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SMOOTHNESS OF SOLUTIONS OF DEGENERATING ELLIPTIC EQUATIONS*

by

M. F. Freidlin

* Introduction

The present study is concerned with boundary-value problems for the

degenerating elliptic equation

Lu(x)+ c(x)u(x)= ()-i --(X) +

+ bi(x) J- + c(x)u((x) O. (1)

It is assumed that the coefficients are defined over all spaces R , are bounded
n

and have bounded first-order derivatives

ma--__-- L ljb() Wc x) ,<K < ;

the form Y aij(X);i;.j is considered non-negative. The study of boundary-value

problems for degenerating equations has been the object of numerous investigations.

References LlJ and [11] can be mentioned, where equations degenerating on the

boundary of a region are studied. Special cases of degeneration inside a region

are examined in references L12-15]. The boundary-value problem for an equation

with degeneration of a general form was examined for the first time by Fichera

(see L4,5J). However, a single class of functions, in which the problem would have

a unique generalized solution, was not constructed in these studies. In a sub-

sequent study L12], a uniqueness class was constructed and conditions were

* Translated from Akad. Nauk SSSR, Izv., Ser. mat. [Acad. Sci. USSR, Bull., Math.
Ser.j, Vol. 32, No. 6, pp. 1391-1413 (1968).



established for equations with degeneration of a rather special form, under which

a generalized solution will be smooth. In the general case, the existence and

uniqueness of a generalized solution in one class were proven in [17] and [18] (see

also L91). Note that in Fichera's study [4] and others associated with it the

assumption is made that c(x) < - c0 < 0. This assumption removes certain interest-

ing effects on the boundary (pasting part of the boundary)at one point [11] and

makes the problem of uniqueness more simple. If this assumption is rejected, in

order to ensure the uniqueness of the generalized solution it is necessary, in

general, to prescribe boundary conditions on a certain "inner boundary" (see L22]).

This "inner boundary" arises naturally when stabilization of the solution of the

mixed proLlem is studied as t - -.

In L2 0J we find conditions which guarantee that the generalized solution, in

the case of degeneracy of a general form, is smooth and satisfies the Idlder con-

dition. Proof of the statements formulated in [20] constitutes precisely the basic

content of the present study. The smoothness of generalized solutions was also

studied in references [9] and [10].

Generally speaking, the generalized solution of the Dirichlet problem for

equation (1) will be discontinuous. It was found that, under very general assump-

tions in regard to the coefficients and the boundary function, the Hoelder character

of the generalized solution can be guaranteed (see example and Theorem i). In order

that the solution should have derivatives, it is no longer sufficient to require

only that the data of the problem be smooth~but it is also necessary to impose in-

equality-type conditions on the coefficients and on their first derivatives. In
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order to obtain a priori estimates which ensure smoothness of the generalized

solution we shall use a representation of the solution of the Dirichlet problem

as the mean value of a certain functional of trajectories of a random Markov pro-

cess controlled by the operator L (see [2], [8]). We believe that such an approach

to the problem is a geometrically descriptive and natural one. In particular, the

conditions of the existence of a priori estimates of derivatives of the generalized

solution acquire a sinile geometrical meaning. In the present study we shall use

the same notation as that used in reference [18].

1. Generalized Solution of the Dirichlet Problem

By a(x) we shall denote a matrix such that [aij(x)W = a(x) = o(x) a*(x) (the

star means transposition). Let us assume that the matrix o(x) can be chosen in

such a way that all its elements are differentiable, and let

ora d,,

According to the conditiona(x) is a symmetric positive-definite matrix, and there-

fore we will always find a a(x) satisfying the relation c(x) a*(x) = a(x). Our

assumptions refer only to the smoothness of the functions a ij(x) with respect to x.

This problem was investigated in [25], where it was shown, in particular, that if

a ij(x) t C 2(R n) then, regardless of the form of degeneracy, the matrix a(x) can

always be chosen in such a way that its elements satisfy the Lipschitz condition,

where the Lipschitz constant is estimated in terms of the norm a ij(x) in C 2(R n).

If the rank of (a ij(x)} is constant, the elements of a(x) have the same

smoothness as the functions aij(x).
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We shall examine the stochastic differential equation (see L6,8])

dZI(w) = o(xi)d~t(m) + b(xi)dt, (2)

w'ere • (w) is an n-dimensional Wiener process (see [2], b(x) = (bl(x),..... n(X)).

This equation, together with the initial condition x (w) = x E Rn, has the unique

solution x (W), which defines the Markov process X = [xtP J (see L21). The pro-t po

cess X is said to be governed by operator L. The properties of solutions of

boundary-value problems for operator L are closely associated with the behavior of

the trajectories of process X.

Let D be a bounded region in Rn with the boundary F. The point x0 E F will

be called regular if

lim PJz er-)--
X-Xý

for any e > 0, where Tr is the moment at which the trajectory of process X firstS

reaches the boundary of the set U Cxo) n D. Here, as well as in what follows, we

denote by U (x ) the e-neighborhood of the point xo. We can prove the following

lemma (see LII]):

Lemma 1. In order that point x E F be regular for the process X, controlled

by operator L, it is sufficient that there exist a function v(x) (barrier) such that

v(x) is continuous in a certain neighborhood U of the point x and that v(x ) 0 o,

v(x) > 0 and Lv(x) • 0 for x E U\xo.

The point x0 will be called (Xl,x 2 ,h)-regular if there exists a function v(x)

with propertiee specified in lemma I such that

etIIX-zo v(X) < C2 1z- Zo I' forxCUh(zo).
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The following lemma gives sufficient conditions of (Xl,x 2 ,h)-regularity in

terms of the coefficients.

Lemm.a 2. Let us assume that at least one of the followinn conditions is

fulfilled:

1) the coefficients of the operators and the direction cosines (ni(x)) of

the normal to f belong to class C2 in the neighborhood of the point x and

]aij (xo) nj(xo) X nj (zo) > 0;

2) the point x can be touched by the half-space from outside the region D

and (b(x ),n(xo )) > 0, where n(x ) is the outward normal to the support hyperplane.

Then, the point x E F is (Xlx 2,h)-regular for some 1X ,%2h > 0.

Proof. Let the first condition be fulfilled. Let us introduce the co-

ordinates x ... ,x' in such a way that the boundary of region D in the neighborhood

of x be described by equation x' =0 and that region D lie in the half-space x1 <0
0 0

In this coordinate system all'(Xo) > 0. The function v(x) can be chosen in the form

v(Z) = -ax 1 - hx~ + r (4)2
f-I

It is easy to verify that the function v(x) is the barrier being sought in case of

a proper selection of coefficients a,b,c in a sufficiently small neighborhood of

the point x .

If condition 2) is fulfilled, we perform a linear transformation of variables

in which the half-space, by means of which the point x can be touched from the
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outside, will be dpscribed by the equation x' = 0. Since in the case of linear
1

transformation of independent variables b(x) = [b 1 (x),...,bn(x)} is transformed as

a vector, we have b!(xo) > 0. In this case, the function v(x) can be chosen in

the form

i=2

Note that in both cases X1 = 2 =.

Remark 1. If the boundary and the coefficients in the neighborhood of point

x0 are smooth, the requirement that point x can be touched by a half-space from

outside the region D can be replaced by the assumption that point x belongs to
0

the closure of the set open on F, in which

'Y• aij (x) ni(x)nj (x)=O0.

The point x 0 E F is called normally regular if MxT • Ix - Xo1, where T is the

instant of the first exit from region D:T = inf tt:xt E D).

Lemma 3. If the conditions of lemma 2 are fulfilled, then the point x° is

nor-nally regular.

For the proof we can make use of the barriers introduced in lemma 2. Indeed,

if we denote by CL the characteristic operator of process X (see L2]), we have

=--- -I, M-I [cer 0 0, EK(z) = Lv(z) = -c <0.

Then A v(x) - M T 0 on the boundary of region Uh(xo) for sufficiently large A and
c x

* (A v (z) - Mt) -A + 1.
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Consequently, by virtue of the mpximum rinciple

M'V<A
C

If M xT < c~x - x 0 for any point x 0E Y C: F, we shall call the set y uni-

formly normally regular.

The set N c_ £ is called repelling if

P:(VimP (Xtl Y) > 0)=
t-V

for any x E D, T = mEf [t:x E D). It is possible to give sufficient conditions

in order that the set y c- I be repelling in terms of the coefficients (see EL11).

Let us recall the definition of the generalized solution (see L18]). Let

[- = 'T ,p ) be the Markov process obtained on X by a stop on the boundary 1, of

region D, and let T tbe the semi-group of operators which acts in the space B of

bounded measurable functions on D J I- according to the formula

Tuj(x) f(.

By T we shall denote a part of the boundary F of region D such that P'\I is a

repelling set. We shall assume that all points of F are regular.

As a generalized solution of the problem

Lu(x) =0, U (Z)I 4w )()

ue shall call the function u(x), which assumes boundary values at points of? where
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ý(x) is continuous and which satisfies the relation (see Note) T u(x) = u(x) for

all t _- 0. The correctness of such a definition is proven in [181.

It can be verified (see, for example, L18]) that the function u(x) = M x(x )

(T = inf (t:xt E D}) satisfies the relation T u = u and boundary conditions on T.

Without additional assumptions, this solution, generally speaking, is not unique.

It can be proven (see L18J)that for uniqueness it is necessary and sufficient

that P IT = -) = 0. Everywhere in what follows, we assume the fulfillment of ax

somewhat stronger condition of a uniformly rapid exit of the trajectories onto the

boundary:

liI P1 {r > t) I 0

uniformly with respect to x E D. The latter equality will be fulfilled, for example,

if at least one coefficient of operator L is different from zero in the entire region

D 1 (see [183).

Lemma 4. If the trajectories of process X leave region D with a uniform speed,

then an a > 0 can be found such thatL,D

P••> t) < ce-= 1,,Dt

for any x E D.

Proof. Since the trajectories reach the boundaries at a uniformly rapid spe•d,

for a certain t we have, for all x c2 D, P{ T > to) __ < I.

Note: This relation is equivalent to the equality Au(x) = 0, where A is an infini-
tesimal operator of the semi-group Tt.
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We denote
a (n) sup P. {T > nt0).

Using the Markov property of process X, we get

P,.{¢ :> nta} =- M~x~.TX>o(w)"MtX>o,

S(Mfx, >,o. M., (M.tf, '>t (,,-) ),

< (p.,(t > to) .a2(n - 1))'V, -: Va(n -

where X T>s (j) is the characteristic function of the set [w:T(w) > s). From (4) we

conclude that a(n) <V $ (n - 1), consequently a(n) <enln-.o From the latter in-

equality follows the statement of the lemma for

I
aL,D -- in P > 0.

Corollary. If the conditions of lemma 4 are fulfilled, the random variable T

has all vioments and

Mfrk <C hx~e-zL.Pxdx. M, exp (X{r) < oo for X < aL, D.
0

It is not difficult to find the lower bound for the constant aL,D in terms of

the coefficients of the operator and the dimensions of region D. For example, if

the diameter of region D is equal to d, bI(x) > b > 0, 0 • a 1 1 (x) < a < -, then

<I nJ,(C> P, al z)d bt +d)

P te > b'+ P L' <ýCe
a,, (xG) de

Note that in this case cL,D is estimated by a constant which doe not depend on the

diameter of the region.
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If a 1 (x) > a > 0 everywhere in D and 1bl(X)W < b < •, then, during the time

t = I, the trajectories originating from any point x E D leave the region D with a
b.4-d| eneifolw

probability greater than P{ > b + d) P{•1 > .± Hence it follows

(see proof of lemma 4) that

I

If, for a certain i, a ii(x) 0 everywhere in region D, bi(x) X 0 in D U F,

and region D lies between the planes xi = a, xi = a + h, then eL,D = co. This

follows from the fact that, in this case, a determinate motion takes place along

the axis x. with a nonvanishing speed.

In concluding this section we shall note that in the nondegenerate case the

limit

lim In P, (> t)

t-. t

exists, does not depend on x and is equal to the first eigenvalue of the problem.

In the degenerating case,

Iiin hi P,| f•- > t)
t-Wo t

has a similar meaning but, for sufficiently strong degeneration, this limit de-

pends on the initial point x. The assumption that trajectories leave the region

with a uniform speed ensures the inequality

inf Ii T-in P" (I > t) > 0.
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2. Example. Idea of the Proof

In this section we shall give an example showing that the estimates of the

smoothness of the generalized solution, which will be presented in subsequent

sections, cannot be improved substantially. Using this example, it is also

possible to grasp those ideas which are used in studying smoothness in a general

case.

Let region D be a square: D = Ix,y: lxi < 1, IJY < 1). By cp(x,y) let us

denote an infinitely differentiable function, which is even with respect to y and

equal to zero outside the e-neighborhood of the boundary F of region D. Let us

examine the Dirichlet problem

lu= 2u + y u / 2u a2u =\ 0

u(x, Y) I r - . (5)

Operator i does not degenerate in the neighborhood of the boundary, and the co-

efficient a > 0 in D - i; therefore, problem (5) has a unique generalized solution.

This solution is continuous in the closed region D G I' (see L18]). Since operator

,ý does not change when y is replaced by -y, and the boundary function is multiplied

by -1, we have u(x,y) - -u(x,-y) and u(x,O) - u(0,0) = 0. From the maximum prin-

ciple and tCe regularity of boundary points it follows that sign u(x,y) = sign y

and u(x,y) > I- ( ) for 1 - y < e (when 1 + y ! e) and for a sufficiently

small (- > 0.

By zt = (xyt, let us denote the trajectories of the Markov process in R2

controlled by operator I and by D the region obtained from D by deleting the

- 11 -



c-neighborhood of the boundary. The trajectories zt can be constructed with the

aid of the stochastic equations

I t 2______ (6)
X, - x ý Y P+cp(x., ys)dt!, y, -y ý %(X",Y.) dfý.+ Ay PYds,

O 0 0

where .1 2 are independent Wiener processes and (x,y) is the initial point. TheS) 5

solution u(x,y) of problem (5) satisfies the relation u(x,y) = M(xy. u(zTe ), where

T is the instant of the first exit of trajectories z from the region D . Lete t

YO > 0. Since P YT > 0) = 1, we have
x,Yo T

99 .
u(,y(.lo)=- Mco.,poIL(Z,+) > P0 .l {,.. - ) ( 7)

Let us estimate the expression on the right-hand side of inequality (7). The motion

along axis y in D is determinate. Integrating equation dt = 5y with the initial

condition y(O) = y we find that the time

is required in order to reach the point y = 1 - e.

Note that

P(oVo) (g,. = 1-- ,P( 0 o, ) { sup Iz.l< < - ).

Since x in D is a one-dimensional Markov process with the derivative operatord2 s

A , the function
dx v(t,X) = P.{ (supI,.I < I - e)

8<8

is the solution of the mixed problem

a a-y v(tX) 0l'.-- 0, v(Oz)- 1.

Solving this problem (for example, by Fourier's method) we obtain that

V (0, 1) = ct exp{ (1 -- s)2A }

12 -



and, consequently,

P(O.Vo ( sup IX.1 <1- e-V(t(Vo)=O)=

l- - (e -ve

where c 1 and c 2 do not depend on y." Comparing the equality obtained with (7) we

conclude that

U (0, YO) > C2•- •0••-'
100

From the latter inequality, if we take into account that u(0,0) 0 0, it follows

that the function u(x,y) may not have derivatives at the point (0,0) without addi-

tional assumptions concerning the magnitude of cy/e, and that for any y > 0 it is

possible to find an u1/ so small that the ftunction u(x,y) will not satisfy Holder's

condition with the index y.

We have introduced the term ;2 (x,y)A into the operator i only in order to

exclude the possibility of disturbin; the smoothness at the expense of degeneration

on the boundary. If we set ;(x,y) * 0, all estimates for u(0,y) - u(0,0)1 will

remain in this case and it is only necessary to substitute e = 0 into them.

We now obtain the upper bound for lu(0,Yo) - u(O,0)1. Since, for cp(x,y) = 0,

motion along axis y is determinate in the entire region D, we have

In( Oo)- u(o,o) I = 1U(o, YO) I == Mo. ,,l'y" I <

• !(8)

uhere yt(y0) is the solution of equation dy/dt - ýy with the condition y(O) - Yop

while p_(t) is the density of the random variable T = infit:lxtI = 1), starting

- 13 -



from the point x = 0, T D = infft:z E D). This density exists since xt differs

from the Wiener process only by a factor. From the formulas given earlier it

follows that

Yt(Yo)= Yoexp (A1), p,(t)*==---(0,t)=cse-".

Substituting these formulas into (8) we get

Iu(O,YO)- u(0,O) J < c3yO• eft'--a"'
t 

dt.
0

If e - T •2 < 0, the integral on the right-hand side of the last inequality con-

verges and the function u(x,y) at the point (0,0) satisfies the Lipschitz condition

with respect to y. If ý - 1 2 > 2 , then u(x,y) does not satisfy at zero Holder's

condition with any index K < min (1,U2). Indeed, since lyTDI < 1, we will get,

for K < 1

lu(O, Y.)-- u(O,O) M( Y •, < .O, V. I •<~.v)Y1. D X

< M (O. dV tI'f = $ Yt (Yo) P T (t) dt ==csyo" S~4# h dt C804YOU,
0 $

where

c, e'(*x-1n)dt<oo for x<-.

Thus,

c2Yo ' < I U(0, yo)-U (0, O) 1 < CYO

for any x <min( 1,

Let us note those qualitative considerations which were used in the above

example and which can be carried over to the general case. We consider that

(x,, ) .
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1. Let us consider the two trajectories zt(x1 ,Yl) and zt(x 2 ,Y2 ), originating

respectively from the points (x ,YI ) and(x 2 ,Y 2 ), for the same Wiener trajectories
•1 .2 thai

(t ,t ). The trajectories zt are constructed with respect to tt with the aid

of equations (6). Then, after the time t the difference

X1 (zX, VY, () - Xt (X2, Y2, o) - -X

does not increase, while

YI1(xI, Y,, W) -- Y,(2, Y2, 01)I 1 Y, -- Y21e"

and, consequently,

Iz,( X, Y1, 1) - (X, Y2, (0)) 12 -X 21
2 + Iy, - y212e2 O(

grows at an exponential rapid rate with the index 2P. In the general case, the

trajectories 3f the diffusion process with coefficients satisfying the Lipshitz

condition, constructed by one and the same Wiener process and originating from the

points a, b E Rn, resp., disperse at not greater than an exponential rate

MIX, (w) -- t (w) 12 < la- bllecx',

where the constant K is determined from the Lipschitz constant of the coefficients

(see lemma 5). In our case c = 2, K - ý.

2. If by T we denote the time needed by process Z to reach the boundary of

region D, then

Pz{r > t0 - /(t) < c'e-•'s

decreases at an exponential rate. In the general case, if the assumption that the

trajectories reach the boundary at a uniform speed is fulfilled, this probability

also decreases exponentially (see lemma 4).

3. We shall explain our further course of reasoning by mear of an example

describing how an estimate for the first derivative is obtained. In order not to

be concerned with boundary estimates, we shall assume that the process does not

- 15 -



degenerate in the neighborhood of the boundary. Let

,v()= in! (t: Xy(a)Z )

Then, using the probability representation of the solution of Dirichlet's problem,

we will get

I U () - u (y) I,< M 1 U (2!)-- u(X!,) F2< M I X, -- V 1 ,

where c is a constant depending on the Lipschitz constant for the function u(x) in

the neighborhood of the boundary and on the width of the non-degeneracy region.

In order to obtain the estimate of the first derivative of interest to us, it is

sufficient to show that MIXj - xy12 < A Ix - y12. If the non-random variable t

were present instead of the random variable T, such an estimate would be guaranteed

by item i above. In order to obtain an estimate for a random T, we must use the

properties given in items 1 and 2. If the exponent derived in item 2 "exceeds" the

exponent of point i (in our example, o 2 > ý) the estimate being sought exists.

Otherwise, there may be no estimate. In the following sections we will obtain

a priori estimates according to the plan outlined here.

In concluding this section we shall note that if the coefficients, of the

equation with degenerations satisfy only Holder's condition, the generalized

solution does not have to be continuous, even if the operator does not degenerate

near thp boundary and the statement of lemma 4 is fulfilled. An example confirming

this remark can be obtained if we examine the equation

O•u OU
C& - x+ r (Z, VlAU + pvY-.-- 0

it- the square D. In this case, the trajectories scatter faster than exponentially,

and an exponentially rapid exit from the region cannot "balance" this scattering.

- 16 -



3. Continuity of the H6lder-generalized solution

Theorem 1. Let us assume that all points of the set ?' are(X1 ,x 2 ,h)-regular

for certain X ý2 h > 0, which are the same for all x E T. In addition, let the
1$ 2' 1_ _

trajectories of process X go out at a uniform speed to the boundary of region D and

let the boundary function satisfy H6lder's condition on F:

I '(x) -- P(y) < ,Ilx-y yIv.

Then there exists a YI > 0 such that the generalized solution of problem (3)

satisfies H6lder's condition with the index 'I"

Proof. Let x,y E D and let xt and yt be the solutions of equations (2) with

the initial conditions x x, Yo = y. We set

T. = inf{t: it E-D), xr, =inf (I: ye E- D, j- min (r.,rv).

The quantity T does not depend on the future (see Note); therefore, the generalized

solution u(x) of problem (3) satisfies the relations

u (X) = Mu (C., u (y) =-MuA ()

(see .2,). Let us estimate the difference u(x) -u(y):

IU (Z) -- U (Y) < Jt I U (X;) --U (90) ý
= .l I* (1") - U (g.) I x. (6)) + 1'11 u((Z) - i (* U,) I xV (0))

- M I V ( .1r ) - If; , . * (X ý) I X X ( w) + ArI F4 , * ( ,) - 0 ( ,,f I ZX ( w), (9 )

where Xx(w) is the characteristic function of the set {w:ý = r X, XY(w) = W - x (w).

Let a s D, b E_ 7. Then, if by d we denote the diameter of region D, we get

M. ,(x,)-- V (b) I <• KjM. Ix,,- b Iv,-- Ktdv M.M 7T- b-"

KdA d-b I, Kidy--kM.Ix--bjl-, if ).,<y,

Kj(M, jxT--bl•A,-)vx,. if A,,>y.

Note. The non-negative random variable O(w) is said to be independent of the future

if the event [w:ý(w) < t) for any t a 0 belongs to a a-algebra generated by

the events txs(w) E A) for s < t, where A is a Borel set in Rn (see L23).
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In the last inequality we made use of the fact that

By a we shall denote the characteristic operator of process X. It is veri-

fied that the function V1,(x) x.- •{•- b}.

satisfies the equationCL vI = 0 in D and the boundary condition

Vs(X) J=.." = Iz - 61%',

Since all points of the set are (XlX 2 ,h)-regular, a neighborhood Uh(b) will be

found in which the barrier v(x) is defined and a=v(x) = Lv < 0 in this neighborhood.

We shall choose cI so great that cI v(x) > v 1 (x) on the boundary of the set

D U Uh(b). This can be done since the above-mentioned inequality is fulfilled on

SUh (b). On the set D n Uh(b) a. (c 1 v - vI) < 0; therefore, by -'irtue of the

maximum principle, everywhere in D r, Uh(b)

Vt(z) = M•x• - bV-'[ < cav(x) < e2 1x - b1-4. (11)

Obviously, if Z is chosen sufficiently great,we can consider that (11) is fulfilled

everywhere in D.

We set

X = max( ,-l

From (10) and (11) it follows that
M•I,( ,) - (b) l <, ca - b11%

From the latter inequality and (9) we conclude that

U -) U (Y) <- C e, I -- • (12)
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Let us now estimate the right-hand side of inequality (12). Since according

to the condition of the theorem the trajectories leave the region at a uniform

speed, then, according to lemma 4, it will be possible to find an Uf = a L,D > 0

such that

P (T > t) < max P {(r > t) < cae-ot,
XED

Let 0 < K <_ I and let x(n) be-the characteristic function of the set

(W:n .7(w) < n + 1). Since i I < 1, we have

00

n -CP7'+1

n~mft

~C~ A !L'1' h n ~ (13)
nt -f

In the latter inequality we used the corollary from lemma 5. Now, let ýt be

chosen in such a way that I Xv. < o. Then, the series in (13) converges and we

obtain finally

Iu(X) --(y) I <C4 1 -- I X.

Lemma 5. Let

Lnd let xt and yt be the solutions of equation (2) with the initial conditions

x = X, Yo = y. Then

am - 2m(m - 1))K2 n? + mn 3K• + 2ranK.

- 19 -



Proof. Let us apply to the function p2-(Ig,•t)_=(- (i- tthe formula

of K. Ito [7]:

p2,4f~ y)) + S p-' --,,(b)i+ 5)bm (2,)) )ds+
0

a i-
+~ ~ ~~((. -np•(,L)) (4 -Y ..) jfciCi) ai +ý

0 +

+

2 " ' j(aik~. C!7ghk 2)dS." i., 
(14)

From (14), using the properties of stochastic integrals and the boundedness of the
derivatives of the coefficients, we obtain th- inequality

t

Mp2 ,M(Y, 91) < p2M(z, Y)+ +m ! Mpa. ( 8 , U1)ds.
0

The statement of the lemma follows from the latter inequality (see., for example,

18]).

Corollary. ForL any T > 0 the following inequality is valid:

M S" p I i "- • .yt ' '• 12. < C[I + V 12 +, .- , .M. Su
<Tr 22

+ M( S b(i.- ý) ids) _Y2 SM a(i.)- a(gs) Ilds +
00

r
+ T S U(X,- V,12dS < [(),.

0
In estimating the stochastic integral we made use of the fact that

to o(X.)- Cr (Y.)Id,

0

-20-



is a semi-martingale and, consequently, according to theorem 3.4 of Chapt. 7 L3]

r

t<T ! 0 t 0

Note that 0(t) increases with respect to t not faster than linearly.

4. A Priori Estimates of Derivatives of the Generalized Solution

Theorem 2. Let us assume that c ij(x), bi(x) E C 1 (,n), that all points of the

set - are uniformly normally regular and that *(x) = v(x) l•, where v(x) E C2(R n).

Then, the generalized solution satisfies the Lipschitz condition if only a L,D > a I.

Proof. We shall use the same notation as that used in the proof of theo-

rem 1. From (9) it follows that, in order to prove theorem 2, it is sufficient to

estimate the terms occurring (n the right-hand side of inequality (9). In order to

do this, we shall apply to the function v(x) the formula of K. Ito

I I

V,(Z) = v() + (grad V (X,), o(x ).) + 5 Lv(x,),ds.
0 o

prom thu latter equality it follows (see Note) that
7

0

For the right-hand side of inequality (9) we obtain the estimate

M l .,) - ,t • .. + (X,) I X.: ((0) < M X. ((0) 1 v (X +..) - -M - ,V (X,)I

< ,'I"f + (w .+) I v V• , -- M (%,)l ý, (w ) I V (j ,',) - -A l ', V (X .,) I <

Sjgra d v (z) MI- X.(w) + I Lv I M (Mi. r) I. (w) < c 4 grad v (z) +
+ I Lvl1) A,+ I .,-L. I x o)

(16)

',te: By lf(x):, we denote max IfC(x)"
-xER
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In the derivation of this inequality we used the strict Markov property of process X

and the uniform normal regularity of the points of set r. A similar inequality also

holds for the second term on the right-hand side of (9).

From (9) and (16) follows the inequality

ja(z) -- a(y) I < C2Mlli-- 9fl. (17)

Further, after using the corollary of lemma 5 we get

S(A•l u pM sup Ii.- x,(,))"nO n<A<n+!

P,•( sup l•-•l (• .
a<n+i

C:1 (\ r e ZI)z-ytI<•lx-yl.

(18)

In the latter inequality

•.~e 2 <oo0,

since aL,D > OI according to the condition of the theorem. From (17) and (18)

follows the statement of theorem 2.

Let us now consider the estimates of the higher derivatives of the general-

ized solution. We shall define the m-th difference for the function f(x) by means

of the equations

6',f (x) = fl(x + h)--/(x),

h,.. h. hl ...... h__, 6h, ... , h._,

6 l(x)== 6M-t f(x + h.) - M-t f(z).

If the function f(x) is sufficiently smooth, by selecting the increments hI .....

h m R, R h i = h it is possible to obtain that
m 1i

I A,, , ,- (z)lim/• m I(z)-- i,.. ,•

- 22 -



for inx . s!uminl to m. By H H(x ... h) we shall denote the set of

Point, x + h + ... + h.r for il ... ,ir -< m, 0 1- r ! m; by Hf - the convex hull of

ýh, values of function [(y) for y f H.

We shall use the following simple inequality:

6•u(f(x)) •< J (gradu(z),6mI(z))j + IID.uiH,.

", Io,,I(x)I""... I6,/(Z)im,, (19)

.!iere1

X.rn '=h M IdXM.

IIOmulj = max I ...

Let us define the sequence of the numbers ak,m by means of the following

rclations:

u.,, -- ,, (2m(m - 1)ni9 + rn?,)K' + 2m,,K
u. i 2 AKn+2A-2n.1 + I +ahajh for k> 1,
a, 2-2mi(nK + 1) + m(2n1,K2 + 1) + 2m(m - 1)n.-1K2 + I + l-t- -h.

for k> 1.

It is easy to check that &em grows mciotonically with respect to each index.
k,m

Lemmna 6. For all integral k and m the following inequality* is valid:

Ml (bh r 6t ) " ,,.h e 6, h =[mh, 1.

The proof of this lemnma is carried out by induction. For k = 1, lemma 6

reducL.s to Im-ma 5. We will show that the statement of the lemma is preserved when

k is increased hy unity. Since •k is a linear operator, we have

t i.
6Xz = a(z.) dt + 6,b(x4)ds.

II 0

The operator i, applied to xt(w) as in the function of the initial point

23 -



I'

Let us apply the formula of K. Ito to the function ti,1(t)= Zo(xf%2.

t n

2 2

(t) il t(0) + 2 Ai()d)

+ 25 + 2 ~(bhqj(xr.))2dS.

From (19) and (20) we get

MA., MA 2 (o) + M () 16A,. (grad bi(z.), dhz:) I +
o i-1

+LiuU •, 16i,,XxI ... 16,X10 M, d9+2 I(grad cYj(x.), 6Ax:)+

i t

n9A(0 +(2K +1)MAh(S) ds±+2n3KA¶lm,()d
0 o

+c C J I I , l"... 16,,xs-12,.ds.
bI Xim i~t

ii1•' ,.A (21)
We shall now make use of the fact that

bi~x p (61 x (2-, If 6! X. < M 1- ~ )

From (21) we get

mA(L) mA (0) + (2Kn + 2'2n3 + 1) mh (sv) ds + c 5 Af(•l•,zxl•),,,,.
00 Ih

According to the assumption of induction for k < k

xAl6111 • • G.,. .h1 2h, Y C< C,. hah-,41h2 th,

- 24 -



since tk increases with increasing A. From (22) follows the iuequality
k!

mh (t) - m, (0) + (2Kn + 2K2n3 + 1.) mhA s) ds + Ch-,e_-i_,j,1hk.

0

From the last inequality we conclude that

m k(t) -: C,. 1' 1. ,-VA.

In order to check the validity of the lemma when the second index increases,

it is necessary to apply Ito's formula to the function (6,zg9)2). This cal-

culation is completely analogous to lemma 5 and we omit it.

Lemma 7. Let f(s,w) be a bounded measurable function. Then,

M(T ,•21

( I (s, .o) dt < cm Tm-'I(s,o)I,2ds.
0 0

Proof. Applying Ito's formula to the function 7( ,) we get

0

r 2m 1"r i\2mf

gm(T)= M! (\Isw)d1'. )M m('-M- 1) ~M( I,()dý, ja(t) dt
0 0 0

From this formula it follows that the function gm(T) increases monotonically with

respect to T. From Holder's inequality, taking monotonicity into account, it

follows that

0
•T t T On

m (2m -- 1) [\M (SIs.)d )'u ]d [ [ MIM(t, w)dt]

0 0

M-f 7 2

0
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F

From the last inequality we conclude that

M2m T

ý't /(s, ,.d4 [m(2m -1)jmTm-I M17- m(s, c.o)&d.
0 0

Lemma 8. For any positive integral k and m the following inequality holds:

h""'hX2 121 <

where C k,m(t) increases with increasing t not faster than tm, 1hil -h.

This lemma is proven in the same way as the corollary of lemma 5. It is only

necessary to make use of the fact that (s, (ao)dt,) is a semi-martingale and

to use lemma 7 to estimate the 2m-th power of the stochastic integral. Let

()= inf(t:x ED), H min v. .
yc-H(.X,h ,......hk)

It is obvious that

P('T > t) -_- P.11 > t) <• Ce-L.D'.

Lemma 9. If ok,m < UL,D ulh.i = h, then._
-hI A' ...... "T;r< hk mý..

Proof. Let )n(w) be the characteristic function of the set tw:n T n + I).

Then, using the preceding lemma we obtain

M16kz '< Y M sup I6hX5.x. (W) < (.10 sup I6 6A."Mx (o))"'•.M
,,~ ,~.<'-10 a<V&+1

C(n) increases exponentially

The series in the last inequality converges because C increases exponentially
k,m

with respect to n and L,D > k,m according to the condition of the lemma.
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Lemm.a 10. Assume that a2k,2k < aL,D". The.n,

JAID•=l < ClIDullIr.

Proof. Let us choose h,, ... ,hm, = h, m - k, in such a way that

lirm U(z)=a -8X,.. z- "IZ
'It

Let

m=rin TV ( ).
YeH(z.A s..-,hm) x

The quantity T does not depend on the future, and therefore u(x) Mu(xX). Con-

sequently, for 6hu(X) we get the inequality

I6'.U (x) I' < (A f 6MU (--!) 1) 1 <[I D,.u IA f (I ax5('

+ • I•, I"'. . .I r,," ') (i --•) + e, lU J 3m (l4,,; r' .+
El ii---=m

+ • , iz;I,..tr)1, ] . (22)

Here we have used the fact that, for sufficiently small h, the points xT(y E H(x,

hl,... hm)) lie in the e1-neighborhood of T with a probability greater than I - e2"

With the aid of lemma 9 we can derive the inequalities

X! 1)' < Ch" A i f I . .. I16,,X! I- , < 'E (m4 5 1 -) if jh•.

M I Im I < M <J0. (23)

Here we make use of the fact that the sequence a ,r is monotonic with respect to

each index and also of the condition OL,D >2k,2k"

From (22) and (23) it follows that

I mu (z) < C (I Dmu~27 -ea) + L2IDI

-27-



Now let h tend to zero. Together with h, e1 and e2 also tend to zero. From

the last inequality we obtain the statement of the lemma.

Theorem 3. Let a i(x), bi(x) c C(k)(Rn), 4(x) E C('), let the operator L not

degenerate in the neighborhood of the set T% and let aL,D > T2k,2k" Then, the gen-

eralized solution of problem (3) has k - I continuous derivatives and the (k - l)-th

derivatives satisfy the Lipschitz condition.

Proof. First, let us assume that 1 is a smooth manifold of class Ck and

k e
,(x) ý C (T). We shall examine the operator L , whose coefficients are determined

by the equalities

{aij(x)} ý (o(z) + eE.p(x)). (?(z) +ep(z)E), bi (x) - hi(z).

We shall choose the infinitely differentiable function c(x) in such a way that it

vanishes in the neighborhood of the boundary and is positive outside the 6-neighbor-

hood of the boundary. As follows from ý18], there exists a unique generalized

solution of the problem

Leue(z) =0 for x8D; u(X){I-= V(x).

This generalized solution is continuous. The operator L• does not degene-ate outside

the '-neighborhood of the boundary, and therefore utl(x) r-k)(D\•Ua()). Let

a[o - -~.2

Then, for a sufficiently small e

Q L#,D- I,~ <

and the coefficient a for operator Le differs from u2k2k by not more than X/2.
2k,2k

Therefore, C - > 0 and, consequently, the first k-derivatives of function
L,D 2k,2k

u (x) are estimated according to lemma 10 in terms of derivatives on the boundary i.
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In the neighborhood of r, the operator does not depend on e, WI'(z)I<mrax1*(z)1.

so that ,IDmUi u is estimated uniformly with respect to e, and, therefore, according

to lemma 10, the derivatives are estimated uniformly with respect to e also inside

region D\U6 (F). It is proven (see [21 )that

lir iu'(Z) = U(z)
uniformly with respect to x E D.

From the last statement and the a priori estimates uniform with respect to e

k'
the statement of the theorem can be derived in a standard manner. If T E C then

k
it is necessary to replace 7 by the surface T E C lying in the region where opera-

tor L is non-degenerate. The function u(x) on 7 will be sufficiently smooth. This

follows from the usual intrinisic estimates for uniformly elliptic equations.

Theorem 4. Assume that o ij(x), bi(x) E C k(Rn), that the boundary F of region

k k.Shas the direction cosines Ini W) of class Ck, that *(x) E ck(F) and that

oL,D > a2k,2k" Moreover, let the diffusion along the normal to the boundary

(Za ij(x)ni(x)n.(x)) be different from zero on the closure of F, let it be equal to

zero on f, and let the vector b(x) on T be directed towards the exterior of

region D. Then, u(x) E C k-(D) and the (k - l)-th derivatives satisfy the Lipschitz

condition.

Proof. If 1 = ', then the statement of the theorem follows from lemma 10 and

lemma 1.4 of reference L12]. If F\T' is not empty, we extend the operator L across

into region D , D in such a way that everywhere on the boundary 1 _ Y of the

re.ion D D the extended operator L has a non-zero diffusion along the normal and

the maximum of the modulus of the derivatives of the coefficients does not increase.

29 -
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We extend the function V(x) onto F in an arbitrary smooth manner. This is possible

since p(F,17) > 0. For the operator L diffusion along the normal does not degenerate,

SauT -- aL. D < a,2

for a sufficiently small extension, the constants a2k,2k for operator L will remain

the same and, therefore, as was noted at the beginning of the proof, the assertion

of the theorem is fulfilled for the solution u(x) of the problem in D D. There-

fore, the theorem is also fulfilled for the solution of problem (3) since the

solutions of the extended problem and of problem (3) coincide in the region D. The

latter assertion follows from the fact that the trajectories of the process governed

by the extended operator L with the probability 1, originating from points x E D,

leave D across T since F\T is a repelling boundary.

5. Some Remarks

1. The parabolic equation

au i1, 82u au

.,, ai(~z + ( t , X) ~-+ C(t'z)U(t'z)=
at 2 +rft + =

= Lu + c(1,x)r)

can be considered as a degenerating elliptic equation. The processes governed by

the operator 7 - + L are remarkable in that along one of the (ocrdinates

(along t) a determinate motion with a unit velocity takes place in the direction of

the plane t = 0 (if the original point is in the region t > 0). Hence, it follows

that the generalized solution of the problem Cil= 0 in the region lying above the

plane t = t is unique for some t . In particular, the generalized solution ofo 0

the Cauchy problem and of the first boundary value problem in a cylinder is always

unique. If the region in which the equation .tu-0 is considered lies above the

plane t = to, then, starting from any point lying below the plane t = T, the

- 30 -



trajectories will reach the boundary not later than in a time T - t . Since the0

trajectories reach the boundary in finite time, the parameter aTD can be con-

sidered equal to infinity for the region lying above the plane t = t . Thus, in

the case of a boundary value problem for operator X in the region lying above the

plane t = to, the smoothness of the generalized solution depends only on boundary

estimates if only the coefficients of the eqia-ion are sufficiently smooth. In

particular, in the case of the Cauchy problem for an equation with smooth coef-

ficients, the same smoothness as in the initial function is transferred inside

the region.

2. In [19] the problem with a directional derivative was studied for the

equation Lu = f(x). The following theorem is derived from the results obtained

in this article and reference [19].

Theorem 5. In the region D with a smooth boundary F let us consider the

problem

Lu = f(x), du 0.
a1(x) Ir=

(24)

It is assumed that the coefficients of the operator and the field I(x) belong to

3class C , the field i(x) does not touch the boundary, the operator L does not

degenerate in the neighborhood of F, and the trajectories of process X reach the

boundary at a uniformly rapid rate. Then, there exists in D the unique probability

measure •(.), namely a solution of the coniuaate problem L L = 0, such that problem

(24) has a continuous generalized solution for any continuous f(x) for which

I(z)p.(dz)=0. This generalized solution is unique with an accuracy up to the
n

constant term. If a ij(x), b i(x), f(x) E C m(R n) and f L,D the solution has
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partial derivatives up to order m - 1 inclusively and the m-th derivatives satisfy

the Lipschitz condition.

The definition of the generalized solution of problem (24) can be found in

_19j, where an explanation of what L is,is also given. If we discard the assump-

tion of non-degeneracy near the boundary and we assume only that diffusion along

the normal is different from zero, then the solution of problem (24) will, generally

speaking, not be unique. If we consider the problem for the operator Lu - c(x)u = 0,

c(x) -> c > 0, we can limit ourselves to the assumption of non-degeneracy along the

normal. In this case, a generalized solution exists for any right-hand side 'f C.

This solution is unique without any assumptions on a uniformly rapid exit from the

region. By making use of the results given in [19] it is also possible to study

the smoothness of the generalized solution of the second mixe4 problem for a para-

bolic equation with degeneration.

3. Let us consider the equation Lu(x) - c(x)u(x) = 0 in the region D with

the boundary conditions uI- = *(x), where F'\T is a repelling set for operator L and

the points of i are assumed to be uniformly and normally regular. If, as was done

before, we denote by X = {x ,P ) the process which is governed by operator L, thent x

the generalized solution of the stated problem is given by the formula

U W M) AIXix) ex p{- C c(x,) d.
0

If c(x) -i 0 the written mathematical expectation exists and, consequently, a gen-

eralized solution also exists. It is proven that the function u(x) takes on boundary

conditions at normally regular points of the boundary and that the generalized
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solution is unique if c(x) > c > 0 in D without any assumptions whatsoever concern-

ing the exit of trajectories from the region.

Let us consider the question of smoothness of the function u(x). Let at

first c(x) A c > 0. Then, u(x) = Mx e-C$ u(x) for any ý(w) not dependent on the

future.

In particular, if a = T (see lemma 9), then

<C e' "-)Mmax N 8,z 8 I.X (0))

< eY ,, (n) e" n ah. 2,-"L. • ,. M.

Consequently, for the existence of an estimate of the k-th derivative it is suf-

ficient that a 2k,2k < L,D + c. Thus, choosing c sufficiently large, it is possible

to achieve an arbitrarily high smoothness if, of course, the coefficients are suf-

ficiently smooth and there are boundary estimates.

The case wnen c(x) > c > 0 is reduced to the one examined above by dividing

:he equation by c(x)/c.

4. The conditions reported here for the existence of derivatives do not have

local character: smoothness at the point x depends, in general, on the geometry

i the region and the behavior of the coefficients of the operator in the entire

e2ion. Simple examples show that such conditions reflect the actual situation in

hc clis of all degenerating equations. However, special classes of degenerating

q:uition, do exist in which smoothness has a local character. For example, the
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equation of Brownian motion uith inertia is such an equation. Definite success in

the study of such classes has been achieved in references [131 and [161.

5. In conclusion, we should note that the methods used here can be utilized

for the study of degenerating quasilinear equations. These problems are considered

in references [23,24].

Received

13 September 1967

References

I. M. V. Keldysh. Some cases of degeneration of equations of the elliptic type on

the boundary of a region. Akad. Nauk SSSR, Dokl.; 77, No. 2, 181-183 (1951).

2. E. B. Dynkin. Markov processes; Academic Press, N. Y. (1965).

3. J. L. Doob. Stochastic processes; John Wiley Inc., N. Y. (1953).

4. G. Fichera. On elliptic-parabolic linear differential equations of the second
order, Atti Accad. Naz. Linc. Mem.; VIII, No. 6 (1956).

5. G. Fichera. On a single theory of elliptic-parabolic second-order equations,
Collection of translations "Matematika"; L, No. 6, 99-120 (1963).

6. K. Ito. On stochastic differential equations, Ibid.; 1, No. 1, 78-116

(1957).

7. K. Ito. On a formula concerning stochastic differentials, Ibid.; 3, No. 5,
31-41 (1959).

8. A. V. Skorokhod. Studies in the theory of random processes; Addison-Wesley,

Reading, Mass. (1965).

9. 0. A. Oleinik. On the smoothness of solutions of degenerate elliptic and para-
bolic equations, Soy. Math., Dokl.; 6, 972-976 (1965).

10. 0. A. Oleinik. On linear second-order equations with non-negative characteristic
form, Mat. Sbornik; 69 (1il), No. 1, 111-139 (1966).

11. R. Z. Khasminskii. Diffusion processes and elliptic differential equations de-

generating at the boundary of the domain, Theory of Probability and Its Applica-

tions; 3, No. 4, 400-419 (1958).

- 34 -



12. A. M. Wl'in. Degenerating elliptic and parabolic equations, Mat. Sborn.;
50 (92), 443-498 (1960).

13. A. M. Wl'in. On a class of ultraparabolic equations, Soy. Math., Dokl.;
5, 1673-1676 (1964).

14. M. M. Smirnov. Vyrozhdayushchiesya ellipticheskie i giperbolicheskie uravneniya
.Degenerating elliptic and parabolic equationsh Moscow, Izd-vo. "Nauka" (1966).

15. N. S. Piskunov. Boundary-value problems for equations of the elliptic-parabolic
type, Mat. Sborn.; Z (49), 385-424 (1940).

16. I. M. Sonin. On a class of degenerate diffusion processes, Theory of Probability
and Its Applications; 12, No. 3, 490-496 (1967).

17. M. I. Freidlin. On some applications of Ito's stochastic equations to differ-
ential equations, Ibid.; 4, No. 3, 432-433 (1959).

18. M. I. Freidlin. On Ito's stochastic equations and degenerate elliptic equations,
Akad. Nauk SSSR, Izv., Ser. mat.; 26, 653-676 (1962).

19. M. I. Freidlin. Diffusion processes with reflection and problems with a direc-
tional derivative on a manifold with a boundary, Theory of Probability and Its
Applications; 8, No. 1, 75-83 (1963).

20. M. I. Freidlin. A priori estimates of solutions of degenerating elliptic equa-
tions, Sov. Math., Dokl.; 5., 1231-1234 (1964).

21. M. I. Freidlin. A note on the generalized solution of the Dirichlet problem,
Theory of Probability and Its Applications; 10, No. 1, 161-164 (1965).

22. M. I. Freidlin. On the formulation of boundary-value problems for degenerating
elliptic equations, Soy. Math., Dok_.; Z, 1204-1207 (1966).

23. M. I. Freidlin. Quasilinear parabolic equations and measures in function space,
Functional Analysis and Its Applications (USSR); i, No. 3, 234-240 (1967).

24. M. I. Freidlin. Probability approach to the theory of elliptic quasilinear
equations, Uspekhi mat. nauk; 22, No. 5, 183-184 (1967).

25. M. I. Freidlin. On the factorization of non-negative definite matrices,
Theory of Probability and Its Applications; 13, No. 2, 354-356 (1968).

- 35 -



Distribution of this document has been nrie to

members of the APL staff in accordance with a

list on file in the Distribution Project of the

APL/JHU Technical Reports Group. The only

distribution external to APL is to the Defense

Documentation Center in Alexandria, Virginia,

and to the Translations Center of the Special

Libraries Association which is located in the

John Crerar Library in Chicago, Illinois.



UNCLASSIFIED

DOCUMENT CONTROL DATA - R & D
"?v I.*l.fl'ts-oi Of tile, body ofl .bstrarI and Indexing annolijn ncu.t be entered when the 0v //all i eliSlllvd

J ,- .. . C 1, CVrvfv ,CoT po-41. *'lthot, a. UEPOR I SECURITI CLASSiFI CAI ON

The Johns Hopkins University, Applied Physics Lab. Unclassified

8621 Georgia Avenue ;W GROUP

Silver Spring, Md.

Smoothn.,ss of Solutions of Degenerating Elliptic Equations

.- I SC"'"'I 1' V NOVS(TýVP0 ..tgo i Adsyl. dote$)

* A. .•QR S , 0...~eeine middle lnd,.i. I rv name.,

M. F. Freidlin

., . .At 78. TOTAL NO OF PAGES 1b, 1o Or PFFs

22 September 1969
- N 'kC O 0R GRANT NO 00. ONIGiNATOR'S REPOR T NUI)MVER4SI

NOw 62-060 4 -c
b RRo~Ec- NO CLB-3 T-604

9b OT0E- REPORT NOIS) (Any other number. that may be A.slgned
this iopoei)

d

This document has been approved for public release and sale;

its distribution is unlimited.

11 SUPLEmE.NTARY NOTES 12. SPONSORING MILITARV ACTiViTv

INAVPLANTREPO
Naval Ordnance Systems Command

In this study it is proven that the generalized solution of

boundary-value problems for degenerating second-order equations satisfies

Holder's boundary condition under broad assumptions. An example is given,

showing that a greater smoothness of the solutions cannot be achieved only by

increasing the smoothness of the data given in the problem. Conditions for the

existence of derivatives of the generalized solution are clarified. The investigation

is carried out by means of probability methods.
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