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SMOOTHNESS OF SOLUTIONS OF DEGENERATING ELLIPTIC EQUATIONS*

by

M. F. Freidlin

Introduction

The present study is concerned with boundary-value problems for the

degenerating elliptic equation

0t

0.1‘,-0.lj +

Lu(z)+ c(z)u(z)= -12— N ai(2)

1, =1

o
+ Zbilz) 5 +e(@u(n) =0, o

It is assumed that the coefficients are defined over all spaces R , are bounded
n

and have bounded first-order derivatives
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the form 2 a;;(z)7k; is considered non-negative. The study of boundary-value

v, =1
problems fof degenerating equations has been the object of numerous investigations.
References (1] and [11] can be mentioned, where equations degenerating on the
boundary of a region are studied. Special cases of degeneration inside a region
are examined in references [12-15). The boundary-value problem for an equation
with degeneration of a general form was examined for the first time by Fichera
(see [4,5]). However, a single class of functions, in which the problem would have

a unique generalized solution, was not constructed in these studies. In a sub-

sequent study {12], a uniqueness class was constructed and conditions were

* Translated from Akad. Nauk SSSR, Izv., Ser. mat. [Acad. Sci. USSR, Bull., Math.
Ser.], Vol. 32, No. 6, pp. 1391-1413 (1968).




established for equations with degeneration of a rather special form, under which

a generalized solution will be smooth. 1In the general case, the existence and
uniqueness of a generalized solution in one class were proven in [17] and [18] (see
also [9]). Note that in Fichera's study [4) and others associated with it the
assumption is made that c(x) < - <, < 0. This assumption removes certain interest-
ing effects on the boundary (pasting part of the boundary) at one point [11) and
makes the problem of uniqueness more simple. If this assumption is rejected, in
order to ensure the uniqueness of the generalized solution it is necessary, in
general, to prescribe boundary conditions on a certain “inner boundary" (see [22]).
This "inner boundary' arises naturally when stabilization of the solution of the

mixed protlem is studied as t = =,

In (20] we find conditions which guarantee that the generalized solution, in
the case of degeneracy of a general form, is smooth and satisfies the Holder con-
dition. Proof of the statements formulated in [20] constitutes precisely the basic
content of the present study. The smoothness of generalized solutions was also

studied in references [ 9] and [10].

Generally speaking, the generalized solution of the Dirichlet problem for
equation (1) will be discontinuous. 1t was found that, under very general assump-
tions in regard to the coefficients and the boundary function, the Hoelder character
of the generalized solution can be guaranteed (see example and Theorem 1). In order
that the solution should have derivatives, it is no longer sufficient to require
only that the data of the problem be smooth,but it is also necessary to impose in-

equality-type conditions on the coefficients and on their first derivatives. 1In



order to obtain a priori estimates which ensure smoothness of the generalized
solution we shall use a representation of the solution of the Dirichlet problem

as the mean value of a certain functional of trajectories of a random Markov pro-
cess contrnlled by the operator L (see [2], [8]). We believe that such an approach
to the problem is a geometrically descriptive and natural one. In particular, the
conditions of the existence of a priori estimates of derivatives of the generalized
solution acquire a sinple geometrical meaning. In the present study we shall use

the same notation as that used in reference [18].

1., Generalized Soiution of the Dirichlet Problem

By o(x) we shall denote a matrix such that {aij(x)} = a(x) = o(x) o*(x) (the
star means transposition). Let us assume that the matrix o(x) can be chosen in

such a way that all its elements are differentiable, and let

max '
' Ty,

According to the condition,a(x) is a symmetric positive-definite matrix, and there-
fore we will always find a o(x) satisfying the relatiom o(x) o*(x) = a(x). Our
assumptions refer only to the smoothness of the functions cij(x) with respect to x.
This problem was investigated in [25], where it was shown, in particular, that if
aij(x) = CZ(Rn) then, regardless of the form of degeneracy, the matrix c(x) can
always be chosen in such a way that its elements satisfy the Lipschitz condition,

: . . 2,.n
where the Lipschitz constant is estimated in terms of the norm ai (x) in C7(R).

If the rank of {aij(x)} is constant, the elements of o(x) have the same

smoothness as the functions aii(x).



We shall examine the stochastic differential equation (see [6,8])
dz,(0) = o(x)dki (o) + b(z)dt, (2)

were étﬂu) is an n-dimensional Wiener process (see L2], b(x) = (bl(x),...,bn(x)).
This equation, together with the initial condition xo(w) =x € Rn, has the unique
salution xt(W), which defines the Markov process X = {xt,Px} (see [2]}). The pro-
cess X is said to be governed by operator L. The properties of solutions of

boundary-value problems for operator L are closely associated with the behavior of

the trajectories of process X.

Let D be a bounded region in R" with the boundary ['. The point X, eI will

be called regular if

lim Pu{z:. eT)=1

X=+Xx0n

for any € > 0, where ’r€ is the moment at which the trajectory of process X first
reaches the boundary of the set Ue(xo) N D. Here, as well as in what follows, we
denote by Ue(xo) the e-neighborhood of the point X We can prove the following

lemma (see L11]):

Lemma 1. In order that point X, € T be regular for the process X, controlled

by operator L, it is sufficient that there exist a function v(x) (barrier) such that

R L - A e e a————

v(x) is_continuous in a certain neighborhood U of the point X, and that v(xo) = 0,

v(x) > 0 and Lv(x) < 0 for x € U\xo.

The point X will be called (Al,kz,h)-regular if there exists a function v(x)

with properties specified in lemma 1 such that

ez — 2ol S v(z) < 2z — 2ol* for z & Un(zo).



The following lemma gives sufficient conditions of (kl,kz,h)-regularity in

terms of the coefficients.

Lemma 2. Let us assume that at least one of the following conditions is

fulfilled:

1) the coefficients of the operators and the direction cosines {ni(x)} of

the normal to ' belong to class C2 in the neighborhood of the point X, and

2 ai; (zo) ni (20) X n;{xo) > 0;

ti=1
2) the point X, can be touched by the half-space from outside the region D

and (b(xo),n(xo)) > 0, where n(xo) is the outward normal to the support hyperplanme.

Then, the point X, €T is (Al,kz,h)-regular for some Al,hz,h > 0.

Proof. Let the first condition be fulfilled. Let us introduce the co-
ordinates x),...,x' in such a way that the boundary of region D in the neighborhood
1 n g g
of X, be described by equation x; = 0 and that region D lie in the half-space xi < 0.

In this coordinate system ail(xo) > 0. The function v(x) can be chosen in the form

v(z)= — at| — bTi + o Z (x)2
{3
It is easy to verify that the function v(x) is the barrier being sought in case of
a proper selection of coefficients a,b,c in a sufficiently small neighborhood of

the point X,

If condition 2) is fulfilled, we perform a linear transformation of variables

in which the half-space, by means of which the point x_ can be touched from the



T ——————————

outside, will be described by the equation xi = 0. Since in the case of linear
transformation of independent variables b(x) = {bl(x),...,bn(x)} is transformed as

a vector, we have bi(xo) > 0. In this case, the function v(x) can be chosen in

the form

v(r)= —azy+ b 2 (zi ).

i=2

Note that in both cases XI = XZ =1,

Remark 1. If the boundary and the coefficients in the neighborhood of point
x_ are smooth, the requirement that point X, can be touched by a half-space from
outside the region D can be replaced by the assumption that point X belongs to
the closure of the set open on I', in which
n
D ai(z)ni(x)n;(z)=0.
1,j=1
The point x € ' is called normally regular if MT < |x - X |, where T is the

instant of the first exit from region D:T = inf {t:xt € D}.

Lemma 3. If the conditions of lemma 2 are fulfilled, then_ the point X is

norrally regular.

For the proof we can make use of the barriers introduced in lemma 2. Indeed,

if we denote by Q the characteristic operator of process X (see {2]), we have
AMyx = —1, M.t|zer=0, %{z) =Lv(z) = —c <0,

Then % vix) - MxT 2 0 on the boundary of region Uh(xo) for sufficiently large A and

l((i:-v(z)—vM,f)= —A 41,



Corsequently, by virtue of the maximum , vinciple

Mg < 2v(@) <alz—2l.
[+

if MxT < c:x - xol for any point X, € Yy I, we shall call the set Y uni-

formly normally regular.

The set Y < [ is called repelling if

Py {lim p (21, y) > 0} =1

1~y

for any x € D, T = inf {t:xt € D}. It is possible to give sufficient conditions

in order that the set Y .l be repelling in terms of the coefficients (see [11]).

Let us recall the definition of the generalized solution (see L18]). Let
X = {;t;Fx] be the Markov process obtained on X by a stop on the boundary [’ of
region D, and let‘\'ft be the semi-group of cperators which acts in the space B of
bounded measurable functions on D U [ according to the formula
Tif(z) = M«f(%)).
By I we shall denmote a part of the boundary I’ of region D such that I'\[ is a

repelling set. We shall assume that all points of T are regular.

As a generalized solution of the problem
Lu(z) =0, u(z) |x=t = () 3

we shall call the function u(x), which assumes boundary values at points of T where




y (x) is continuous and which satisfies the relation (see Note)'ftu(x) = u(x) for

all t 2 0. The correctness of such a definition is proven in [18].

It can be verified (see, for example, [18]) that the function u(x) = Mxv(xT)

(T = inf {t:xt g D}) satisfies the relation'Ttu = u and boundary conditions on [.

Without additional assumptions, this solution, generally speaking, is not unique.

It can be proven (see L 18])that for uniqueness it is necessary and sufficient
that PX {T = m} = 0. Everywhere in what follows, we assume the fulfillment of a
somewhat stronger condition of a uniformly rapid exit of the trajectories onto the
boundary:

limP At >}=10

}-+00
uniformly with respect to x £ D. The latter equality will be fulfilled, for example,
if at least one coefficient of operator L is different from zero in the entire region

D Ul (see [18)).

Lemma 4. If the trajectories of process X leave region D with a uniform speed,

then_ &an QL D > 0 can be found such that

Po{x >t} << ce= L.t
for any x € D.

Proof. Since the trajectories reach the boundaries at a uniformly rapid speed,

for a certzin t_ we have, for all x % D, Pfi>1) <Bp<t.

Note: This relation is equivalent to the equality Au(x) = 0, where A is an infini-
tesimal operator of the semi-group Tt'




We denote
a(r)= sup P, {x > nt,}.
xeD
4

Using the Markov property of process X, we get

P {1t > nto) = Mexx>ta(0) - M, xiton-0n <
< (Maxes1o-Mx (Mx‘"X,t>ln(n—l))z) g

< (Pefr > to} -a2(n — 1)) < Vpa(n — 1},
where XT>S(w) is the characteristic function of the set {w:T(w) > s}. From (4) we
conclude that a(n) </Ba (n - 1), consequently g(pn) < ennif, From the latter in-
equality follows the statement of the lemma for

ahp==-~%lnﬁ:>0.

Corollary. I1f the conditions of lemma 4 are fulfilled, the random variable T

has all momeants and

M <c SI"e’“L.n’dl‘. M,exp {A1} < © for A< arop
]

It is not difficult to find the lower bound for the constant dL D in terms of
*
the coefficients of the operator and the dimensions of region D. For example, if

the diamater of region D is equal to d, bl(x) >b >0, 0= all(x) < a € @, then

Pelr>0< P | D ou@ dti> b+ <

oy
: bt +d -2,
<Pt serd<pfus B <o
Sa,.(x')dl
o
Note that in this case o is estimated by a constant which does not depend on the

diameter of the region.




If all(x) > a > 0 everywhere in D and |b1(x)| < b < @, then, during the time
t = 1, the trajectories originating from any point x € D leave the region D with a

probability greater than p=PlE.>b+d) =P > bid Hence it follows

Va’'

(see proof of lemma 4) that

1
aL.p = ~— 711] B.

If, for a certain i, aii(x) 2 0 everywhere in region D, bi(x) ZoinDuUT,
and region D lies between the planes X; =a, x; =a + h, then 4 5= This
b
follows from the fact that, in this case, a determinate motion takes place along

the axis X with a nonvanishing speed.

In concluding this section we shall note that in the nondegenerate case the
limit
, 1 -1
lim—InP; {t>t}
t~>o0 t
exists, does not depend on x and is equal to the first eigenvalue of the problem.

In the degenerating case,

lim —:— P> )

t~>00

has a similar meaning but, for sufficiently strong degeneration, this limit de-
pends on the initial point x. The assumption that trajectories leave the region

with a uniform speed ensures the inequality

1. -
inf lim ——In Pl x>ty >0

e=nt—"

- 10 -




2. Example. Idea of the Proof

In this section we shall give an example showing that the estimates of the
smoothness of the generalized solution, which will be presented in subsequent
sections, cannot be improved substantially. Using this example, it is also
possible to grasp those ideas which are used in studying smoothness in a general

case.

Let region D be a square: D = {x,y: |x| <1, Iyl < 1}. By @(x,y) let us
denote an infinitely differentiable function, which is even with respect to y and
equal to zero outside the e-neighborhood of the boundary I' of region D. Let us

examine the Dirichlet problem

F; du dtu
lu=a )==0'

2y ou 2(z )(__+
012+6y-a—y+¢ ¥ or2 a2
u(z, y)[r=y. (5)
Operator { does not degenerate in the neighborhood of the boundary, and the co-
efficient ¢ > 0 in D . {'; therefore, problem (5) has a unique generalized solution.
.This solution is continuous in the closed region D | I (see [18]). Since operator
« does not change when y is replaced by -y, and the boundary function is multiplied
by -1, we have u(x,y) - -u(x,-y) and u(x,0) - u(0,0) = 0. From the maximum prin-

ciple and te regularity of boundary points it follows that sign u(x,y) = sign y

and u(x,y) > %ga < - %%6) for 1 -y < e (whenl + y < ¢) and for a sufficiently

small « > 0.

By z = (xt,yt) let us denote the trajectories of the Markov process in Rz

t
controlled by operator £ and by D€ the region obtained from D by deleting the

- 11 -
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¢-neighborhood of the boundary. The trajectories z, can be constructed with the

aid of the stochastic equations

1
r—z={ Ve r @En s, y—y =\ @) dia+ § puads,
0

(6)

where si,éi are independent Wiener processes and (x,y) is the initial point. The

solution u(x,y) of problem (5) satisfies the relation u(x,y) = M(x ) u(zT ), where

€
T, is the instant of the first exit of trajectories z, from the region De' Let

Yo > 0. Since Px {yT >0} =1, we have

7o €

99
w(0, vo)= Mo wiwi(5e,) > o Paowe e, = 1= ¢k M

Let us estimate the expression on the right-hand side of inequality (7). The motion

along axis y in D€ is determinate. Integrating equation %% = By with the initial

condition y(0) = Y, ve find that the time

1_,)4/-

t(ye) = ln( T

is required in order to reach the point y =1 - ¢.

Note that
Po,yo {ys, = 1— e} =Py, yy { sup |z,|<1—¢)}.
[L 4]

Since x_in D_ is a one-dimensional Markov process with the derivative operator
2 S €
o7 Q—E , the function

dx
v(t, )= Py {sup|z,| << 1 —¢)
<t

is the solution of the mixed problem

ov v _ =1
T T v(t,2) |ixtemi—e =0, (0, 2)

Solving this problem (for example, by Fourier's method) we obtain that

2,
v(0,t)=1¢c; exp{ - '“L_:)T}

- 12 -




and, consequently,

Poya{ sup |z <1—e} = v(t(s),0)=
s<t(ys)

an®
an? {1 —pg \V8 —
= -— n — A1—e)
c.exp{ (1—e)’- ( v ) } c2yYo f—er

where S and cy do not depend on Yo Comparing the equality obtained with (7) we

conclude that
an?

0,40) > 2oy PO
u(0,yo) > c2 100~ v .

From the latter inequality, if we take into account that u(0,0) = 0, it follows
that the function u(x,y) may not have derivatives at the point (0,0) without addi-
tional assumptions concerning the magnitude of «/B, and that for any vy > 0 it is
possible to find an «/P so small that the function u(x,y) will not satisfy Holder's

condition with the index Y.

We have introduced the term ¢2(x,y)A into the operator £ only in order to
exclude the possibility of disturbing the smoothness at the expense of degeneration
on the boundary. 1f we set ¢(x,y) ® 0, all estimates for lu(O,y) - u(0,0)l will

remain in this case and it is only necessary to substitute € = 0 into them.

We now obtain the upper bound for \u(O,yo) - u(0,0)]. Since, for @(x,y) =0,
motion along axis y is determinate in the entire region D, we have

|80, 46) = u(0,0) | = {2(0, o) | = Mo a|ys, | <

< Moo lyel = § ve(wo)oe(t) de,
< Mo, | sl 5'/t('/o)P() (8)

where yt(yo) is the solution of equation dy/dt = By with the condition y(0) = Yoo

while p_(t) is the density of the random variable T = inf{t:]xtl = 1}, starting

- 13 -
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from the point x = 0, TD = inf{t:zt € D}. This density exists since x, differs
from the Wiener process only by a factor. From the formulas given earlier it

follows that

Velun) = Vooxp (Bi)y  pr(t)= — 22-(0, 1) = ey,

Substituting these formulas into (8) we get

|u(0, yo) — u(0,0) | < eao ‘ eBt—antt gy
[

If B - « ﬂz < 0, the integral on the right-hand side of the last inequality con-

verges and the function u(x,y) at the point (0,0) satisfies the Lipschitz condition
with respect toy. If B -« ﬂz > 0, then u(x,y) does not satisfy at zero Holder's

condition with any index u < min (l,g—ﬂ—). Indeed, since lyT l < 1, we will get,
D

B
for n <1
|u (0, Yo)—u(0,0) | = M, y,)ll/tb | <M, ue)ly'nlxg
-l o0
< Mo, yolyef* = S vt (W) Pe(t)dt = cyy," { etxp—arne ¢ < eyl
o » s
]
where
c = S etp-anldt < 00 for u<< —5"
[}
Thus,
ant
e ”
co 2 < |u(0, yo)— u(0,0) | < espo
for any

2
n < min(i, aﬂ——‘;—)

Let us note those qualitative considerations which were used in the above
example and which can be carried over to the general case. We consider that

“(x,y) = 0.

- 14 -



1. Let us consider the two trajectories zt(xl,yl) and zt(xz,yz), originating
respectively from the points (xl,yl) and(xz,yz), for the same Wiener trajectories

(.-1 e

;c,;i). The trajectories z_ are constructed with respect to (§t,§§) with the aid

t

of equations (6). Then, after the time t the difference
zi(x4, Y1, ©) ~— 21 (22, Y2, 0) =2 24 — 12
does not lncrease, while
(20, Y1 0) — pi( 22, 42, 0) | = |ys — y2| e
and, consequently,
[20(20 ¥ ©) — zi(z2 2, 0) |2 = |2y — ;|2 4 |y, — Y2 | 2erhe
grows at an exponential rapid rate with the index 2B. In the general case, the
trajectories of the diffusion process with coefficients satisfying the Lipshitz
condition, constructed by one and the same Wiener process and originating from the
points a, b &€ Rn, resp., disperse at not greater than an exponential rate
M|z} (0) —2f (0) ]2 < |a— b|zecXe,
where the constant K is determined from the Lipschitz constant of the coefficients

(see lemma 5). In our case ¢ = 2, K = B.

2. If by T we denote the time needed by process Z to reach the boundary of
region D, then
Pt > 1) = [2(t) < ciema™
decreases at an exponential rate. In the general case, if the assumption that the
trajectories reach the boundary at a uniform speed is fulfilled, this probability

also decreases exponentially (see lemma 4).

3. We shall explain our further course of reasoning by meam of an example
describing how an estimate for the first derivative is obtained. In order not to

be concerned with boundary estimates, we shall assume that the process does not

- 15 -



degenerate in the neighborhood of the boundary. Let
T=min(ts ), T:(w)=inf{t:z} (0)E D},
%y (0)=inf{t:z)(0)= D).
Then, using the probability representation of the solution of Dirichlet's problem,
we will get
@ —u@P<MuE—u@) <Mzl —2Yp,
where ¢ is a constant depending on the Lipschitz constant for the function u(x) in
the neighborhood of the boundary and on the width of the non-degeneracy region.
In order to obtain the estimate of the first derivative of interest to us, it is
sufficient to show that Mlx? - x¥]2 < A |x - y'z. If the non-random variable t
were present instead of the random variable T, such an estimate would be guaranteed
by item 1 above. 1In order to obtain an estimate for a random T, we must use the
properties given in items 1 and 2. If the exponent derived in item 2 "exceeds" the
exponent of point 1 (in our example, o n2 > B) the estimate being sought exists.
Otherwise, there may be no estimate. In the following sections we will obtain

a priori estimates according to the plan outlined here.

In concluding this section we shall note that if the coefficlents of the
equation with degenerations satisfy only Holder's condition, the generalized
solution does not have to be continuous, even if the operator does not degenerate
near the boundary and the statement of lemma 4 is fulfilled. An example confirming

this remark can be obtained if we examine the equation

L , 2
e~ (@ v)du+ by -;37-0
in the square D. In this case, the trajectories scatter faster than exponentially,

and an exponentially rapid exit from the region cannot 'balance" this scattering.

- 16 -




3. Continuity of the Holder-generalized solution

Theorem 1. Let us assume that all points of the_ set T'are(kl,hz,h)-regular

for certain XI,Az,h > 0, which are the same for all x € 1. In addition, let the

trajectories of process X go out at a un:form speed to the boundary of region D and

let the boundary function satisfy Holder's condition on I:

(=) —v(y)| < Kijz—y|"

Then there exists a Yl > 0 such that the generalized solution of problem (3)

satisfies Holder's condition with the index Y-

Proof. Let x,y € D and let it and §t be the solutions of equations (2) with
the initial conditions ;o = X, §° =y. We set
1 = inf{t: & D), Ty =inf {{: E:—éD}, T == min (s, 7).
The quantity T does not depend on the future (see Note); therefore, the generalized
solution u(x) of problem (3) satisfies the relations
u(r) = Mu(z;), u(y)=Mu(y;)

(see _2.). Let us estimate the differemce u(x) - u{y):

[ (2)— u () | << M () —u(F) | =
= M (20) — 8 (Feg) | Xe (@) + AT | 0fEe)) — 9 (Fe,) | 1y (0) =
=M% (i5) = V5 (2| 1e(0) + M | MZ9(0) =¥ ) 1%, (), %

where xx(w) is the characteristic function of the set {w:T = Tx], xy(w) =1 - xx(w).

Let a < D, b ¢ . Then, if by d we denote the diameter of region D, we get

MnlW(It)_W(b)ngiMal'z‘—bl'SKldv'Mu
B zi—b
< l\.d"M.!——d———
Ky(Ma|ze—b|Myvy, 1f Ay,

—b ¥
== | <

M
l =K1dv'h'Mulzt—bl,", if ll<v'

(10)

Note. The non-negative random variable 8(w) 1is said to be independent of the future
if the event {w:p(w) < t} for any t 2 0 belongs to a m-algebra generated by
the events {x_(w) £ A} for s < t, where A {s a Borel set in R% (see [2]).

-17 -



In the last inequality we made use of the fact that

Mg < (M[EMY, Lf A=y,

By & we shall denote the characteristic operator of process X. It is veri-

fied that the function
n{z) = M;|z, — b

satisfies the equationQ vy = 0 in D and the boundary condition
v1(2) |xer = |z — b|M.
Since all points of the set T are (Al,hz,h)-regular, a neighborhood Uh(b) will be
found in which the barrier v(x) is defined and av(x) = Lv < 0 in this neighborhood.
We shall choose ¢, so great that € vi(x) > vl(x) on the boundary of the set
il Uh(b). This can be done since the above-mentioned inequality is fulfilled on

T ~ U (b). On the set DN U (b) & (c,v ~ v,) < 0; therefore, by ~irtue of the
h h 1 1

maximum principle, everywhere in D Uh(b)
v (z) = Mx|z¢ — b|» < cw(2) < &lz — bjM an

Obviously, if ¢ is chosen sufficiently great,we can consider that (11} is fulfilled

everywhere in D.

We set

From (10) and (11) it follows that
Mol b(z) — % (8) | < cla—b[*

From the latter inequality and (9) we conclude that

|u(2) —u ()| < esM2: — (12)

- 18 -



Let us now estimate the right-hand side of inequality (12). Since according
to the condition of the theorem the trajectories leave the region at a uniform
speed, then, according to lemma 4, it will be possible to find an @ = 91 p >0

such that
P {-r > 1) < max Py {t> 1) < cze,
x€D

Let 0 < u = 1 and let xn(w) be_the characteristic function of the set

. X _ Y7
{win» T@) < n+1}. Since | 5 | < 1, we have
2z — gz ! 7 — g -
i __d__‘ < aM ‘ __d____ = dMr-x) M 'z;_ y; I:\<
w0 o
< M) 2o — G- |2 M{ su Z,— i,
See 3 M2 = FP @ <e DM s 12§, o) <

Sazw ‘..<‘f'é‘.?+l |z =y ) -P (e >n + 1)<

xA
<es >_, e (1/ up [E— 1) T <
"" an nexk

Seslz—y* M P(n)e T 7, (13)

n-n

In the latter inequality we used the corollary from lemma 5. Now, let n be
chosen in such a way that alkx < @. Then, the series in (13) converges and we
obtain finally

[u(z) —u@)| < cslz—y|.

Lemma 5. Let

A= max
%y J, ki 2 ZR"

{, 572.'4,.(_1') 604(.1:) }

Oxy T oz,

end let x_ and e be the solutions of equation (2) with the initial conditions

X =x,§ = y. Then

M|z — qm < jx — y)tmeomt,

am == 2m(m — 1) K’ + mn3K? + 2mnkK,

- 19 -



n

Proof. Let us apply to the function pz"'(f,,ig)::( 2 (T¢ —

i m

m)') the formula
famt

of K. Ito [7]:

pZ’m(f“ .17‘) =

t n.
=@+ [ 2mensz, g (52l - )
(4

g

4 n n
+ § 2mpm-a(z, 5, (3@~ 3 tou(z) — oulFlas ) +
]

i=t J=1

(Be(E)~ be(7.) Jas +

1 t
+5 § 4m(m— De*m4=s, 50 ((0(22) — 0 (7)) (F4 — 72),
0
(0(Z2) — o (F4)) (2 — Fa) )ds +

1 n
+—; §2mom2(z, 50 B (0 () — on(72))2ds.
0 1, k=t

(14)

From (14), using the properties of stochastic integrals and the boundedness of the

derivatives of the coefficients, we obtain the inequality

¢t
Mpm (21, 71) < p™(2,y) + am | Mp™ (%, 7,)ds.
[}

The statement of the lemma follows from the latter inequality (sew,

for example,
J18]).

Corollary. For any T > 0 the following inequality is valid:

$ 2
M sup If:—itl’SC[l=+vI’+Msup l S{o(f-)—ow.)ldé. +
<7 <t '
Py 2 T
+ M S [b(Z)— b(F.) |ds) < c[]z—-y]’+ S M |o(Z:)—~ o(f,) |2ds 4
¢ [}

T
+7 § Miz,— yfrds < geyen,
]

In estimating the stochastic integral we made use of the fact that

[ 2
| S[o(t.)—- o(ys)] dt,
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- - — - Ty T ——T -

is a semi-martingale and, consequently, according to theorem 3.4 of Chapt. 7 (3]
¢ 2 T

Msup | { lo(@)— owldh.| < § Mlo(z)— o (i) |2ds.

t<r | %

0

Note that B(t) increases with respect to t not faster than linearly.

4. A Priori Estimates of Derivatives of the Generalized Solution

Theorem 2. Let us assume that oij(x), bi(x) € Cl(R“), that all points of the

set T are uniformly normally regular and that Y (x) = v(x) “Fr, where v(x) € Cz(Rn).

Then, the generalized solution satisfies the Lipschitz condition if only orL D > al.
)

Proof. We shall use the same notation as that used in the proof of theo-
rem 1. From (9) it follows that, in order to prove theorem 2, it is sufficient to
estimate the terms occurring  the right-hand side of inequality (9). In order to

do this, we shall apply to the function v(x) the formula of K. Ito

¢ t
v{z)) = v(z)+ § (grad v(z,),0(z,)dt,) + S Lv(z,)ds.
0 0
From the latter equality it follows (see Note) that

| Mu(ze)— v(2) | = ‘M g Lv(.t,)ds‘ < Lo (x)} M, (15

0
For the right-hand side of inequality (9) we obtain the estimate

M9 (2e)— M5, % (@) |12 (0) S Me (@) |0 (2) — My, ()| <
< Mg (0o (2 )—v (ﬁ‘x) |4+ M (w)}v (ﬁ,:) - M,‘:v @<
<jigradv (e M|z, —~§, | % () + | Lo|M (M;':) 1e () § c(grad v (z) {4
+ILoD M2 —F, | % (0).

(16)

Note: By f£(x), we denote max \f(x)i.
x<R

-~ 21 -




In the derivation of this inequality we used the strict Markov property of process X
and the uniform normal regularity of the points of set T'. A similar inequality also

holds for the second term o>n the right-hand side of (9).

From (9) and (16) follows the inequality

[u(@) —u(y)| < eM|z:—j:|. (17)
Further, after using the corollary of lemma 5 we get
M|Z—Fe) < IM_ sup |E—Gilan(0) <
n=q NRa<n+i
<2 (M sup |Z—Gol2-Mya(w))h <

n=-0 ain+
© g.n —2(1‘ )

<m(§ﬁ.m2 e ? ) lz—u|<clz—y|.

n
(18)

In the latter inequality
-2 @, p=1)

Eﬂﬂe 2 <w|

according to the condition of the theorem From (17) and (18)

since « > o
L,D 1

follows the statement of theorem 2.

Let us now consider the estimates of the higher derivatives of the general-

ized solution. We shall define the m-th difference for the function f(x) by means

of the equations

0 f(z)= f(z + k) — f(2),

R oo R Bty o B P
Om f(x) = dm-1 f(z+ hen) — Om-1 ,(I) .

If the function f(x) is sufficiently smooth, by selecting the increments hl""’
h it is possible to obtain that

P amf(z)
b H(3)= Oxyh ... 0zpln

n
h R, |hil—

- 22 -




for any ;1,....zn summing to m. By H = H(x,hl,...,hm) we shall denote the set of

points x + hi S o hi for il,...,ir <m, 0= r £ m; by Hf - the convex hull of

1 r
the values of function f(y) for y € H.

We shall use the following simple inequality:

[8mu(f(2))| < | (grad u(z), 8mf(x)) | + IDmitllye -

2 o) ™. |8 f(z) ™, (19)

=m,

Im,
<n

Laere

l *u(z) ,

”Dm"”A = max
az‘m, e 01‘""'n

Im,=kgm.
resA

Let us define the sequence of the numbers Qk o by means of the following

relations:
Uiom = dm = 2m{m — {)n? + mrd) K 4 2mnk
Un, 1 = CAn + 2K 4 4 @G-, for Kk>1,

Gn,m = 2m(nk + 1) + m(2n°K? 4 1, +2m(m— 1) K2 4 1 + ap_y m
for k> 1, o

It i< easyv to check that ak q Brows mciotoRically with respect to each index.
’

For all integral k and m the following inequality* is valid:

Lemma 6.

hi.. h
M(ow "2 )™ < Cumh®meramt, b= |h,].

The proof of this lemma is carried out by induction. For k =1, lemma 6

reduces to lemma 5. We will show that the statement of the lemma is preserved when

k is increased by unity. Since hk is a linear operator, we have

' ¢
tazi = | bao(z))db + Y dab(2l)ds.
Q 0

The operater :V i+ applied to xt(w) as in the function of the initial point

x 7o),
o
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n
2
Let us apply the formula of K. Ito to the function ux(t) = Z(bk”f)z3
1

ma ()= (i 0)+ 2 (3 ( oz, 3 bxoi;(zf)d§f>+
==t

U =1

{ a t n
+2§ 3 ousitubiaF)ds + § S (duois(eF)) s,

O fem{ 0 1 fm=y

From (19) and (20) we get

t n
=M )< ma(0) 42§ 3 1002i) [ grad bz, ene) (4

0 g=={

1 n

Ol T (e, o ds g | 31 erad o2y, tuaf) |4
zm‘.l‘.-_—.h ! 07 i f=y
I‘<h

+IDy 3 {dl,z."l""...f&,r:t,’lmr]dsg
Ti(m ek,

l‘<k

{ ]
< ma(0)+ (2Kn +- 1) § my (s)ds + 2n3p2 { ma(s)ds +
0 ]

I}
+cS > M[d,,x,’[z"'-_..(6¢’_zf[2"'vds.
?

I m =k,
11
1<k
We shall now make use of the fact that

Mdure 2 (o zd (2m < M 362, < S (MoPaFyu,

I<u <<h

From (21) we get

¢ ¢
" (1) < ma(0) + (2Kn 4 2Kems 1 1) § mu(syds 4 ¢ Iy
0

0 I<h

(Mlﬁlzflu)"'d&

According to the assumption of induction for £ < k

x
4”’611, ,‘d‘ = C/,/,("‘I,A'-h'-'”‘ =< C',,, ‘_"P“hq,hlllz"'.

- 2 -
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since o, K increases with increasing £. From (22) follows the iunequality
L

3

]
ma(£) < ma(0) + (2Kn + 2K%n3 4 1) | ma(8)ds + Cr-raeor-rathr,
[

From the last inequality we conclude that

mk(t) g Ck. 10, I'-hu_

In order to check the validity of the lemma when the second index increases,

m
it is necessary to apply Ito's formula to the function ( 25(6.::)2> . This cal-
i
culation is completely analogous to lemma 5 and we omit it.

Lemma 7. Let f(s,w) be a bounded measurable function. Then,

T 2m T
M( § 165, ). ) < enTm=t { Mf(s,0) |2mds,
0 0

T
Proof. Applying Itc's formula to the function ( S/(v 0)dL )mn we get
hd ] 8
0

T 2m T !
Em(T)= M (_\/(s,m)dg.) = m(2m — 1) (M(S 1(s, w)at, )
[ ’ 0 ] ‘
From this formula it follows that the function gm(T) increases monotonically with

Am-—

1)
p(tyde,

respect to T. From Holder's inequality, taking monotonicity into account, it

follows that

M( fj(stm)dﬁc)m<

_ =t
< m(@2m—1) [STM (S‘I(s,m)dg. )"&z] [ST M[""(t,m)dt]m <

m-{ T

< m(2m— 1)7'_-»_[»{(5 fee, (o)dg.)”l] J'!";'[ § MF"‘(t,w)dt]

1/m
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From the last inequality we conclude that
T 2m T,
1§ 16,0180 " < mi@m— )pTns { Mpmis, o)as
0 [

Lemma 8. For any positive integral k and m the following inequality holds:

hy,..h
M sup lbh hI: lz'" <Z Ch_m (t)h:“"l . eu'h.m‘
st '

~ . . . . 2m
where Ck m(t) increases with increasing t not faster than t
’

-1
, lhi| = h,

This lemma is proven in the same way as the corollary of lemma 5. It is only
i 2m
necessary to make use of the fact that ( ‘/(&(n)dg,) 1s a semi-martingale and
)

to use lemma 7 to estimate the 2m-th power of the stochastic integral. Let

v(w)= inf{l:I"‘—E—D}, T= min
VEH(x A hy )

It is obvious that
Pix>t) <P v >t} <ceLp

Lemma 9. If o

If k,m< aL,D ulhil = h, then

Proof. Let xn(w) be the characteristic function of the set {w:n s Tn+l}.

Then, using the preceding lemma we obtain

©0

x |m, x m M 9, f""-Mx w))h <
Midz| <.§.,M..<s.‘é‘n’+"°*"‘ xn(m)<}:( sup |8l n (9))

Nd "ah —--’-‘-GLD e
a 5 %.m 3 D am - Ty km
<2|C£"‘;'{).c' . h <Ch .
Nam(

The series in the last inequality converges because Cin) increases exponentially
with respect to n and a9 D - o m according to the condition of the lemma.
’ b
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Lemma 10. Assume that o Then,

2%,2k © %L,

(Daullp << CllDaullz-

Proof. Let us choose h "hm’lhil = h, m=> k, in such a way that

10

. 1 h.....,llm m™u
hmFb.. u(z)=az‘;.“az‘.
Let
T= min w(w).

ve”(‘-hn...»hm )

The quantity T does not depend on the future, and therefore u(x) = Mu(x?). Con-
sequently, for 6hu(x) we get the inequality
it (2) ' < (M| S () 1 < [ Dot )M (1 Bz [+

+ 218 18,23 (1 — &) + el Do foM (182 "+

2l‘m‘=m
i<m
+ 3 (& 8] (22)
Ll m =m, ]
e

Here we have used the fact that, for sufficiently small h, the points x¥(y € H(x,

2

hl""’hm)) lie in the el-neighborhood of T' with a probability greater than 1 - ¢
With the aid of lemma 9 we can derive the inequalities
A Y Cht™ ™, %
A1 22 ORI, M0z | ----l"u’;"m"i,z (M 822" ™M <A™ C. (23)
<m

Here we make use of the fact that the sequence « is monotonic with respect to

L,r

i > >
each index and also of the condition aL,D aZk,Zk'

From (22) and (23) it follows that

’hl"‘ Opmtt (z)l’ < C()\Dpmu ":’-.(F) (1 — &) + &3] Dyus | ).

- 27 -
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Now let h tend to zero. Together with h, € and €, also tend to zero. From

the last inequality we obtain the statement of the lemma.

Theorem 3. Let cij(x), bi(x) € C(k)(Rn), v(x) € C(F), let the operator L not

degenerate in the neighborhood of the set T, and let aL D > a2k 2Kk" Then, the gen-

eralized solution of problem (3) has k - 1 continuous derivatives and the (k - 1)-th

derivatives satisfy the Lipschitz condition.

Proof. First, let us assume that T is a smooth manifold of class Ck and
() £ Ck(T). We shall examine the operator Le, whose coefficients are determined
by the equalities

{ai;(2)} = (0(2) + ¢E-p(2)) - (0" (2) +ep(2)E), b (z) = b(z).
We shall choose rhe infinitely differentiable function $(x) in such a way that it
vanishes in the neighborhood of the boundary and is positive outside the §-neighbor-
hood of the boundary. As follows from [ 18], there exists a unique generalized
solution of the problem
Lut(z) =0 for zeD; ut(z)|3=¥(2).

This generalized solution is continuous. The operator L does not degene "ate outside

the f-neighborhood of the boundary, and therefore ut(z) = CM(D\Us(T)). Let
Qr, D~ Q24 = A,
Then, for a sufficiently small €

A
|arep — ann| < -

2
. < € . _ ”
and the coefficient aZk,Zk for operator L~ differs from qu,Zk by not more than A/2.
Therefore, ai’D - GZk,2k > 0 and, consequently, the first k-derivatives of function

€ . . . : . ~
u (x) are estimated according to lemma 10 in terms of derivatives on the boundary i.
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In the neighborhood of 1, the operator L® does not depend on ¢, h”(1)|<:ma;lw(z)L
PE

so that dDmUGHf is estimated uniformly with respect to ¢, and, therefore, according
to lemma 10, the derivatives are estimated uniformly with respect to ¢ also inside
region D\Ué(F). It is proven (see [21])that

limut(z) = u(z)
uniformly with respect to x € D. -

From the last statement and the a priori estimates uniform with respect to ¢

~ = .k
the statement of the theorem can be derived in a standard manner. If 1 € C, then

~
~
=

o~ Kk
it is necessary to replace 7 by the surface ' € C lying in the region where opera-
tor L is non-degenerate. The function u(x) on T will be sufficiently smooth. This

follows from the usual intrinisic estimates for uniformly elliptic equations.

Theorem 4. Assume that Uij(x)’ bi(x) € Ck(Rn), that the boundary I' of region

D has the direction cosines {ni(x)] of class Ck, that y(x) € ck(r) and that

QL D > Yo 2Kk” Moreover, let the diffusion along the normal to the boundary
3 =

(Zaij(x)ni(x)nj(x)) be different from zero on the closure of‘F, let it be equal to

zero on [\I', and let the vector b(x) gg‘F be directed towards the exterior of

region D. Then, u(x) € Ck-I(D) and the (k - 1)-th derivatives satisfy the Lipschitz

condition.

Proof. If T ='F, then the statement of the theorem follows from lemma 10 and

lemma 1.4 of reference [12]. If F(T is not empty, we extend the operator L across

~ =

i . into region D {.D in such a way that everywhere on the boundary T .1 of the
re:ion D .. D the extended operator'f has a non-zero diffusion along the normal and

the maximum of the modulus of the derivatives of the coefficlents does not increase.
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We extend the function {(x) onto ' in an arbitrary smooth manmer. This is possible

since p(F,F) > 0. For the operator'f diffusion along the normal does not degenerate,

- @7, D~ Ux, 22
I al,.DuT) —G. p | < — 5
for a sufficiently small extension, the constants o) ok for operator L will remain
3

the same and, therefore, as was noted at the beginning of the proof, the assertion
of the theorem is fulfilled for the solutionlz(x) of the problem in D Q’B. There-
fore, the theorem is also fulfilled for the solution of problem (3) since the
solutions of the extended problem and of problem (3) coincide in the region D. The
latter assertion follows from the fact that the trajectories of the process governed
by the extended operator L with the probability 1, originating from points x £ D,

leave D across [ since TXF is a repelling boundary.

5. Some Remarks

1. The parabolic equation

du 1 o*u du
— =N . be(l. 2} — t, tz) =
o =3 2 eu(ta) 5ot D bka) S et au(t)

= Lu+c{t,x)n

can be considered as a degenerating elliptic =quation. The processes governed by
the operator / = - %: + L are remarkable in that along one of the ccordinates
(along t) a determinate motion with a unit velocity takes place in the direction of
the plane t = 0 (if the original point is in the region t > 0). Hence, it follows
that the generalized solution of the problem Lu =10 in the region lying above the
plane t = ty is unique for some to. In particular, the generalized solution of

the Cauchy problem and of the first boundary value problem in a cylinder is always
unique. If the region in which the equation Lu==0 jis considered lies above the

plane t = t,s then, starting from any pcint lying below the plane t = T, the
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trajectories will reach the boundary not later than in a time T - t, Since the
trajectories reach the boundary in finite time, the parameter ay,p can be con-
sidered equal to infinity for the region lying above the pfane t=t.. Thus, in
the case of a boundary value problem for operator £ in the region lying above the
plane t = ts the smoothness of the generalized solution depends only on boundary
estimates if only the coefficients of the equa.ion are sufficiently smooth. 1In
particular, in the case of the Cauchy problem for an equation with smooth coef-
ficients, the same smoothness as in the initial function is transferred inside

the region.

2. 1In [19] the problem with a directional derivative was studied for the
equation Lu = f(x). The following theorem is derived from the results obtained

in this article and reference [19].

Theorem 5. 1n the region D with a_ smooth boundary I’ let us comsider the
probiem
du
Lu= F 4 —e =
1@, el
(24)

It is assumed that the coefficients of the operator and the field £(x) belong to

class C3, the field £(x) does not touch the boundary, the operator L does not

degenerate in_ the neighborhood of I', and the trajectories of process X reach the

boundary at a uniformly rapid rate. Then, there exists in D the unique probability

. —%
measure w(-), namely a solution of the conjugate problem L u = O, such that problem

(24) has a continuous generalized solution for any continuous £(x) for which

S/(I)F(d:}==0- This generalized solution is unique with an accuracy up to the
D

m,. n .
>
constant term. If Uij(x)’ bi(x), f(x) € C(R') and QL’D o .’ the solution has
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partial derivatives up to order m - 1 inclusively and the m-th derivatives satisfy

the Lipschitz condition.

The definition of the generalized solution of problem (24) can be found in
_19], where an explanation of what L* is, is also given. If we discard the assump-
tion of non-degeneracy near the boundary and we assume only that diffusion along
the normal is different from zero, then the solution of problem (24) will, generally
speaking, not be unique. If we consider the problem for the operator Lu - c(x)u = 0,
c(x) > ¢ > 0, we can limit ourselves to the assumption of non-degeneracy along the
normal. In this case, a generalized solution exists for any right-hand side .f C.
This solution is unique without any assumptions on a uniformly rapid exit from the
region. By making use of the results given in [19] it is also possible to study
the smoothness of the generalized solution of the second wixed problem for a para-

bolic equation with degeneration.

3. Let us consider the equation Lu(x) - c¢(x)u(x) = 0 in the region D with
the boundary conditions u[? = y(x), where ['\[" is a repelling set for oper#tor L and
the points of T" are assumed to be uniformly and normally regular. If, as was done
before, we denote by A = {xt,Px} the process which is governed by operator L, then

the generalized solution of the stated problem is given by the formula

u(xr) = Mxp(z)exp {-— ‘ c(z)ds }
0

If c(x) = O the written mathematical expectation exists and, consequently, a gen-
eralized solution also exists. It is proven that the function u(x) takes cn boundary

conditions at normally regular points of the boundary and that the generalized
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solution is unique if c(x) > ¢ > 0 in D without any assumptions whatsoever concern-

ing the exit of trajectories from the region.

Let us consider the question of smoothness of the function u(x). Let at

cB

first ¢(x) ® ¢ > 0. Then, u(x) = Mxe- U(XB) for any B(w) not dependent on the

future.

In particular, if B = T (see lemma 9), then

180w (2) | = | Me=*dau (22)) ey MeeT | 8423 | * <<

< 6 Z e~ ("D} max l 6&-1'1 ,k' Xn ((1)) <
n=1 <n
<0125k, e (n) e (@Go, oa—ap, D) pe
Consequently, for the existence of an estimate of the k-th derivative it is suf-
ficient that o < + c. Thus, choosing ¢ sufficiently large, it is possible
2k, 2k L,D

to achieve an arbitrarily high smoothness if, of course, the coefficients are suf-

ficiently smooth and there are boundary estimates.

The case wnen c¢(x) = ¢ @ 0 is reduced to the one examined above by dividing

the equation by c(x)/c.

4. The conditions reported here for the existence of derivatives do not have
 local character: smoothness at the point x depends, in general, on the geometry
I the region and the behavior of the coefficients of the operator in the entire
cuzion. Simple examples show that such conditions reflect the actual situation in
he class of all degenerating equations. However, special classes of degenerating

quations do exist in which smoocthness has a local character. For example, the




equation of Brownian motion with inertia is such an equation. Definite success in

the study of such classes has been achieved in references (137 and (16].

5. 1In conclusion, we should note that the methods used here can be utilized
for the study of degenerating quasilinear equations. These problems are considered

in references [23,24].
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