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ABSTRACT

An analytical model for the dynamic response of a bistable fluid
amplifier with straight walls is presented, The model represents the
; dynamic changes which take place in an amplifier during the early
t phases of switching. The state of the amplifier at any instant of
time is identified by a set of system equations whose input function
is the mass flow rate from the control port, The system variables,
constants and equations are arranged in nondimensional form in order

to organize and facilitate the solution.

In the second half of the report, the system equations are used
to prepare an analog simulation of the amplifier. The coupling between
system variagbles and the feedback mechanisms present in the model can

be easily identified from this simulation,

Computer results were obtained for this simulation for a number
of input conditions and amplifier geometries, One of the more inter-
esting results of this study is the dynamic change of pressure within
the separation region (bubble). With a sudden increase in control flow,

the bubble undergoes an initial decrease in pressure followed by its

expected rise to a new equilibrium condition. Because of this result, .

the jet attachment point moves toward the power nozzle for a short dur-

ation of time, !
1
i
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NOMENCLATURE

b power nozzle width

C control port width

d amplifier thickness

D setback of the amplifier wall from the power nozzle
Ki nondimensional system constants

ﬁc control mass flow rate

ée entrainment mass flow rate

ﬁr recirculated mass flow rate

M mass flow rate from power nozzle

MB separation bubble mass

P, pressure outside the bubble

PB separation bubble pressure

T radius to the attachment point

R radius of the attached jet centerline
Ra gas constant for air

t real time

T air temperature inside the bubble

VB separation bubble volume

Xi nondimensional system variables

Xo distance to origin of power jet

Xr distance along the wall to the attachment point
Xv distance to the vent
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angle of the power jet at the nozzle exit
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attachment angle of the power jet
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1. INTRODUCTION

Many control systems which are in use today depend on an assort-
ment of pneumatic and hydraulic devices, These components utilize the
characteristics of flowing fluids for actuation, decision making and
amplification, The major class of such devices have moving parts and
depend on the interaction between mechanical and fluidic systems, Some
common amplifiers with moving parts are;

. &pool valves
. flapper valves

. ball valves
. diaphragm valves

S~

During the past tweive years a second class of fluid amplifiers
has becen developed, These devices have no moving parts and are rcferred
to as pure fluid amplifiers, Their input is a fluidic signal whica pro-
duces an amplified change in (he output fluid flow, The geometry of
the amplifier remains fixel during its operation., These pure fluid amp~
lifiers cun be further subdivided into two categories, Those having a
continuous input-output relationship are called analog or proportional
amplifiers. The second group have digital characteristics and are known

as bistable or two-state amplifiers,

This second class of pure fluid amplifiers have one or aore siable
output states and are used in the design of logic systems. Several of
these fluid logic devices are connected to achieve different logic or
switching functions, Four of the more common elements are:

. Induction amplifier
. Turbulence amplifier

. Focused jet amplifier
. Wall-attachment amplifier

£ W N -

Modeling of the fourth element, the wall-attachment amplifier, is the
subject of this report,

The development of the wall-attachment amplifier was first an-
nounced at Diamond Ordinance Fuze Laboratories (now Harry Diamond Labora-

tories, HDL) in 1960, Operation of this amplifier depends on the Coanda

1=
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:Bourque and Newman [1] has served as the basis for nuch of the recent

\

1

effect which is the natural attachment of a ftee jet to an adjacént
wall., A low pressure region or bubble exists between tne wall, the
jet and the point of attachment.” The pressure difference across the
jet establishes the curvature of the jet 'as it exits from thé output
duct on the attached side. The addition of control flow into the low
preossure region causes the bubble to grow. This growth results in the
jet attaching to the opposite wall and issuing from the output duct on
that side, This process takes place in a few milliseconds and estab-
lishes the bistable relationship for the amplifier,

Initial studies on the reattachment of free jets to inclined and

offset walla were done by many different inveetigators,, The work of

studies [2, 3, 4]. The application of this work to the amplifier re-
sulted in studies on steady state performance and the effects of amp-
lifier geometry on attachment. The works of Sher (5] and Levin and

Manion [t] are indicative of these types of studies [7, 8, 9].

The next phase of research dealt - the switching process and
its characteristics. A nﬁmber of paper: ave been written on the
subject {10, 11, 12, 13, 14]., Kirshner [15] defined the three types
of switching (1) terminated wall ' (2) contacting~toth=walls and (2)

splitter swicching, while Muller fll] described a critical attachment
angle type of switching. l

Most recent studies have concentrated on the dynamic modeling of
the switching pEocess itself, Savkar, Hansen and Keller [14} reported
some experimental values for switching times while Lush [16, 17] com=-
pared experimental values of switching times with a theoretical pre-
diction, Recently theoretical and experimental results for the
contacting-bbth-wallé type of switching have been obtained by 6zéd
and Stenning [22])., Although many investigators [18, 19, 20, 21] have
contributed to the atudy, a complete description of the switching pro-'
cess has not been obtained. This project was undertaken in an attempt
to provide some understanding of the early phases of dynamic switch-

ing in the wall-attachment amplifier,
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\ 11. MODELING THE DYNAMIC RESPONSE

A. Amplifier Description

The bistable ampiifier to be analyzed is the standard, sloping,
straight wall type. The control port is perpendicular to the power
jet inlet and has width C. The geometry;of this particular ampli-
fier is shown in Figure 1, The amplifier is also considered to be
symmetric aQout its centerline with the parameters D, & apq Xv de-

fining the offset, wall angle and distance to the vents. -

In an equilibrium state the jet is attached to one wall of the
amplifier in such a manner as tc form a region of uniform pressure
called the separation bubble, This bubble region maintains a con-

; _ stant volume and mass as long as the net mass flow into the region is

zero, The centerline of the jet is assumed to be a circular arc of

radius R which leaves the center of the power jet at an angle 8§
This arc intersects the amplifier wall at an angle 6 and at a point

determined by the geometry,

Outer boundary of the separation bubble is forﬁed by the attaching

streamline of the fluid jet profile. This arc is given by the distance

s, 2

y from the circular arc measured along a radius vector. The remaining ’
boundary of the bubble is formed by the fixed boundary of the amplifier,
The jet attaches to the wall at a point defined by Xr' Geometry of the

amplifier along with the attached jet is shown in Figure 2,

Before an analytical model can be developed several assumptions.

must be made concerning the jet behavier and the other interactions

within the amplifier, !

1, The attached jet has a centerline which follows a circular
arc of radius R, )

2. The attached jet is turbulent and has a Goertler velocity
profile,

3. The thickness of the two dimensional jet is d.

4, Pressure inside the separation bubble is uniform throughout
the region,




5. The width of the jet is small compared to the radius,

6. Momentum interaction between the control and power jet occurs
at a discrete point,

7. The fluid within the separation region behaves as an ideal gas,

From these assumptions and the geometry of the amplifier a dynamic
model of the amplifier can be developed, This model which represents
the state of the amplifier at any instant of time will be represented
by a set of system variables, These variables are related by a set of

algebraic and differential equations rererred to as system equations,

B. Geometric Relations

A number of system equations can be determined from the geometry

of the amplifier shown in Figure Z, By equating distances perpendic=

ular to the wall of the amplifier the following equation results,

Rcos (a+B ) = rcos 8§ + (D + % = Ctan O ) cos O (1)

At the attachment point the length r can be written,

v X
r= R-(d) R(g+a+0)- ) (2)

e Lt s . W

where N defines the attaching streamline, ¢ is the Goertler spread
parameter and Xo determines the virtual origin of the jet, The small

angle ¢ can be determined from the other dimensions,

(b/2) sin @
(1 - bR cos B + b2/uyt/?

sin ¢

(3)
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By introducing a new variable T ,
' = ¢ + B8+ a+ 0 (4)

the expréssion for the bubble volume (VB) can be simplified, The de-

velopment of the following equation is given in Appendix A.

r

b
VB = df %(R-ECOS( B+ ¢ ))2 r-(R-%cos (B +¢)))g-R—2-
3

2 2

r cosZB[tan(B + ¢ +0a )+ tand |}

N

+ (n2)

+%[D-Ctana]2[

sin( B +¢ ) sin (90 + o ) (5)
gin(90 = a =R = ¢ )

Finally, the point of reattachment, Xr, can be calculated,

X = [R sin B =C)/cos & + (r cos 6 ) tan @ + r sin ©

(6)

C. Fluid Relations

Additional equations can be obtained by considering the conditions
of the fluid within the bubble region, Assuming that the entrapped

fluid behaves as an ideal gas with uniform pressure P_, volume VB and

B

mass MB the following

1>BvB = MRT ' an

Al i by

ioad
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represents the equation of state where Ra (gas constant) and T (temp=
erature) remain constant, Mass is being added to the region from the
control port at the rate hc. The power jet entrains mass from the re-
gion at a rate &e and recirculates mass at a rate hr. The change of

mass ineide the bubble can be expressed as,

The angle 8 can be determined by considering the momentum interaction

between the control and power jets,

tan B = = €]

where M is the mass flow rate of the power jer,

The motion of the power jet is represented by a term which de-

pends on the rate of change of radius R in the following curvature

equation.
. X .2 2
M o dR M bd
bdg T R R T it

Development of this equation along with a discussion of the additional
term is given in Appendix B. Parameter P 1is the density of the power

jet and is assumed to remain constant,

Using the Goertler profile for the velocity distribution of the
jet, the entrainment and recirculation flow rates can be determined,

See Appendix C.

P
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1/2 .

.. 1

mr-M{2§0(8+a+9)+z} (1 - tach n) an
1/2

. . 3R 1 (12)

me=M[{z-b-5-(B+a+9)+z} - 0.5)

The model, at this point, describes the dynamic growth(collapsing;
of the separation region (bubble) due to changes in control mass flow
ﬁc. With ﬁc as the input, the state of the amplifier at any instant

of time is described by thirteen variables listed in the table below.

Table 1

Notation Description Q!
1. ﬁe entrained mass flow rate .
2, &r recirculated mass flow rate
3. &c control mass flow rate (input) .
4, MB bubble mass
: 5. PB bubble pressure
i 6. Xr reattachment length
7. R radius of curvature of jet
8, r radius to reattachment point
9. VB bubble volume
10, B initial jet deflection angle
! 11. 5 angle of attachment
12, ¢ small angle
13. T summation of four angles
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With the control mass flow rate specified, the system equations con-

sist of the twelve equations numbered 1 through 12.

A simplified version of a nonlinear block diagram for the proposed
model is shown in Figure 3, Each block represents a system equation

and is numbered accordingly., The output of each block can be deter-

mined when each of the indicated inputs are known, Some of the con-

necting lines have been omitted for simplification,

The primary feedback paths involve m and he. Since the entrained
r
mass flow rate is subtracted it has a stabilizing effect on the output

radius, R. Instability is caused by the positive feedback of the re-

circulation rate, hr' See Equation 8, Another feedback path results
due to the effect of the radius on the volume (block 5) which in turn

effects the bubble pressure (block 7)., A predominant feedforward path

exists through m to B to VB to PB’

The input for the system is the control flow rate ﬁc and repre-

sents a known function of time.

III. NONDIMENSIONAL MODEL

It is desirable to have the modeling process be relatively inde=~

pendent of the exact dimensions of the amplifier and the fluid proper-

. ties. For this reason, a set of nondimensional system variables is

established based on the physical variables. These new quantities are:

[R/b), (c/b), (vy/b%al, M/ ob2dl, (& /i)
(h /M), [ /), (py/#P/p c2a®), (x /o)
(6), (g 1 Lg s (1)

The independent variable, time, is also made nondimensional by the
following substitution,

T = (e
pbd

i o
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Substitution of these variables into the system equations yield a new
set of nondimensional equations with new coefficients, These coeffi- . :
cients can be collected into a set of constants which become the non-
dimensional parameters for the model, The nondimensional system vari-

ables Xi and parameters Ki are defined in Tables 2 and 3,

Table 2, 1Identification of the nondimensional system variables,

Physical Variable Units System Variable
1. (me/M) 1 Xl
2. (mr/M) 1 X2 :
3. (mc/M) 1 Xy (input) % ]
4. M./ p b2d) ] X P
B ", 4 3
M i
5. (P /=) 1 X ;
B o C’ZdZ 5 ‘
6, (Xr/b) 1 X6
7. (R/b) 1 x7
8. (r/b) i Xg
2
9, (VB/b d) 1 X9
10. B radians xlO
11. 8 radians X11 ‘
12, ¢ radians X12
13, T radians X
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Table 3. 1Identification of the system parameters,

Physical Constants System Parameters

RaT gzczdzgc i

1, = 3 l(1 :

M i

2, (c/v) K2 :
3, 1 « tanh (N ) K3

2 .

4, (pbod/m) = ¢/T K,
5. (3/40 ) Ky
6. D/b Ke
7. a K?
8. (n/lag) Kg
9. (XO/b) = 0 /3 1(9
10. B /0% c2a?) K

10
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The nondimensional system equations in terms of Xi and Ki are as follows:

1
x7cos(K7 + x1o) - xecosx11 + (K6 + E) cosK, ~ K,sinkK

7 2 7

Xg = X, = KgXy(Xyg + X)) + Kg) - KgKg
1 2 1/2
sinX,, = (2 sinxlo)/(x7 x7cosX10 + 0.25)

X = X + X, + X, + K

10 11 12 7

1 2.2
9 = QE) [X7 - O.Scos(x10 + Xlz) 1 X
2

1 X132
- (X - g ces (Xp * X)p)] KgXp5= + KX

13

3
2 %13
7 6

1 .2 2
-3 X8 cos Xllltan(xl3- Xll) + tan X. .|

11

1 2 .
+ 3 [K6 - K2 tan K7] [sin(xlo + X12) cos K7]
cos (K7 + X

10 * Xy2)

6 = [x7 sin xlO - KZ]/cos K7 + X8 [cos X,, tan K. + sin X

11 7 ll]

-11-

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

o R MR i e = 84w
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1/2

1 1

X, = [K5X7(X13 . XIZ) + z] -3 (23)
1 1/2

X, = (KX (X 4 - X)) + Z] K, (24)

There are 13 system variables which define the state of the ampli-
fier at any instant of time, The first three (xl, xz, x3) represent
flow rates with x3 serving as the input to the system, The bLubble mass,
4 X
distances within the amplifier are associated with X

pressure and volume are represented by variables X and X,. Three

S 9
6’ x7 and XB. Fi-
nally, the last four system variables replace the angles which describe

the bubble geometry.

Of the 10 system parameters listed in Table 3, the only one which
has units associated with it is Ka. Since this parameter relates the
model time with physical time it must have the units of time, The
other nine parameters must have specific values in order to generate
a solution, however, K4 is only used to convert the response time to

a particular amplifier and fluid,

The 12 system equations consist of 10 algebraic equaticns and
two differential equations. Most of the equations are noniinear and
contain cross-coupling between variables., For example, equations 13, 14
and X, . and a direct solution for any one of

11 13
the variables is extremely difficult.

and 16 contain X8, X

IV. ANALOG MODEL AND SIMULATION

The analytical model for the amplifier can now be translated into
the form of an analog diagram, This diagram, shown in Figure &4, utilizes
standard analog symbols which are explained in Appendix D. The flow of
information and feedback paths which were present in the original block

diagram are also present in the analog diagram,

Each of the system variables represents a possible output and ap-

pears somewhere on the diagram, The necessary inputs to the model are




the values for the system parameters Ki, the functional relation

4 and X7.

As a result, both a steady state and dynamic simulation are necessary

for the input X3( T) and the initial values for variables X
to predict the response.

A. Steady State Response Simulation

The steady state or equilibrium state of the amplifier is reached
when the sum of all mass flows into the separation bubble is zero. 1In
this case the bubble remains stationary and all derivatives of the
system variables become zero, Thus, the system equations (Equations 13
through 24) reduce to a set of simultaneous, nonlinear algebraic equa-
tions., The steady state simulation consists of an iterating, FORTRAN :
program which solves these algebraic equaticns and predicts the equie- g
librium values for the 12 system variables. The inputs for the pro-
gram are the control flow, xj, and the 10 constants which depend on the

amplifier geometry, fluid properties and approximate jet flow solutions.

Computer vresults were obtained for values of X, ranging from O to

3
0.5. This corresponds to a control mass flow rate from 0 to 507 of N

the power jet mass flow rate,

In addition, two parameters K2 and K6 which are the ratios of con-
trol port width and offset distance to power nozzle width were assigned

several different values. Parameters KS’ KB and K, were also changed

9
to correspond to several different values of spread parameter g,

The results for two cases are shown in Figures 5 through 14, The
steady state values for each of the system variables are indicated for
a range of values for control input x3.

B. Dynamic Response Simulation

For this portion of rhe response an analog simulation was sought,
The system equations and block diagram lend themselves to a direct

analog simulation with the nondimensional time variable T functioning

as the single, independent variable., 1In addition, the dynamic response




of any one of the system variables might be of interest and could be
easlly recorded, However, because of the large number of nonlinear=
icies present in the model an analog computer, capable of handling

the problem, was not available. For this reason, an alternate means

of solution was selected.

A packaged subroutine which simulates an analog computer has been
developed by Lehigh University for use on the CDC 6400 digital computer.
The program, ruferred to as LEANS, was used to provide the analog sime
ulation for this problem, It employs the block diagram technique,
commonly considered the first step of any analog simulation, The pro-
gram contains a full array of integrators, summers, constants, mult-
ipliers and other nonlinear elements which can be coupled in any man=
ner, Since the digital computer uses floating point arithmetic, time
and magnitude scaling are unnecessary; and the us:v may program di-

rectly from the block diagram,

The LEANS simulation was prepared directly from Figure &, The
cystem equations were used to provide the particular functional re-
lationships that exist between the system variables., The required
inputs to this analog simulation are the numerical values for the 10
coastants, initial conditions for X3, XA and X, and the final value

7
for X3. The input x3 was programmed to change exponentially from its
initial to final value, This type of input would commonly occur in
practice and has a much faster rise time than the dynamic growth of

the bubble,

Results of this portion ¢f the study are shown in Figures 15
through 36, The initial value for each system variable (T = 0) and
the final value ( T = = ) must correspond to those values predicted
by the steady state simulation, For example, in Figure 20 the initial
value for x7 is 5.16 and the final value is 6,3 as X3 changes from
0.10 to 0.14, Compare these values to those shown in Figure 9 for X

3
of 0.1 and 0.14,

«ll=

S |



V. RESULTS

With the analog simulation on the computer it became possible
to make a series of parametric studies, Changes in amplifier geom=
etry, fluid conditions and input specifications could be introduced
by merely changing the parameters of the simulation. Steady state .
results are shown in Figures 5 to 14 for two different cases, TFigures
15 to 36 contain the results of the dynamic¢ simulation for two cases

A and B, The parameter values for cases A and B are given in Figures

15 and 26 respectively,

A, Steady State Results

Entrainment and recirculated mass flow rates (xl, xz) appear in .

Figure 5 to be linearly dependent on the control mass flow input, X3,
but independent of parameter KG‘ Bubble pressure, x5 in Figure 7, ] -\

jet radius of curvature, X, in Figure 9, and attachment radius, X

7
in Figure 10, level off as the input X

8
approaches 0.5, For the given

3
range of control flow, the reattachment angle 6 decreases at first
and then begins to increase, With low control flow the bubble is

very small and the jet reattaches close to the supply nozzle. As a

result, the reattachment anglc must be somewhat larger.

B. Dynamic Results i

Results were obtained from the computer simulation for both large

and small changes in input signal X,, the ratio of mass flow from the

3)
control port to supply flow. The exponential input signal, shown in

Figurces 15 and 26, reaches its final value very rapidly ( T = 3).

The dynamic changes which take place in the system variables
for the small signal input are shown in Figures 16 to 25, The most
significant result is the change in bubble pressure (xs) shown in
Figure 18. The model predicts a sudden decrease in pressure as the
control signal is applied. The bubble pressure recovers, overshoots
and finally settles down to its new equilibrium value at T = 15,
The reason for this inverse response (output variable initially de-

creasing with an increase in input signal) is the feedforward loop

-15-
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The dynamic responses of each of the system variables for this
case are given in Figures 27 through 36. The same trends are evi-
dent for this case as the small input case but seem éore pronounced,
Bubble pressure, for example, undergoes a much larger decrease ini-
tially as shown in Figure 29. The inverse resbonse is still present

in variables X6, X7 and X8 as displayed in Figures 30, 31 and 32,

For the large value of control flo@ (X3 = 0,3), the final value
for attachment angle is slightly larger than the initial value (see
Figure 13)., However, duringrthe dynamic response the angle overshoots
the valqe rather significantly as displayed in Figure 35. Once again

it takes 30 units of T for the variable to come to equilibrium,
VI. CONCLUSIONS

A nonlinear, dynamic model for the bubble growth within a wall
attachment amplifier has been presented. Using nondimensional system

variables, this model was described in analog form, From a computer

simulation, the response to a sudden change in control mass flow has

been studied, These resulés produced the following list of conclusions, 4

1. The separation hubble undergoes an initial decrease in pressure . ;
followed by an overshoot of its final value, 1If the separation . ’ \
region should encounter a vent during this ovérshooting period no

mass would flow from the region through the vent,

2, For a short period of time the reattachment point moves toward the

supply nozzle, before moving outward,

3. The reattachment angle undergoes a rapid increase and an overshoot

v of its final value. During this overshoot period the amplifier 1
cou’d possibly submit to a 'critical angle'" type of switching even

though the final value for the angle does not predict it. : _ !

4, The time it takes for the amplifier to reach equilibrium (response
time) is longer for a large change in control flow than for a small

change,

«]l7~-




The simulation results are presented in nondimensional form

but with the fixed dimensions of the amplifier known, the vari-

ables can be converted to actual units, A value for the par-
ameter K

4 will convert the time scale to appropriate time units,

-18-




APPENDIX A

The volume of the bubble, as shown in the figure below, is the

product of the amplifier thickness d and the area enclosed by curve

FGH. This area can be calculated by computing the large area bound

by the curve EGH, subtracting the triangular portion EIH and adding é
the small area inside curve FIG,.

Area enclosed by EGH is denoted by A1 and can be determined as
folliows:

A = j [ pdpd

where )& and p are the polar coordinates of a point measured
from point E and line EG.

Thus,

-19-
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and from the Goertler profile assumption:
p = R-y
- - DR
y n(X; + X) "Wt /3
o
Substituting

¢+a+8+16 2

- " -1 -
Ay Oj ) [R-3FR x-y] d ]

ptat+p+ 2 3 2
Ml @ IRy 2@y e R e e B
2 2 2 3
1 I I
A= R-y) T - ®R-y) =2 o+ <
where
' = ¢+ a 4+B8 +0
ylz(%)bcos (8 +¢ )

The areas of the two large triangles are A2 and A, and can be easily

3
calculated,
A, = %(rsin 8) (r cos 0)
Ay = %[rcoa (6 Ytan ( ¢+B + & )){r cos 6 )

The small triangle FIG has area Aa where

2

1
AAHE'[D-Ctan a ) |

sin (8 + ¢) sin (90 + a)l
sin (90 = a - p - ¢ )
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Finally, the bubble volume can be calculated combining the
four areas.

v -d[Al-AZ-A3+Ah]

B
2 Z 2
1 n R _T n R r
VB'd{ E(R'Yl) r'(R-yl) g 2 +(O ) 6
- % [r2 c032 8 (tan 0 + tan( ¢+ 8 +a ))]
2
1 - sin( B +¢ ) sin(90 + a )
ta@-Ctana ) IG5 ~ 65 )}

e21=
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APPENDIX B

The relationship between power jet radius, R, and the pressure
difference across the jet can be obtained by writing the momentum

equation in the r direction.

v \Y v \Y \Y
9 I o_'r b r _ ¢ _ -1 3P
9t + vr 5t + r Jd ¢ T p odr

Assuming Vr is independent of ¢ and t,

2
v 3 vr R v . =l _3pP
r Jr 13 P dr
substituting,
r = R+y
dR
vr T + vy
one obtains the following,
2
R Loy 2y % _ -1 3¢
dt y’ 3y (R +y) P 3y

noting that %% > Vy and R > > y and neglecting terms the following
equation results.

2

aR aVy, Yy . =1_pe
dat ) ) R p ay
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Integrating with respect to y from + ® to -« o ,

+ o v J
-a—l dR - -—s- = ’ -
C Joegy Mg R (Pg = P )

where JS is the power jot momentum, P_ is the bubble pressure and P,

B
is the pressure on the rpposite side of the jet, This is the familiar
jet curvature equation thh an additional term that depends on g:
For the steacy state case (d—t- = 0) it reduces to the simpler curva-

ture expression, The integral cam be completed with this result, 1

¥ 4R J
S
pVy_m dt R -PB-PW

Assuming that velocity Vy has the Goertler distribution,

(e }1/2 (B0 e TR L
———— - ta r\l ) — - — = -
16X e - o )2 o d R B~ Fw

a differential equatior is obtained which has a coefficient that de- :
pends oun the position along the jet centerline, X. The supply jet %
velocity is noted by Us.

D-U—B- &-d—g-ié.-:P - P !
o X dt R B et ;

The average value of this coefficlient will be determined as X varies

from zero to its maximum value of RT ,

= (= _L_ %
Caxy (R r ) f X dx
U
_ 1 s RT
T RT (2o o ko X ]
(o}
-23-




where I' is the total angle swept out by the bubble, Using this
expression and writing the supply jet velocity and momentum in terms

of the mass flow from the supply nozzle (M), the following equation
is obtained,

N X 2
M __ o (%%) I - SR Q%) = P_~P
e

bd ¢ RT

ol

e

T L

2=

IOt 5 o i S TR N R 4 A S s e . e n s e A, _ 4."
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APPENDIX C

The bubble region shown in the figure below 1is assumed to
have a uniform pressure, Mass is being added to the region from

the control port at a rate mc. The main jet entrains mass from

the region at a rate ée and recirculates mass at a rate hr.

m
C

(1) Entrained mass flow rate

The total entrainment at some point X is obtained by calculating

the total mass flow on the bubble side of the jet and subtracting one

half of the inlet flow rate.

J.b.
m = 0d [ udy - 0.5M where j.b. indic«res the
ex 0 jet boundary

Using the Goertler distributioen,

o .2 1/2
ne. pdf(mgz) ;‘ sech? nd n- 0.5H
0 4 p Xd'b
2
» 03X .
e = MG {’ sech“ ndn - 0.5M
1/2
. . 3X .
ex M(Abo ) - 05mM
25a
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The total entrainment along the entire edge of the bubble is de=
sired, Substituting,

X = R(CB+a +6 )+ Xo

results in the following:

1/2

. .BR
m w
e

(2) Recirculated mass flow rate

The total amount of mass that recirculates intc the bubble can
be calculated by integrating the velocity profile between the attach-
ing streamline (N ) and + © at the attachment point. This point

is defined by this attaching streamline and the boundary of the amp-
lifier,

o (
m. =0 4’ g udydz
€ x .2 1/2
m.o = P df (ébiz—x—z——) sech2 ndn
n p“dbo 4
1/2
. . 3X
m. = M(—ao b) (1 - tanhn)

Substituting for X

- L2
m =M[E-O—(B+a+6)+z] ‘1 = tanh n)

r

-26=

[ Sp—

-

1 -
Mg (B +a+8)+7) -0.5m .
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APPENDIX D

This appendix contains a list of the standard analng elements

and their corresponding mathematical operations,

Mathematical
Element Symbol Operation
X t
Integrator | 4 Z e [ (X+Y)dt
—Y— ] O

X
Summer \w WeX+Y+2

K
Attenuator _X_.O.i_ Y = KX

Multiplier

X
Nonlinear ————
Function Y £ frm—— Z = £(X, Y)
S
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Figure 24, Dynamic Response of Angle 0 Ax:v for Case A.
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Figure 26. Dynamic Input for Case B - Large Change in Control Flow Cnuv.
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Figure 28, Dynamic Response of Bubble Mass Axbv for Case B.
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Response of Reattachment Length ».xmvv for Case B.
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g
.,, Figure 32. Dynamic Response of Reattachment Radius Axmv for Case B.
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Figure 34, Dynamic Response of Angle g Axwov for Case B,
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Figure 36, Dynamic Response of Angle ¢ CINV for Case B. I
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