Best Available Copy
ON BOUNDS FOR COMPLEMENTARY TREES IN A GRAPH

BY

ILAN ADLER

TECHNICAL REPORT NO. 69-13
DECEMBER 1969

OPERATIONS RESEARCH HOUSE
STANFORD UNIVERSITY
STANFORD, CALIFORNIA

Reproduction in whole or in part is permitted for any purpose of the United States Government. This document has been approved for public release and sale; its distribution is unlimited.
ON BOUNDS FOR COMPLEMENTARY TREES IN A GRAPH

By

Ilan Adler

Consider the undirected network \(G = (N, \alpha) \) where \(|N| = n + 1 \) \((n \geq 3) \), \(\alpha = \{\alpha_1, \ldots, \alpha_n, \bar{\alpha}_1, \ldots, \bar{\alpha}_n\} \) and there are no loops or repeated arcs. The pairs of arcs \(\alpha_i, \bar{\alpha}_i \) \((i = 1, \ldots, n) \) are called complementary arcs.

Let \(\mathcal{N}(n) \) denotes the class of all networks that have the form of \(G \).

Definition: Let \(T \) be a spanning tree of \(G \) \((G \in \mathcal{N}(n) \) for some \(n, n \geq 3) \) if \(\alpha_i \in T \) iff \(\alpha_i \notin T \) \(i = 1, \ldots, n \) then \(T \) is called a complementary tree of \(G \).

G. B. Dantzig in [1] proved that if there exists one complementary tree in \(G \), \(G \in \mathcal{N}(n) \) \((n \geq 3) \), then there exists at least two. The proof is by means of an algorithm which finds a different complementary tree from a given one. This algorithm is described in the first part of this report (Theorem 1). In the second part we show (using basically the same algorithm) that if an arc belongs to one complementary tree then it belongs to at least two (Theorem 2). This in turn implies that if there exists one complementary tree (in a given network which belongs to \(\mathcal{N}(n) \) \((n \geq 3) \)) there exists at least four (Theorem 3). Let denote by \(\mathcal{N}(n) \) the class of all networks \(G \) such that \(G \in \mathcal{N}(n) \) and \(G \) has at least one complementary tree; by \(C_G \) the number of complementary trees in \(G \) \((G \in \mathcal{N}(n)) \), and let \(C(n) = \min(C_G | G \in \mathcal{N}(n)) \).

Using these notations Theorem 1 implies \(C(n) \geq 2 \) while Theorem 3
Implies $C(n) \geq 4$. In the last part three examples are provided to show that $C(3) = 4$, $C(4) \leq 6$ and $C(n) \leq 8$ for $n \geq 5$.

Theorem 1: (Dantzig) $C(n) \geq 2$ $(n \geq 3)$ i.e., if there exists one complementary tree in G $(G \cap H(n))$, there exists at least two.

The general idea in proving this theorem is to pass from one complementary tree to the other by a sequence of "adjacent" or ("neighboring") trees which are "almost" complementary.

Definition: Two trees are said to be **adjacent** or **neighbors** if they differ by one arc.

Definition: An almost complementary tree T of G is a spanning tree of G such that for some i_n and i_{n-1}:

1. $a_{ij} \in T$ iff $\overline{a_{ij}} \notin T$ $j = 1 \ldots n-2$
2. $a_{i_n}, a_{i_{n-1}} \in T$

Less formally, an almost complementary tree is a spanning tree in which each set of arcs $a_i, \overline{a_i}$ furnishes exactly one arc with the exception of one "special" set which furnishes two and one other set which furnishes none.

The procedure for generating a sequence of adjacent almost-complementary trees starting from a given complementary tree and ending in a different one is as follows:

Step 1: Arbitrarily order the nodes in G (e.g., assign, arbitrarily, the first $n+1$ natural numbers to the nodes of G).

Step 2: Orient each arc (i,j) of G as a directed arc from i to j if $i < j$ and from j to i if $j < i$.

Step 3: Assign the (arbitrary) flow values a_{ij} to all arcs (i,j) in G such that $a_{ij} > 0$ if (i,j) belongs to the given complementary tree, $a_{ij} = 0$ otherwise (and $a_{ji} = -a_{ij}$).

The first four steps determine the following network flow problem:

Find $x_{ij} > 0$ such that

$$\sum_{i \in U_j} x_{ij} - \sum_{k \in V_j} x_{jk} = b_j \quad i = 1, 2, \ldots, n+1$$

where

$$b_j = \sum_{i} a_{ij} \quad j = 1, \ldots, n+1$$

$$U_j = \{ j \mid (i,j) \text{ is directed arc of } G \}$$

$$V_j = \{ j \mid (j,k) \text{ is directed arc of } G \}$$

It is well known that the arcs (i,j) corresponding to basic variables form a tree. If the feasible basic solutions of the network flow problem are non-degenerate and bounded then a new feasible solution from given another one can be obtained by increasing sufficiently the flow x_{ij} on a directed out-of-tree arc (i,j) while adjusting the flows on basic arcs. The arc dropping out of the cycle will then correspond to the unique basic variable whose value decreased to zero. For the network flow problem defined above boundness results from Steps 1 and 2 and non-degeneracy can be guaranteed by assigning (in Step 3) n different powers of $a > 0$ to the n arc flows of the starting complementary tree.

Step 4: Add to the starting complementary tree any out-of-the-tree arc
arc say $\overline{a_i}$ (assume a_i is in the tree).

Step 5: Drop arc of the current tree and determine the new flow values as in the simplex algorithm. If arc dropped is a_i or $\overline{a_i}$ then the tree is complementary, terminate; if not go to Step 6.

Step 6: Introduce as incoming arc the complement of the arc dropped. Go to Step 5.

It is shown in [1] that the algorithm terminates in finite number of steps and that the complementary tree we arrive at is different from the starting one.

Notice that the orientation of arcs and the assignment of flow values are arbitrary. In Theorems 2 and 3 it is shown that choosing the directions and the flows in a more specific way can extend the result of Theorem 1.

Theorem 2: If $T_0 = \{a_1, \ldots, a_n\}$ is a C.T. (complementary tree) of G then for every i ($1 \leq i \leq n$) there exists a C.T. (say T_i) such that $a_i \in T_i$ and $T_i \neq T_o$.

Proof: Given T_0 and a_i (the arc we want to keep in the second complementary tree) use the same algorithm as in Theorem 1 with the following changes:

Replace Steps 1 and 3 by 1a and 3a respectively.

Step 1a: Index the end nodes of a_i by n and $n+1$, index all other nodes, arbitrarily, by $1, 2, \ldots, n-1$.

4
Step 3a: Assign to a_1 the flow value M where M is a positive constant which is greater than any finite number with which it will be compared during the steps of the algorithm. Assign arbitrary positive flow values to all other arcs in T_o and 0 for all out of T_o arcs.

This modification is within the framework of Steps 1 and 3, it just gives more specific directions to execute these steps, hence it does not effect the proof given in [1], that a different C.T. T^* is obtained in a finite number of iterations. Let us denote the i^{th} A.C.T. (almost complementary tree) in this path by $\overline{T_i}$, thus the path has the form:

$$T_o \rightarrow \overline{T_1} \rightarrow \overline{T_2} \cdots \rightarrow \overline{T_m} = T^*$$

Induction assumption: $a_1 \in \overline{T_k}$, the flow value of a_1 is M_k where M_k is greater than any finite number with which it will be compared and all other flow values (of arcs in $\overline{T_k}$) are not a function of M.

The induction assumption is trivially true for $k = 0$. Assume the induction assumption is true for some k ($0 \leq k \leq m-1$). Let us introduce the next out-of-tree arc in accordance with the algorithm. This arc together with some arcs in $\overline{T_k}$ form a cycle. If a_1 is not contained in this cycle then clearly the induction assumption holds for $\overline{T_{k+1}}$.

If a_1 is contained in this cycle then either the flow on a_1 is increasing or decreasing with increasing flow on the out-of-tree arc. In the first case a_1 remains in the next tree and its flow value increases. In the second case Steps 1a and 2 guarantee that there is at least one other arc of $\overline{T_k}$ which its flow value decreases while the
flow value on the out-of-tree arc increases (Steps 1a and 2 imply that all arcs with end point \(n \) have the same direction as \(a_i \), but a cycle which includes \(a_i \) must include at least one other arc with end point in \(n \)). By the simplex method the arc with the smallest flow value, among those in the cycle, which have opposite direction from the out-of-tree arc drops. By the induction assumption and the above argument \(a_i \) remains in the next A.C.T., and its flow value changes by a small amount relative to \(M_k \). In both cases the flow value of any arc can increase by at most the flow value of the arc which is dropped hence the induction assumption holds for \(k+1 \).

\[a_i \in \overline{a}_k \quad k = 1, 2, \ldots, m \quad \text{so} \quad a_i \in \overline{a}_m = T^* \], letting \(T_1 = T^* \) completes the proof.

Theorem 3: \(c(n) \geq 4 \) \((n \geq 3)\). i.e., if there exists one complementary tree in \(G \) (\(G \cap \overline{G} \)), then there exists at least four.

Proof: Let \(T_1 = \{a_1, \ldots, a_n\} \) be a C.T. of \(G \), then by Theorem 2 there exists a C.T. \(T_2 \) such that \(a_1 \in T_2 \) and \(T_2 \neq T_1 \). \(T_1 \neq T_2 \) implies that there is at least one index \(k \) (\(2 \leq k \leq n \)) such that \(\overline{a}_k \in T_2 \). Starting now with \(T_1 \) and \(a_k \) as the arc to be kept in the C.T. we get, by using the modified algorithm another C.T. (say \(T_3 \)) such that \(a_k \in T_3 \) and \(T_3 \neq T_1 \). Implied the same technique for \(T_2 \) and \(\overline{a}_k \) we get a C.T. \(T_4 \) such that \(\overline{a}_k \in T_4 \) and \(T_4 \neq T_2 \). Clearly also \(T_4 \neq T_1, T_2, T_3 \) and \(T_4 \neq T_5 \).

\[T_1, T_2, T_3, T_4 \] are C.T.'s and no two of them are identical.

So far we found a lower bound for \(c(n) \). Next we try to provide some upper bounds. In the following three examples it is shown that
c(3) = 4, c(4) ≤ 6 and c(n) ≤ 8 for n ≥ 5 (Examples 1, 2 and 3 respectively).

Example 1:

- Complementary trees: \{a_1, a_2, a_3\}; \{a_1, a_2, a_3\}; \{a_1, a_2, a_3\}; \{a_1, a_2, a_3\}.

Example 2:

- Complementary trees: \{a_1, a_2, a_3, a_4\}; \{a_1, a_2, a_3, a_4\}.
Example 3:

complementary trees:

\[
\begin{align*}
\{a_1, a_2, a_3, a_4, a_5, \ldots, a_{n-1}, a_n\}; & \quad \{a_1, \overline{a_2}, a_3, a_4, a_5, \ldots, a_{n-1}, \overline{a_n}\} \\
\{a_1, a_2, a_3, a_4, a_5, \ldots, a_{n-1}, a_n\}; & \quad \{a_1, a_2, a_3, a_4, a_5, \ldots, a_{n-1}, a_n\} \\
\{a_1, a_2, a_3, a_4, a_5, \ldots, a_{n-1}, a_n\}; & \quad \{a_1, a_2, a_3, a_4, a_5, \ldots, a_{n-1}, a_n\} \\
\{a_1, a_2, a_3, a_4, a_5, \ldots, a_{n-1}, a_n\}; & \quad \{a_1, a_2, a_3, a_4, a_5, \ldots, a_{n-1}, a_n\}
\end{align*}
\]
References

1. Dantzig, G. B., Complementary Spanning Trees, Computer Science
 Department, Stanford University, Technical Report No. 126,
 March 1969.
Consider the undirected network $G = (N, a)$ where $|N| = n+1, a = (a_1, \ldots, a_n)$, $a_1, \ldots, a_n \geq 3$, and there are no loops or repeated arcs. Let $\mathcal{G}(n)$ denote the class of all networks that have the form of G.

A complementary tree of G (Gen(n) for some $n \geq 3$) is a spanning tree of G with the property that $a_i, c \notin T$ if $a_i, c \notin T$.

It was shown elsewhere (Dantzig [1]) that if there exits one complementary tree in G (Gen(n)) then there exists at least two. The proof there is by means of an algorithm which finds a different complementary tree from a given one. It is shown in this paper that using an extended form of Dantzig's algorithm can lead to a stronger result: if there exists one complementary tree in G (Gen(n)) then there exists at least four. Also some examples are provided to establish an upper bound on the smallest number of complementary trees in a network G(Gen (n)) which has at least one complementary tree.
Complementary Tree

Graph

Network

Simplex

Tree

INSTRUCTIONS

<table>
<thead>
<tr>
<th>KEY WORDS</th>
<th>LINE A</th>
<th>LINE B</th>
<th>LINE C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complementary Tree</td>
<td>ROLE</td>
<td>ROLE</td>
<td>ROLE</td>
</tr>
<tr>
<td>Graph</td>
<td>ROLE</td>
<td>ROLE</td>
<td>ROLE</td>
</tr>
<tr>
<td>Network</td>
<td>ROLE</td>
<td>ROLE</td>
<td>ROLE</td>
</tr>
<tr>
<td>Simplex</td>
<td>ROLE</td>
<td>ROLE</td>
<td>ROLE</td>
</tr>
<tr>
<td>Tree</td>
<td>ROLE</td>
<td>ROLE</td>
<td>ROLE</td>
</tr>
</tbody>
</table>

1. **ORIGINATING ACTIVITY**: Enter the name and address of the contractor, subcontractor, grantees, Department of Defense activity or other organization (corporate address) issuing the report.

2. **REPORT SECURITY CLASSIFICATION**: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

3. **GROUP**: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 or authorized.

4. **REPORT TITLE**: Enter the complete report title in all capitals letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parentheses immediately following the title.

5. **DESCRIPTIVE NOTES**: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

6. **AUTHOR**: Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

7. **REPORT DATE**: Enter the date of the report on July, day, year. If more than one date appears on the report, use date of publication.

8. **TOTAL NUMBER OF PAGES**: The total page count should follow normal pagination procedures. I.e., enter the number of pages containing information.

9. **NUMBER OF REFERENCES**: Enter the total number of references cited in the report.

10. **CONTRACT OR GRANT NUMBER**: If appropriate, enter the applicable number of the contract or grant under which the report was written.

11. **PROJECT NUMBER**: Enter the applicable military department identification, such as project number, subproject number, system number, task number, etc.

12. **ORIGINATOR'S REPORT NUMBER**: Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

13. **OTHER REPORT NUMBERS**: If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

14. **AVAILABILITY/LIMITATION NOTICES**: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

 (1) "Qualified recipients may obtain copies of this report from DDC."**

 (2) "Foreign announcement and dissemination of this report by DDC is not authorized."**

 (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through **

 (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through **

 (5) "All distribution of this report is controlled. Qualified DDC users shall request through **

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

15. **SUPPLEMENTARY NOTES**: Use for additional explanatory notes.

16. **SPONSORING MILITARY ACTIVITY**: Enter the name of the governmental project office or laboratory sponsoring (sponsoring the research and development. Include address.

17. **ABSTRACT**: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as T, S, (C), (S), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 235 words.

18. **KEY WORDS**: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical content. The assignment of lists, names, and weights is optional.