 . The same

applies to A2 . Thus the six requirements for stability (8) may be

replaced by just two conditions

A. >0
{ 0 )
X >0

Loss of stability can thus occur in two different ways. If AO =0,

there will be a root A = 0 which corresponds to an adjacent equilibrium
position, i.e. to static Euler buckling (divergence). By contrast when
X<0 , the characteristic exponents A will be complex with positive
real parts, and stability will be lost by oscillations with increasing

amplitude (flutter). Written out we have
X = U6{[-(o'/y) @+ 1)2@> + @ + 50 + 2)] cg?
+ cs"[(a/y)(a + 1) (5o + 100 + &)
+ (a/Y)sz + 1)2(% o ¢+ 1>]
+ csﬁf—- (a/v) (6cv3 + ‘.’c; ' 9y + 2)
. (Q,/Y)Z(—b (18> + 33" + 2% + 4)] }

+ 02l + 17 + @+ 1]

o LT T P R A ol St
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+opila + 1 [-2(60” + 1% 4 6) - @) (% + )]

+ 08w + 1)% [220° + 560 + 460 + 12 + (@) (% + 110% + &)]
+ 8% + 1P[-2(20 + 1)(2 + 301}

+ e’ @ + 01 + Bl + i@ - 2y

+ 8% + 1 (@ + w71} (10)

If the flowrate U is very small, the position of equilibrium q =

a, = 0 1is clearly stable. As the flowrate is slowly increased, Benja-
min [5] has shown that in his plane case (B = 0) instability occurs
first by buckling if ¥y > 0.5 and by flutter if y < 0.5 . It is found
that in the present spatial case (B # 0) the value Y = 0.5 still

separates the two different modes of loss of stability,

The Case vy > 0.5

It is proposed to show that if vy > 0.5 , loss of stability can
occur only by buckling, as the flowrate is increased, noc matter what
the value of B . To accomplish this it must be shown that AO be-

comes zero before X does, as the flowrate is increased.

The flowrate for vanishing A0 , denoted UB , is obtained from (7)

U2 = (vl + 12/ce? - 1] (1)

As B 1increases, UB ir:reases and at B = 90°, no finite value of U

can cause instehility.

On substitution of Uy into the expression for X given by (10),

et s 2 T
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a polynomial in powers of o 1is obtained of the form
2 2 3 n
X = I’UB /@ cB )] ) @B, v+B,] (12)

n=1

where the Bij exe polynomiels in CB . The coefficient of ag is

given by
y - 0.5 CB2

and thus it is seen that a necessary condition for X to bes positive
for all o« and B i1s that y > 0.,5. Further, it is readily shown that
the Bnl terms are all non-negative in the remaining coefficients.
Hence the value of X for o > 0.5 must be larger than the value of

X for a = 0.5. Evaluating the latter one obtains

(%], eg.5 [UBZ/(Q cBZ)] {a8[2.5(1 + 58%) sp?
UsUy
+o [(4l3 - BH(16.5 - 18.75 cB® + 308Y)]

+0° 58256 - 67.5 c82 + 18 c8% ]

+ o [sB2(s1 - 135.5 c82 + 47 ¢B))

+ 0{4 [882(98 74.5 ca?‘ + 1.5 054)]

+ o [582(70 - 72.5 c8% + 7.75 cp™]

+o? [58%(32 - 42.5 c8? + 10.5 g%y

+ s8] } (3)

It is observed that the coefficient of each power of « above is non-

negative. Hence at U =U, , X is positive for vy > 1/2 .
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From (10) it is seen that X/U2 is a quadratic in U2 , L.e.

1}
x/u“=AU4+Bu2+c

and also that C 1is always positive. For small U , clearly X > 0
for all Yy . Further, for 0.5 <y < 3 it is found that X > 0 in
the whole interval 0 < U< UB . It is thus concluded that if vy > 0.5

loss of stability occurs only by ouckling as the flowrate is increased
from a value of zero.

It might be of interest to examine whether, at flow velocities
liigher than UB , @ transition to stability or flutter could occur.

A numerical investigation was carried out for the following range of

parameters

0.l<a <10
0.5<y<3

0 Ru<1o Up

For numerous values of o , B and vy the roots of (6) were computed

as U increased from zero. A typical root locus plot is shown in Fig. 2
corresponding to B = 0° . Since any complex roots must occur as con-
Jugate pairs, only the upper half of the plane is shown. When U =20 ,
the characteristic roots are all purely imaginary, and as U 1is in-
creased, the roots trace out the curves shown. When U = 1.56 a pair
of roots coalesces on the negative real axis, and as U is further in-
creased, they split, one moving in the positive and one in the negative
real directions. Buckling first occurs with the vanishing of one root

when U = 1.732 and for all greater U , at least one root is positive
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real, As seen in the figure, all roots are purely real after U = 3.12 ,
and av U is increased, they monotonically increase in magnitude. Thus
divergence is the only mode of loss of stability possible for vy > 0.5 ,

even for U greater than UB .

The Case vy < 0.5

This case is more complex in that either buckling or flutter may
occur first as the flowrate is increased, depending on the value of B .
For B = 0 , Benjamin [5] has shown that stability will be lost

first by flutter. For B = 90°, on the other hand,
X = U4[2(a + 1)7 + 2(x + 1)6] + Uz[az(oz + 1)6]

which is always positive, and thus is pozitive also in some neighborhood
of B =90° . Since Ao can vanish for all 8 except B = 90°, it is

° only buckling can occur. Thus as 9 increases

seen that near B = 90
from zero, a transition in the mode of loss of stability from flutter to
buckling has to occur at some value of the angle, B* o

To determine this transition angle B*, and to obtain quantitative
data of the critical value of U for the whole range 0 < B< 90, a param-
etric computer study was carried out. A typical plot of U as a func-
tion of B for a given system (¥ = 1.0 , Y = 0.25) 1is shown in Fig. 3.
In this case B* = 26°. 1In region I there are two pairs of complex con-
jugate roots, one of which has positive real parts. Hence in this region,
loss of stability occurs by flutter. In region II there are & pair of
flutter roots and two real roots, one of which is positive. Hence in

this regiun the system experiences loss of stability by osci .lation
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with increasing amplitude superimposed upon a monotonic motion away from
the equilibrium position. In region III the characteristic roots are

all veal, with at least one being positive. Hence this is a region of

divergence.

A typical root locus plot for B = 0° is presented in Fig. 4. As
before only the upper half of the plane is shown. As in the case vy >

0.5 , once all the roots become real, they monotonically increase in

magnitude., Hence there are no new instability regions above the buckling

*
region in Fig. 3. For all B > B , the typical root locuz is the same
as that shown in Fig. 2 for the case vy > 0.5 .

*
A composite plot of the dependence of B on y and « is pre-

sented in Fig. 5. For any given physical configuration (i.e. specified

values of o , B and Y),one can determine first the mode of loss of

stability. Next, the corresponding critical flowrate can be calculated

*
from either (10) or (11). It is noted thatas y—> 0.5, B~—>0

independent of ¢« , which is consistent with the ‘results of the case

Y>3a.5.

5. Experiments

An overall view of the experimental set-up is given in Fig. 6. The
tube segments were of thin metal (copper and brass) in commercially
available standard gauges, and were of equal lengths.

The joints consisted of ball bearings and light brackets made of

plexiglas. The pipes were connected across the joints by short segments

of latex surgical tubing (Kent Latex Products, 0.25 inch ID, Thin Wall),
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Water was used as the fluid, and its velocity was measured by means of
a precision flowmeter of the rotameter type.

The additional masses of the hinges, while small, were not negli-
gible. Further, it was found that the surgical tubing gave rise to
small restoring and damping forces. A schematic of the apparatus is
shown in Fig. 7. The quantities needed in the governing equations can

be identified as

M‘,&=m+2m.ﬂ

My =mtmy
LA=£+2c
Lg=4+c
MAa= (m+2mH)(0.5£+c)

wz

m(0.54 + ¢) + L d

2
A mé”
Izz 12 + (05£+c) +ZIH+m'Hd +mﬂ(£+2c-d)
2
+MBb = +m(051,+c) +IH+"hd

where
m = mass of each metal tube
£ = length of each metal tube
m, = mass of each hinge

IH = I11 of each hinge with respect to its centroid.
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It was suspected that the restoring and damping forces would be

gsensitive to the water pressure in the surgical tuting at the joints.
The values of the restoring and damping constants were obtained by
conducting a separate test with just the upper tube and upper hinge.
The tube was closed at its lower end and pressurized with air. It
was then photographad with a motion plcture camera as It oscillated
freely and damped out. This was regeated for several different pres-
sures. Frnm the observaiions the restoring and damping constaats
could be obtained in a standard fashionm,

To vtilize this information it was necessary to know the fluid
pressuie in the surgical tubing as a function of flowrate. This was
obtained ty assembling the pipes and hinges in the test configuration

(as in Fig. 6) and replacing one joint at a time by a short tube

[P N,

tapped to place a pressure gauge. Then water was forced through and
pressure readings could be taken. This procedure neglects the effects
of expansion of the surgical tubing and of motion of the joints with
increase in pressure. For small motions, however, the latter should
have little effect, and the final tests were discontinued when the ex-

pansion of surgical tubing became excessive.

The results of the above preliminary tests indicated that the lower

spring constant, K2 , was nearly independent of the flowrate over the

range involved, while the upper spring constant, K, , was fairly sen-

St s g Wk

sitive to the flowrate, as shown in Fig. 8. This could have been ex-~

pected, since most of the pressure drop involved would take place at the

7 B
R = o

upper joint where the flow channel was constricted down to the inside

diameter of the pipe. It was also found that the damping coefficlients

i
M TT N

it




R T o L

OV . - >

-17-

were nearly independent of pressure, and thus the damping is primarily
due to the friction in the ball bearings.

The actual experiments to determine the instability mode behavior
were performed on two different pairs of tubes, one with vy = 0.328 and
one with Y = 1.09 . The dimensions of the two sets of pipes and of
the hinges are shown in the table below. The same hinges were used with

each set of tubes.

i Set T vy =0.328 Set IT vy = 1.09
Type Copper 1/4"0D x .035 wall [Brass 5/16"0Dx .015 wall
m (slugs) 0.000198 0.000123
m, (slugs) 0.000059 0.000059
£ (inch) 12.0 12.0
A (¢q.inch) 0.0254 0.0625
K, (in-1b) 0.206 0.206
R; R, (in-1b-sec) 0.030 0.030
¢ (inch) 0.750 0.750
d (inch) 1.295 1.295
T, (in*-slug) 0.000135 0.000135

With these values, the cocfficients in the governing equations were
evaluated and the critical flowrates obtained as described in the first
part of the paper. The results are shown in Figs. 9 and 10. The solid
curves denote the theoretical predictions.

The tests were performed quasi-statically. Thus the flowrate was
increased in small increments, and at each step the two pipes were

manually displaced two degrees from the vertical and released with no
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initial velocity. This was repeated until a flowrate wess reached at
which the resulting motion did not subside. The cnset of flutter was
marked by steady periodic oscillations. Upon slightly increasing the
flowrate, there resulted osc:llations with increasing amplitude.

In certain cases, the onset of buckling was somewhat difficult to
determine precisely. This was due to unavoidable small eccentricities
in the system which caused the position of equilibrium to chenge
slightly with an increase in flowrate. As a result,the onset of buck-
ling was evidenced by large deflections corresponding to a finite (but
narrow) range of flowrates. In the majori:cy of cases, however, as the
flowrate was increased in small steps, the transition tc the buckled
state occurred quite suddenly. The associated deflections were so
large as to require stcps to prevent the system from being damaged.
Thus in most cases an unambiguous buckling load could be determined.
The above procedure was repeated for each increasing value of B .

The range of the data taken was limited v the expansion of the surgical
tubing at large flowrates.

The tubing gave rise to another pr-hlem. As it is manufactured
and packed, it has a slight permanent cutrvature. When the pipes and
joints were assembled, the surgical tubiny was arranged such that the
plane of motion of the joint was normal t¢ th.: plane of curvature of
the tubing. Without this precaution the two metal tubes could not be
aligned even in the absence of flow. Thus, vi«i 8 was changed, it
was also necessary to rearrange the surgical tubi 5. And in doing this
great care had to be taken to ascertain that tle tubing was not
stretched. It was found early in the experjmu.ntation that even a small

amount of stretch.ng vesulted in considerable changes in the buckling loads.

2 by
4 %
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The surgical tubing also gave rise to a notable nou-linear ef-
fect. When stability was lost by flutter it was found that an in-
crease of the initial displacement resulted in a lower critical flow-
rate. This implies the existence of either non-linear restoring or
damping forces of the "softening" type and,in fact,it was found from
the dynamic amplitude-time data (used to determine the spring con-
stants) that non-linear damping was the predominant factor. In the
case of such "softening" type forces one cannot invoke the theorem due
to Lyspunov as in {3], which asserts that the instability threshold
for a non-linear systr.a is the same as that for the corresponding
linearized system. Work is underway to evaluate this effect in a
quantitative way, but until then this does serve to emphasize the need
for employing uniform, small initial conditions in tests of this type.

The results of the tests are summarized in Figs. 9 and 10. For
Yy = 0.328, the transition angle B* at which the initial instability
changed from flutter to buckling was predicted analytically to iie
between 21° and 22°. 1In the test, the pin angle B was increased
in 5° increments and as seen in Fig. 10 the changeover occurred be-
tween B = 20° and B = 25°. No closer determination was attempted,
since the inaccuracies in the values of the spriag and damping con-
stants rendered any further refinement meaningless. The transition
angle provides a measure of the correlation between the experimental
system and the idealized one considered in the first portion of the
paper. For the latter, with vy = 0.328 , Fig. 5 predicts a transition
angle of 20° and this agrees well with the transition angle for the
experimental system, which was predicted as 21° < B* < 22° and

* o
measured as 20° <9 < 25
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In each of the cases, the measured wackling loads were lower than

those predicted, as would be expected due to the unavoidable presenc:

of small eccentricities. The agresment in each case tends to fall off

as B 1is increased. For the flutter case (y = 0.328) the discre-

pancy varied from 4% at B = 0° to 10% at B = 40°. I~ che buckling

case (Y = 1.09) the discrepancy varied from 8% at » = 0° to 18% at

B = 40°. The increasing discrepancy as B 1is ircreased is probably

attributable to the normal forces applied to the bearing which are

present in increasing magnitude as B 1is increased. This would tend

to accentuate any eccentricities in the joint and further cause beam-

type bending in the tubes themselves, giving rise to further misalign-

ment.

In view of the unavoidable imperfections present in any mechani-

cal system used to study buckling behavior, the agreement between the

ol sy g TS 28R

theory and the experiment obtizined herein is considered to bhe acceptable,

e — :
LT .

5. Concliuding Remarks

Ty considering « spaclal system of articulated pipes, it has been
shown thzi che veryous cypes of loss of stability, characteristic of

idealized non-.onservative systems, can in fact be obtained in a phys-

ically realizable model. It has also been verified that the assumption

of one-dimensional flow and the use of linearized equations of motion

are adequate to detarmine the boundaries of the various regions of

instability.

However, an important aspect of such systems has been observed,

S
e TR

i
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which must undoubtedly be considered in applying the above-mentioned

|
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assumptions to stabillty problems in pipes conveying fluid. As found

ir the experimentation, the softening-type nou- linear behavior of

the flexible joints will significantly change the stability charac-

L A T N e T R TR

teristics of the system. Thus a careful characteri=zation of the non~
linear behavior of coupling tubes is a necessary pre-recuisite to the
practical stability analysis of such devices as fluid-lr‘ven control

systems.
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