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ABSTRACT

This report summarizes research in the development of
mathematical models of information processing systems con-
ducted at The University of Michigan Systems Engineering Lab-
oratory during the period from Cctober, 1967 to October, 1968
under Rome Air Development Center sponsorship. Particular
attention is given to a new approach to automata theory. the
use of multiple index matrices in generalized automata theory,
asymptotic aecomposition of machines, recognizability of equa-
tion sets, algebraic isomorphism invariants for transition
graphs, iterative network realization of sequential machines,
optimum sequencing of jobs subject to deadlines, and the theory
of formal languages and its irnpact on the design and implemen-

tation of programming languzages.
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INTRODUCTION

This report is the final report in a series of yearly reports over
a four-year period concerning mathematical models of information
processing systems conducted in the Systems Engineering Laboratory
under the direction nf Professor H. L. Garner. Most of the theories
relevant to computation relate to eit.er automata theory or the theory
of formal languages. This is true for most of the research discussed
in this report. The excepticn is Section 7. In Section T the techniques
common to operations research are used to investigate the problem of
optimum sequenrcing.

In Section 1 Professor D. Muller outlines a new approach to
automata theory based on the algebra of relations. This particular
approach provides basic and powerful conceptual tools applicable to
the problem of automata decomposition. In the second section Muller
develops a generalization of autorata theory which is an alternative
to the generalized autcmata theory developed by Filenberg and Wright
based on category theory and universal algebra. Muller's generali-
zation is based on formal mathematicai notions used in switching and
automata theory and provide a convenient way of visualizing the con-
structions about the systems which enable cne to anticipate results.

In last year's report, one section reported research by Putzolu
on the subject of asymptotic decomposition of automata. His analysis
treated the case in which state based type of realization was assumed
and decomposition reporting state splitting was not permitted. In Sec-
tion 3 recent research results of Putzolu and Muller are presented
which consider the case where state splitting is allowed.

Section 4 presentis research by C. R. Shepard concerning gen-
eration and recognition i~ formal languages. The research concerns
a generalization of the languages generated by a left linear grammar
known as equational sets. Fquationality and recognizability can be de-
fined for any algebra. The conditions on an algebra such that the defi-

nitions of equationality and recognizability coincide are given. I
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equational sets of an algebra are recognizable, then all word problems
on the algebra are solvable. The converse is false. These abstract
results are believed to have some implication on the design of paren-
thesis free languages, and list structures.

In Section 5 the results of research on the algebraic isomor-
phism invariants for trancition graphs by J. F. Meyer is presented
in complete but condensed form. The general results of this research
concern 1) How the values of the isomorphism invariants relate to
invariant structural characteristics and 2) The specification of special
classes of transition graphs for which the isomorphism invariants
are complete. The abstract results presented in this section per-
tain to the problems of code design and automata design.

In Section 6, J. R. Jump's research on the iterative network
realization of sequential machines is summarized. A design algo-
rithm is shown to exist for all sequential machines. A specific de-
sign algorithm is specified and bound on the complexity of the iter-
ative realizaticn is given for difierent classes of sequential machines.
This study is relevant to the application of {si technology.

In Section 7, research by F. L. Lawler and M. Moore concern-
ing the sequence of tasks subjec. to deadline constraints is presented.
The class of sequences considered are those for which the consisten-
cy principle hold. For this class there exists a linear ordering of
tasks which determines an optimal schedule. This principle is ex-
ploited to produce solution methods more efficiently than previous
methods.

In Section 8, L. Liu presents the structure of formal languages
and relates this structure to some of the problems involved in com-
puter languages. Computer languagcs do not exactly fit the existing
classification structure and directions for future research are indi-

cated.
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Section 1

A New Approach to Automata Theory

This section presents a new approach to automata theory based
on an aigebra of relations which is applicable to automata theory in
much the same way Boolean algebra is applicable to switching t} ory.

One of the purposes of this approach is didactic. Previous ex-
perience has showr that this method of teaching automata theory is
useful with students who have had liitle contact with the conventional
methods and that it provides them with a more powerful way of think-

ing about the subject.

1.1 An Algebra of Relations

1.1.1 Let Q and Q' be two nonempty sets, and let Q x Q' repre-
sent the Cartesian product or set consisting of all ordered pairs
(q,q'), where q is an element of Q and q' is an element of Q'. We
mav use the formal mathematical notation:

QxQ = {(aa) lae Q. q¢ Q.

A subset R of such a Cartesian product Q X Q' is a binary rela-
tion. When delining such a binary relation we must give all three sets
Q. Q' and R. We shall call Q and Q' the input and output sets respec-
tively and R the set of pairs. Thus. we regard two relations as equal

only if they have the same input and output sets as well as the same

set of pairs.
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There are three other convenient ways that we may think about
binary relations. First, if we are given a relation R € QX Q', then
we may imagine a Boolean matrix whose rows are labelled by the ele-
ments q of Q and whose columns are labelled bv the elements g' cf Q'.
The matrix element in the row q and column q' is made 1 if and only if
(q,q") is in R. Otherwise it is made 0. It is clear that for every bi-
nary relation we may imagine such a matrix and that conversely for
every Boolean matrix we have a corresponding binary relation.

Second, we may think of the relation R C @ x Q' a= representing
a process. If we are given some member q of the input set Q then the
process yields an element g' of the output set Q' such that (q,q') is in
R. If no such q' exists, then the process must be assumed to produce
no cutput. On the other hand, if several such elements q' exist, then
we suppose that the process makes an arbitrary and unpredictable
choice of one of them. Since a process must be described more care-
fully and exactly than has been done here if it is to be useful mathe-
matically, we shall simply regard this model as a couvenient intuitive
way of thinking about relations.

Third, we may think of a relation as being described by a directed
linear graph. This model is particularly useful when the relation is
square, that is. when Q = Q'. The nodes of the graph are then just
the elements of Q and for <ach pair (q.q') in R, we draw a line from q

to q' with an artow pointing toward q'.




It is a)sc possible to represent relations which are not square
by means of linear graphs. Suppose that R € Q X Q' is not square,
i.e., Q + Q'. Then we may form a corresponding square relation
R (QUQ"X(QuQ"). Inthis case we use the unicn Q U Q' as both
the input and output sets. The directed linear graph corresponding to
this square relation may also be used to describe the original relation
provided the input and output sets are specified.

Binary relations are sets and iherefore we may use Boolean alge-~
bra when dealing with them. Thus, if RC Qx Q'and5 C QX Q'are
two relations with the same input and cutput sets, then we may form
their set theoretical union Ru S C QX Q' and intersection R n S C
Q %X Q'. The union and intersection are both taken as relations having
the same input and output sets as R and S. Furthermore, any relation
R C Q% Q' may be complemented giving R = Q x Q' - R which consists
of all pairs (q.q') in Q X Q' but not in R. We also note that relations
with given input and output sets are partially ordered by set inclusion,
written R C S.

Relations are quantit: s with more mathematical structure than
sets, and therefore we may define other important operations on re-
lations. U RC Qx Q and§ ¢ Q'x Q" are two relations such that
tho cutput set Q' of R is the same as the input set of 5, then we may
- adefine the Pierce product ReSof RbyS. Wetake R>§ C Qx Q"
as the relation censisting of all pairs (q. q")».such that for some ' in

()" we have (q.q") in Rand(q'.q"} in §. We may use the formal




mathematical notation:

RoS=1{(q,q" Fq'€¢ Q" (g,q9") ¢ R, and (q',q") € S}.

If Rand S are regarded as corresponding to Bcolean matrices,

then R ° S corresponds to a form of Boolean matrix product in which

T T T g JRR - e e et e

the summation which is used in the conventional definition of matrix :
product is replaced by the Boolean operation "or". Similarly, if R !
and S are thought of as representing processes, then R o § represents
2 combiaed process in which the output of R is used as the input for S.

We further define the inverse or transpose R 1 of the relation

R C QX Q' as consisting of all nairs (q', q) such that (g, q') is in R.
Thus, R—1 is a subset of Q' X Q so that the input and output sets are
interchanged when taking the transpose. In the case of the linear
graph model, the transpose is formed by reversing the directions
of the arrows of the graph.

We will now show a precise correspondence between identities
on Boolean matrices and identities on matrices of integers.

Let Z be the set of nonnegative intcgeirs and define a mapping

i3 from Z to the set {0, 1! by the rule that 8 waps 0 to 0 and 3 maps
ttolif ¢ >0, If MandN are matrices whose elements are nonneg-
ative integers, then let M' and N' be the corre ‘ponding Boolean ma-
} . trices obtained by replacing the elements of M and N respectively

;

with their images under the mapping 3. We may easily derive the fol-

lowing rules which allow us to regard 3 as a kind of homomorphism.




DX A 5309 B

1. (M+N)' = M' UN'
2. (MN)' = M' o N
3, (MON)' = M'NN'

= oy

4, (M

5. If M <N, then M' C N
Here, the product M © N means elementwise multiplication of the
two matrices and MT represents the transpose. Vet a sixth rule
might be written for multiplication of a inatrix by a scalar,

The preservation of the various operations under the homomor-
phism j3 allows us to transform any identity involving matrices of non-
negative integers and these operations into an identity for Boolean ma-
trices.

Not all operations on matrices of nonnegative integers are pre-
served under 3. For example, the matri difference M-N does not
map uniformly, and identities involving the difference do not generally
correspond to identities on Boolean matrices. Furthermore, since
the mapping is not cne-to-one there may be identities which are valid
for Boolean matrices but which do not hold for matrices of nonnegative
integers.

1.1.2 In our study of the properties of relaiions we shall need
to consider relations with certain special properties, and we there-

fore proceed to define terms for some of these prope:ties. Let

R C QX Q' be a relation. thex:




1 R is determinate iff for each q e Q there i~ at most one

q' ¢ Q' such that (q, q') is in R.

2. R is productive iff for each q ¢ Q there is at least one

q' e Q' such that (¢, q') is in R.

3. R is a single valued iff it is both determinate and produc-

tive. It is then called a mapping or a function from Q to Q'.

4, R is surjective or onto iff for each q'e Q' there is at

least one q € Q such that (q,q") is in R. i
5. R is injective iff it is single valued and R s determinate. |

6. R is oneto-one iff Rand 1 are both single valued.

Using the matrix model, we see that if R is determinate, then
each row of the corresponding matrix may have at most one element
which is 1. Similarly, if R is productive then each row contzins at
least one 1.

In our moce: of R as a process we see that if R is determinate
then the result q' if it exists, is uniquelv determined by the input q.
Similarly, if R 1s productive then some output q° must occur for ev-
ery input.

We shall write ¢ to denote an empty relation. The set ¢ is re-
garded as a subset of Q X Q' but containing no pairs. This special

relation has the properties of a zero with respect to Pierce product. 1

That is, R e ¢ = ¢ o R = ¢ whenever such muitiplication 1s possible

with a relation R, The Boolean matrix corresponding to ¢ is a matrix

whose elemeats are all 0.
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If Q is a set, then define < Q as the set of all pairs (1, q), where
q is in Q and 1 is the element of a singleton set 1, Thus, < Q may be
regarded as a row vector whose elements are all 1. The transpose
of < Q we shall write as Q > and it consists of all pairs (q, 1) where g
is in Q. We note that Q > is a column vector. A similar notation may
be used for subsets of Q. Thus, if K € Q then <K and K > represent
row and column vectors respectively whose elements are 1 precisely
for members of K.

Row and column vectors rnay be used with the Pierce product
notation. In particular, if R C Q% Q' is any relation, then<Q ° R

is called the range of R and R o Q' > is called the domain of R. We

nnte also that Q > » < Q' =Q X Q', providing a convenient akoreviation.

113 We now direct our attention to the case of square relations.

A particular square relation IQ C QX Q of some importance is called

the identity on Q. It consists of just those pairs (q,q') for which q = q'.

Thus, I = [(a,q) | g€ Q). The Boolean matrix corresponding to Iy
consists of 1's along the diagonal and 0's everywhere else.

Let R C QX Q be a square relation, then:

1. R is symmetric iff whenever (q, q') is in R, then (q', q)
is alsc in R,
8. R is antisymmetric iff whenever (q,q') is in Rand q + q',

then (q', q) is not in R.

9. R is reflexive iff for each q ¢ Q, the pair (q,q) is in R.
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10. R is irreflexive iff for each q ¢ Q, the pair (q, q) is not
in R.

11, R is weakly reflexive iff whenever (q,q') is in R, then

-
VI P N

(g',q") is in R,

12. R is dually weakly reflexive iff whenever (q,q') is in R,

then (q, q) is in R.
13. R is transitive iff whenever (q,q') and (q',q"") are both
in R, then {q, q") is in R.

14. R is an equivalence relation iff it is reflexive, symmetric,

and transitive.

15. R is a partial order iff it is reflexive, antisymmetric,

and transitive,
16. R is a total order iff it is a partial order and every pair

(q,q") in Q X Q is either in R or in R 1.

Using our matrix model, we see that if R is weakly reflexive
then any column in the corresponding matrix which is not all 0 has
a diagonal element which is 1. In the graph corresponding to a weakly
reflexive relation, any node having an arrow pointing toward it must
also have a self loop.

The terms "antisymmetric' and "irreflexive' are subject to
misinterpretation. There are relations, such as IQ’ which are both
symmetric and antisymmetric, so that antisymmetry is nct the denial
of symmetry. Also, some relations are neither symmetric nor anti-

symmetric and some relations are neither reflexive nor irreflexive.
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Many of the special properties we have defined have formal in-
terpretations. Examples of such interpretations are contained in the

following list in which it is assumed that R has the property in ques-

tion.
1. Determinate: R, R& IQ' .
2. Productive: Ro R\ 2 IQ’ or alternatively
ReQ >=Q>.
3. Symmetric: R = R !
4.  Antisymmetric: R n R} < IQ‘
5. Reflexive: R D IQ'
6. Irreflexive: R 5 I, oralternz‘ively R 0 IQ = ¢.
7. Weakly reflexive: Ro (R N IQ) = R.
8. Dually weakly reflexive: (R n IQ) o R=R.
9. Transitive: R° R C R.
1.1, 4 If R ¢ QX Q is any square relation, then although it may

not be reflexive, we may obtain a reflexive relation from it by the sim-

ple device «{ forming R UI.. This new relation R u I | will be called

Q Q

the reflexive extension of R and may be constructed using our matrix
model by simply replacing each diagonal element of R by 1,

Similarly, R may not be symmetric, but we may use R to form

the relation R U R'1 which is symmetric. It is also true that R 0 Rnl

is symmetric, but we shall define the symmetric extension of R to be

R U R-l rather than R 0 R~ !
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Finally, we define R u R'1 U I, as the symmetric and reflexive

Q

extension of R. We note that it is both the symmetric extension of the
reflexive extension and the reflexive extension of the symmetric ex-
tension, Clearly, R U R'1 v IQ is both symmetric and reflexive.

Somewhat less obvicus is how one might corstruct a transitive

extension of a square relation R. This extension, however, will be
very important in our later analysis and for this reason we designate
it by the special symbol R*. We define R as the relation consisting
of all pairs (q, q') such that for some finite sequence dp Qg -++5 9y
of elements of Q we have q = q, and q n= q' while each consecutive
pair (qi, qi+1) of terms in the sequence is a member of R. We do not
require that the terms of the sequence all be distinct, but we do as-
sume that the number n of terms is at least 2.

A formal representation of the above definition is:

P* = RUR-RUReRC°R....

In the dciinition ci ‘he transitive extension if we had allowed n to
be 1 as well as larger in'cg2:s, then we obtain a relation which will
be designated by R*. It is called the reflexive and transitive exten-
sion of R. One may show quite easily that R* = R™ U IQ and that
R* =R R+, Thus, R* and R* are transitive but R* may not be re-
flexive while R* is always reflexive.

We define R C Q X Q to be acyclic ifi R is irreflexive. Using

the model of a directed linear graph we have a convenient interpreta- i

tion for this property. We note from our definition of R that it consists

il 5 - i
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of all pairs (q, q') which are joined by a chain of sequence g PO PRy
q, which starts at q = q 1 and ends at q, = q'. Thus, if R is irreflex-
ive we can never have q = q'. In other words, there can be no loops
or cycles in the graph which permit one to pass from some point back
to itself foliowing the direction of the arrows.

A familiar example of an acyclic relation is provided by the con-
cept of a combinational circuit. In such a circuit we let Q represent
the set of nodes of the circuit and place (q, q') in R whenever there is
a switching element having q for an input and q' for an output. Thus,
if the circuit is combinational there is no feedback and hence no cycles
of the type described. This is equivalent to saying that R is acyclic.
1.L5 If RC QX Qisany square relation, then we define the

trace of R which is written Tr(R) to be 1 if (q, q) is in R for some

q € Q and to be 0 otherwise, Interms of our matrix model we form
Tr(R) by taking the union of the diagonal elements of the matrix corres-
ponding to R. Also, in the linear graph model we no.e that Tr(R) = 1
if the graph corresponding to R has any self loops and Tr(R) = 0 other-'
wise. |

If we regard 1 as standing for truth and 0 as standing for false-
hood, then Tr(R) represents the preposition (1 qe¢ Q, (q,q) ¢ R).

In the case of matrices whose elements are integers, it is cus-
tomary to define the trace of a matrix as the sum of its diagonal ele-
ments. Since our mapping 8: Z ~ {0, 1} is a homomorphism if sum-

mation becomes union, we see that the trace operation is preserved
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under this mapping. That is to say, the image of Tr(M) under B is
just Tr(M') if M' is the image of M.

1.1.6 It is easily shown that if R is any relation, then R o R
is square, symmetric, and weakly reflexive. We therefore may won-
der if whenever we have a relation S C Q> Q which is square, sym-
metric, and weakly reflexive, whether it can be written in the form
Ro R} =S for some relation R. This question will be answered in

the affirmative, but some proof is required.

Let S € Q X Q be given as above and define a family #* of subsets

K of Q by placing K in ¥ iff it satisfies the follow ing property for
every q € Q. The element ¢ is in K iff (q,q') is in S for each q' ¢ K.
A formal definition of » may be written as follows:

¥ o= KcQlVaqeQ [qe K<=>Vq'eK, (g9 ¢ S|}.
Although this definition of the amily /' is complicated we gain scme
insight into its nature and structure by developing some of its pron-
erties.

Define a subset J of Q to be compiete iff every pair (q,q" of

not necessarily distinct elements of J is also a pair in S.- A maxi.aal

complete set is one which is not preperly countained in any other com-
plete set.
Lemma 1
% is the family of all maximal complete sets.
Proof: If K is in % and q is in K, then (q.q') ¢ S for each q' € K.

Hence every pair (q.q') of not necessarily distinct elements of K

.
e g e e i s XR 2. Ty
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must be a pair in S, so K is complete. In fact, we see that this prop-
erty expresses the ""only if'' part of our defining condition for X,
Next, consider a complete set J which is not maximal. There must
be some other complete set J' such that J C J'. Therefore, there is
at least one element q € J' such that q is not in J. Since J' is com-
plete, we see that (q,q’') is in S whenever q' is in J. Thus, J cannot
be in ¥ and every set K¢ X must be a maximal complete set. We
see that this laiter property expresses the "if'' part of our defining
condition for %, Hence, the defining condition is satisfied by every
maximal complete set, thus proving the lemma.
Lemma 2

Whenever (q,q'") is a pair in S, there is some K ¢ Y

such that both q and q' are in K.
Proof: If q = q', then the singleton set {q} is complete. Otharwise,
if g # q', then the iwo element set {q, q'} is complete because {(q', q),
(q.q) and (q', q') must all be in § as a result of the fact that S is sym-
metric and weakly reflexive. Thus, q and q' are both in some com-
plete set Ci. Let 7 be the family of all comglet~ sets C which in-
clude Cl' Then C s partially ordered under set inclusion and ful-
fills the condition of Zorn's lemma, namely that every chain in !’

have an upper bound. Hence, we conclude frora Zorn's lemma that «

has a maximal clement K. This element is also maximal in the family

of all complete sets since any set including K must also include Cy

Hence K is in 4 by lemma 1, and we have completed our pioof.
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Remark 1

There may be other families of maximal complete sets

which have the property express'ed in lemma 2.

‘ Proof: We give a simple example of such a case. Let Q be a six

element set {1, 2,3, 4, 5,6} and let S contain the pairs (1, 2), (2, 3),
(3, 1), (2,4), (3,4, (1,5), (3,5), (1,6), (2,8) as well as all other pairs
required to satisfy symmetry and reflexivity. Then, the graph has

the following form:

The family of three maximal complete sets {1, 2,6}, {2,3,4}, {1,3, 5}
satisfies the condition of lemma 2 but it does not contain the maximal
complete set 11, 2,3}. Thus, the remark is proved.

Continuing with our original development, we introduce a set
W, called the normal set which is in one-to-one correspondence with

the family ¥ . We write w~ K to indicate that the element w e W
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corresponds to the set K ¢ 7{ . This set W is to be used as a nota-
tional convenience in describing properties of the relation S. When
it i3 necessary to specify S we shall use subscript notation as W g and
aé ]

Define the relation Sd C QX W by the rule that (q, w) is in Sd
iff qe K, where w ~K. Wu shall write S'd as an abbreviation for
s

Theorem 1
IS C QXA is symmetric and weakly reflexive,
then s = §% 0 579,
Proof: If (q,q') is in S then by lemma 2 therc is a set K of # con-
taining both q and q'. Pick w ¢ W which corresponds to this set.
Since (q, w) is in 3 and (w, q") is in 83 we see that (q, q') is in
s?057% Hence, S [« s?.s7d,

Ne:wt, suppose that (q,q") is in s9. 579 Then, there must be
some element w ¢ W suck that (q, w) is in s9and (w,q') is in g9
PickKe % corresponding to this w. Since both qandq' are inK
we have (q,.q') ¢ S by lemma 1, and the theorem is proved.

Remark 2

If S is transitive then Sd is determinate and the family

‘4 is pairwise disjoint.

Proof: Let K and K' be two not necessarily distinct elements of %

andassume K  K' #4. lfq,isinK ' K' then(q,q,) is in§ for all

q ¢ K since K is complete ana similarly (ql’ q') is in S forall q' ¢ K.

522 nomin
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Since § is transitive, we see that (q, q') must always be in S whenever
qisinKandq'is inK'. But, S is symmetric and weakly reflexive,

and therefore K UK' is complete. However, K and K' are maximal

complete sets so therefore K = K'. Therefore, if K 4 K', we have

KN K' = ¢ and & is pairwise disjoint.

To show that Sd is determinate we consider any element q ¢ Q.
If (q, w) is in % then q is in the set K ¢ T which corresponds to
we W. But, g can be in no other set K' of 27 so there is no other
element w' of W such that (g, w') is in Sd. Hence Sd is determinate
anrd the remark is proved.

Remark 3

If § is reflexive then 8% is productive and 4 is a cover

of Q in the sense that | | K=Q.
Ken

Proof: Let q be any element of Q. Then (g, q) is in § since § is re-
flexive so the singleton set :q} is complete. By lemma 2, there is
some K ¢ /. such that q € K, and hence %, is a cover. Also if
w ~ K, then (q,w) is in Sd SO Sd is productive.
Remark 4
If S is an equivalence relation then Sd is single
valuedand % is a partition of Q.

Proof: The conditions of both remarks 2 and 3 are satisfied if § is

an equivalence relation since it is then both reflexive and trauasitive.

Hence ¥ is a partition, i.e., a pairwise disjoint cover. Also S

is determinate and productive, thus single valued.

S -
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We note that the sets of are called equivalence sets when
S is an equivalence relation,
1.3.7 Define the relation R C Q X Q' to be {initary iif there is
a finite set Q" which admits two relations G ¢ Qx Q" and H € Q" Q'
such that R = G © H. We note that any finite reiation R must be {ini-
tary since R=R o IQ"
Thecrem 2
If § C QX Q is symmetric and weakly reflexive,
then S is finitary iff the corresponding family
is finite,
Proof: If # is finite then W is finite and § = s S-d, where

sdg_ Qx W and g4 < Wx QsoS§ if finitary,

Next, suppose that S is finitary and hence may be written in the

form § =G o Hwhere G € Qx Q"and H C Q" x Q for finite Q". De-

fine an equivalence relation E C Q X Q by the rule that (q v qz) is in

E iff for ali q"" ¢ Q" we have (ql’ q'") e G <=> (qz,q”) € G. It is triv-
ial to show that F is an equivalence relation. Also, the number of
equivalence sets is finite since if Q" is of cardinality n the aumber of
equivalence sets can be no more than 2%, We further see that if

(ql’ qz) is in E, then for all qe Q we have (ql, q) € S {=D> (q2’ q) e S.
Thus, qy and q, will always be in exactly the same sets K of

since the rule for inclusion or exclusion applies equally to both and S is
weakly reflexive so that inclhsion of one will not cause exclusion of the

other. This means that each K of 1 is a union of E equivalence sets.

-
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a
b

Thus, /. is finite since the cardinality of /% can be no greater than
the number of possible unions of E equivalence sets which may be
formed.

Define the weight of a finitary relation R ¢ Q X Q' to be the
minimum cardinality of any set Q" such that R = G « H for some
GCQxQ"'andH _C_ Q" X Q'. Further, let R2 be an apbreviation
for R ° R, and in general, R" for the n-fold Pierce product of R.

Theorem 3

If R C QX Q is finitary and of weight n, then

R* = RuUR? u... URM

Proof: From tue definition of R*, we know that R* SRUR% U ...

u B Hence, to show equality it is only necessary to prove that

any pair (q,q'") € R' is also in R U R2 ... URYN I (g,q") is in RY,
then (q, q') is in R™ for some integer m, and we may take m > n for
otherwise the conclusion is obvious. Write R = G » H as above, where
GCQxQ andHC Q'x Q and Q" has cardinality n. Then, R" =
)

1 .
G°He...°GeH=G°{H°G °H, whereH° G C Q"X Q"

and we adopt the convention that (H ° G)° = lQ"’ Since (g, q') is in
Rm, there must be a pair (p,p) e (H > G)m'1 such that (q, p) is in G
and (p',q') is in H. However, if (p,p') is in (H » G)m—l, there is a
sequence p=py; Py ..oy P = p' such that each consecutive pair
(pi’ pi+l) is in H ° G. But, Q" ccntains only n elements and m > n

so the terms in the sequence cannot all be distinct. We can therefore

contract the sequence, for if P = pj, then p = Pp Py oo Py pj+l’
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vees Py = p' satisfies the required condition on consecutive pairs.

'-
Hence there is some integer m' << n such that (p, p') is in (H . G)m 1

and therefore (q,q") isin G o (H » G)m -1 o.H=R™. This completes

the proof of the theorem.

y
;
E
3
3
7
s
#
4
%

Theorem _g_

RERE

If RC Qx Q" is finitary, then R=Qx Q' - Ris

finitary.

Proof: Let us write R=G o H, whereGC Qx Q"andHC Q" x ',

with Q" finite. Let .?(Q") be the family of all subsets of Q". Con-
struct a relation G' C Q X ('(Q") by placing (q, P) in G' iff P con-

sists of just those elements q" ¢ Q" such that (q,q") is in G. Evi-

dently, G' is single valued. Also; construct a relation H' ¢ (7(Q")
X Q' by placing (P, q'") in H' iff (", q') is not in H whenever q" is in
P. Consider the product G' ° H'. I (q,q') is in G' ° H', then for the
unique P associated with q, we have (P, q') not in H so (q,q") is not in

G ° H = R. On the other hand, if (q,q") is not in G' - H', then for the

unigue P associated with q, we have (P, q") not in H'. Thus, there is
some q" ¢ P such that (q"",q" is in H. Hence, (q,q') is inG ° H = R.
Therefore, G' « H' = R and since Q" is finite, 7 (Q") is also finite,

showing that R is finitary.
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1.2 Relational Systemns

1.2.1 To describe a relational system S, one must specify:

(1) Analphabet A which is a finite set of letters a which are sym-

bols used for indexing and labelling expressions.

(2) A carrier set Q consisting of states or elements q 0i the system.

(3) A mapping F from A to the family of square relations on Q.
The image of a ¢ A under F will be written F a and called the

set of transitions under a. Thus, Fa CQAXQ.

We may think of a relational system S as being equal to the triple

(A,Q, F). It may be represented by a labelled graph wnose nodes cor-

respond to the states q of Q. Between every pair (q, q') of states in
Fa we draw an arrow pointing toward q' which we label with the letter
a. Such a graph is sometimes called the state diagram of a nondeter-

ministic automaton.

Two relational systems S = (A, Q, F) and S' = (A, Q', F') which
use the same alphabet A are called similar systems. We shall be
principally concerned with the interaction of similar systems and
this is our reason for setting up such an elaborate structure. I one
were concerned just with the properties of a single system S = (A,Q, F)
he could use the letters a in A to stand for the corresponding relations
Fa' Thus, the mapping F would not need to be explicitly mentioned
because it would be placed on a higher level of abstraction thaa is

now being contemplated. However, this cannot be our present approach,
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Important special cases are now listed.
1 We call S determinate iff every relation Fa is determinate.
2. We calt S productive iff every relation Fa is productive.

3. We call S single valued iif every relation Fy is single v~lued.

The case in which § is single valued has been extensively investigated
in the literature, The following names have been given to this type

of re’ itional system: Monadic aigebra (J. B. Wright), Unary algebra

(J. R. Buchi), Semi automaton (A. Ginsburg). An important fact which

was recognized by Wright and Buchi was that a single valued relational

system is an algebra in the sense of Garrett Birkhoff. Therefore, a

host of theorems which apply generally to algebras also hold for these
relational systems.

1.2.2 Again, let us consider a general relational system S =
(A,Q, F). We write ’7’ to represent the family of all relations Fa’
where a is in A. Also, let %7 stand for the closure of 77 under

Pierce product. The input semigropp of § is the system whose car-

. N s + . . N A .
rier is * and whose operation is Pierce product. We see that this
system is indeed a semigroup since Pierce product is associative and
RV .
7 is closed vnder it.

It was apparent from section 1. 1.3 that I has the properties of

Q
. . . (’; + o _ o -
a unit. Thus for all relations Foe v we have IQ F, = F, IQ = Fy.
If we attach IQ to %" wegetaset *= ot U{IQ} which is the
carrier cf the input monoid of S. A monoid is defined as a semigroup

with a unit and we see that <-* forms a monoid under Pierce product.
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Theorem 5
To every monoid M with a finite set of generators G,
there corresponds a single valued relational system
SM = (G, M, F) whose input monoid is isomorphic to M.
Proof: From the statement of the theorem, we see that G is to be taken

as the alphabet of S and M as its carrier. For each element te M,
we define Fi as the set of all pairs (s, s') such that st = s'. The restric-

tion of t to G provides us with the definition for F of S Clearly,

M

S,, is single valued. We now show that the correspondence t ~ Fy

M
is one-to-one, Let e stand for the unit of M, then (e, t) is in Ft but

not in Ft' iftdt, Thus, if Ft = Ft' we have t = t'. Also, FS ° Ft

= F‘st since M is associative. This shows that M is isomorphic to the
family { Ft} under the operation of Pierce product. Finally, we prove
that % * is the same as the jamily {Ft}. However, Fg is in 7 for
each ge G and G is a set of generators for M. Thus, each element

t € M is either the unit e or representable in one or more ways as
finite product €1 89 By of generators. In the former case, we have
F,=L, ¢ 77*and in the latter case Fgng“'gn = Fgl o ng ° ...

0 ane i+, Hence, 7* is just the family {Ft}, where t ¢ M, and
the theorem is proved.

1.2.3 A finite sequence a(l) a(2) ... a{n) of not necessarily dis-

tinct letters taken from an alphabet A is also sometimes called a string

or word or tape on the alphabet A. Let At represent the set of all

such strings on A. Two strings in A" will be considered to be equal

il s
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if the letters occurring in corresponding positions of the strings are
always the same. We define the length of a string a(1) a(2) ... a(n)

to be the number n of letter which make it up.

The ccncatenation of two strings s = a(l) ... a(m) and

t =b(1lj ... b(n) is the new string st =a(l) ... a(m) b(1l) ... b(n)

1
3
4
4

formed by juxtaposing the two. Cl=arly, concatenation is an associ-

ative operation. Also, A% is closed under concatenation and we call

this system the free semigroup genera.>d by A.

One may attach a unit element e to A%, giving 2 set A* = Aty {e}.
We define e to be an element which follows the operation rules et = te
=t for all t in A*, Although it is difficult to imagine e to be a string

or sequence, we shall call it the string of length zero. It has also

been variously called the null sequence, the empty word, and possibly
other names. The set A* under concatenation and the unit rules for

e, we call the free monoid generated by A.

Using theorem 5, we may construct A+ (A, A*, F) which is

called the singly generated, free monadic algebra on A. The carrier

A* of this relational system is the same as the carrier of the free
monoid from which it is derived. Each relation Fa consists of all
pairs (t,ta), such thatt is a string in A*,

Other definitions concerning A* will be needed in our later work.
We cal! a string r e A* a prefix of a string s ¢ A* iff s can be written
in the form s = rt for some string t ¢ A*®*. We note that if the string

t exists it is unique. Hence we define r/s to be t if s = rt and take it
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to be undefined if no such t exists. Similarly, we sayt is a suffix

of s iff 8 = rt for some r. We also introduce the notation s/t = r
as in the previous definition.

A proper prefix of a string s is a prefix of s which is shorter

than s. Similarly define a proper suffix, A segment of s is a prefix

of a suffix of s. It is a proper segment if it is shorter than s. We

note that a segment of s is also a suffix of a prefix of s. In fact, s’
is a segment of s when we have s = rs't for some r and t. We might
then use the notation s' = r\s/t.

The approach which we are takirg to the algebra of strings in
this séction may be described as an informai one. We simply set
down some of the properties of strings and rely on the experience
of the reader to justify their reasonableness.

»Others have taken more formal approaches which require more
intellectual effort and are not necessary for our purposes. One such
approach is to base the algebra of strings on a simple set of postulates
which are similar to the Peano postuiates for numbers. We can then
derive such rules as the associative law for'concatenation.

Another approach is to treat each string as a sequence in the
sense uf being a mapping from a set of consecutive integers to A.
Then the mechanism of concatenation is described in terms of such
mappings and the results are proved.

1. 2.4 LetS =(A.Q,F)and S' = (A, Q', F') be two similar rela-

tional systems which may or may not be distinct. Then a relation

i b ol MR
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0 C QX Q' is called a generalized congruence between S and 8' iff

foraliae A,
-1

i) Fa oo'oFa'_C;O,
ii) 0°F, 'eQ >CF,°Q>, and
i) o Lo F,°Q>CF,-Q
This formal definition can also be expressed verbally. Property (i)
is called the substitution property and corresponds to the statement
that if (ql, qz') is a pair in ¢ and if (ql, q2) is in Fa and (ql', qz') is
in Fa' then (q2, qz') is also in 0. Properties (ii) and (iii) are dual
in the sense that one may be obtained from the other by interchanging
S and S" while taking the inverse of ¢. Thus, if o is symmetric, the
last two properties are identical. We may express (ii) by saying
that whenever (q,, ql') is in g and there is a pair (q'l, q'z) € Fa"
then there is also a pair (ql’ q2) € Fa' This property is automatically
fulfilled if S is productive. Similarly (iii) holds automatically if S'
is productive. Thus, if only productive systems are being considered

we need merely state (i).

A number of special cases of a generalized congruence ¢ are now

listed.
1 o is a congruence if it is an equivalence relation.
2. o is a homomorphism if it is single valued. Special
types of homomorphism are now listed.
. . . R I .
J. o is a monomorphism if ¢ ~ is determinate.

1

4. o is an eipmorphism if ¢ is preductive.
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5. ¢ is an endomorphism if it is square.

6. o is an isomorphism if o ! is single valued.

1. o is an automorphism if it is a square isomorphism.

Theorem 6
If oy C Qx Q' is a generalized congruence between S and
S'and 0q C Q'x Q" is a generalized congruence between
S'andS", theno, o 0y is a generalized congruence be-
tween S and S'".
Proof: To prove F;I ° Gy o 0y o0 Fa" Loy 95 W€ assume (qZ’ qz")
is an element of F;l oGy o0y F,". Thenfindqy,q,', andq)" such
that: (q,q,) € Fy, (4,9, € 0y, {a;',q,") € 0y, and(q;",qy") € F "
Then, by g © Fa" o Q'>C Fa' o Q' > we see that since (ql', 1) is in
g © Fa" o Q' >, itis in Fa' o Q' > . Hencethereisa qz' € Q' such
that (q;'. q,") is in F,'. Now, F;l o0y F,' C 0y, SO(qy, qy') is in
0, Similarly, (qz', qz") is in Ty thus proving that (qz,qz”) is in
0 ° Oy
To prove g, ° 0, ° F," o Q' >C F e Q >, we proceed alge-
braically. Use g, © Fo'' o Q' > C F "o Q' > and obtain ¢y o 0, °
Fa"oQ"> Co°oF'eQ >, Since ¢y 2 F,'o Q' > iFa°Q>’
the result follows. The third properiy for 0)° 0y is proved in a
similar way.
L2.5 Let S = (A.Q, F) be a relationa! system. We may extend

our notation by defining Fs for each se¢ A* as follows. Whens = e,

then let Fe = IQ When s is a string a(1) a(2) ... a(n) of length n > 0,

o R
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then let FS = iﬁa( 1)3(2). . .a(n) = Fa( 1) o Fa(z) 0 .00 o a(n)- USing

this rule, we see that whenever s and t are two strings in A*, then
Fg = Fg° Fy. Consequently, ‘7: * consists of just those relations

which can be represented in the form Fs’ where s in in A*. We
have thus extended F so as to map A* onto Gir*.
Theorem 7
If ¢ is a generalized congruence betweenr S = (A, Q, F)
andS' = (A,Q', F'), then for each s ¢ A%,

i) F, e0eF'Co,
il) O'qu'oQ'>_(_:FS°Q>,and
iii) o“loFsoQ>_c_Fs'°Q'>.

Proof: The proof is by induction on the length of the string s.

Consider first the case in which s = e, so Fe = lQ and Fe' = IQ"

Then (i), (ii), and (iii) are:

1) IQOOOIQ'EO’
) 6ol oQ>CL2Q>, and
i) o’lonoQ>51Q'oQ-'>.

These are all trivial,

Next, suppose that (i), (ii), and (iii) hold {or some string s ¢ A*
and let a be any letter in A. We then seek to prove these same three
properties for the string sa. Now, Fsa = Fs o F, and Fsa = Fs o

Fa , 8¢
1 -1

) Fgue0eF '=F, oF,

C o.

1 ' t -" '
°0°Fs ﬂFa_C_:_Fa oOOFa

e R e el R B S e R

iy
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To prove
ii) we note that Fa"o Q> Q' >, SOOoFS'OQ'>
S_ooFS'oQ'>SFS°Q>.
Thus, if (9, 1) is ino o Fs‘ o F,'o Q' >, there must be a pair (q, q)
€ Fs' Also there are pairs (q,q") ¢ ocand (q', ql') € Fs'. Hence
(ql, ql') is in ¢ by hypothesis (i) where ql' 1§ in Fa' o Q'>. Thus
(ql’ l)isinge Fa' o Q' >, and hence in Fa e Q > . This shows that
(q, 1) is in Fs ° Fa o Q> . We prove (iii) similarly. This completes
the inductive step and hence the proof.
Theorem 5
If ¢ C QX Q is a generalized congruence on S = (A, Q, F)
which is symmetric and weakly reflexive, then od CQXW
is a generalized congruence between S and a system SW =
(A, W, FW) such that for each a € A, the relation FZV is
w -d d

. -1 d
i = [-] < ] F o .
defined by Fa »(o Fa o) No a° 0

Proof: We must prove that od has the three properties

) Fo'e ol FZ’_C_._od,

ii) o9 o ,;Vow,>»_C_FaoQ>,and
o -d WV
i) o °FaeQ>~C_ra oW >,

7

The definition of Fr may be expressed less formally by saying that
s oW .o =d
. N s e t
(w P wz) is in Fa iff whenever (w 1’ qQ)ising "o Fa‘ then (q,wz) iS
in cd and furthermore such an element q exis's.
d w

To prove (i), let us assume that (q,wz) is in F;l 00 o Fy .

Arn element Wy must exist such that {(w % q) is in o'd ° Fa and (w v wz)
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is in FZV. Hence, we see that (q,wz) is in od and (i) is proved.

To prove (ii), let us assume (ql’ 1) is in od ° FZV » W > . There
are elements Wy and Wo such that (ql, w2) is in od and (Wl’ w2) is in
F;N. Hence, there is some element q such that (w), q) is in o9, F,.
Therefore, there is an element q,' such that (ql', wl) is in od and
(a,",q) is in F. Hence, (q),q;") is in 6%, 079 o and since ¢ is a
generalized congruence, it satisfies ¢ o Fa °Q>C Fa °o Q> . Now,
(ql’ l)isinco F, o Q > soitisin F o Q >, thus proving (ii).

To prove (iii), let us assume {w, 1) is in ¢ 9, F,ooQ>.
Thus, there is at least on: element q such that (w P q) is in o—d ° Fa'
Let us define P as the set o1 4!l such elements q. For any two elements
q,q' in P there are associated elements q, and q,' such that (ql, wl)
and (q . wy) are in od and (ql’ q) and (ql', q') are in Fa’ Thus,

(g qy) is in 0% 0% =0and {(q,q") is in F: ©0oF,. But. oisa
yoneralized congruence and therefore satisfies F;l °© 0o Fa C o
Therefore, (q,q'") is in ¢ and since ¢ and q' were arbitrarily chosen
from P we see that P is a complete set with respect to o. Using
Zorn's lemma as in lemma 2 of section 1. 1,6, we see that P is in-
cluded in some maximal complete set K ¢ . Thus, there is an
element Wo ~ K such that (q, wz) is in od for eachqe P. But, Pis
just the set of all q such that (w..q) is in e 4, F, so we therefore

have the result that (wy, w,) is in F) . Hence, (wy, 1) is in F:V o W >

and (iii) is proved. This completes the proof ot the theorem.

N e S




32

Corollary 1
If 0 is a congruence relation on S, then ad is an
epimorphism from S to SW.
Proof: When ¢ is a congruence relation it is an equivalence relation
on Q. Hence, by remark 4 of section 1. 1.6, we see that ord is single
valued. Since o is not empty, the empty set is not in % and hence
od is surjective. By theorem 8, it is therefore an epimorphism.
Corollary 2
If o0 is a homomorphism from S to S', then (0, 0 1)-d ° g

is a monomorphism from SW to S'.

. . -1,
Proof: If ¢ is a homomorphism, then o o ¢ = is a congruence

relation so (g o 0 1)d is an epimorphism. Write 8= (0o 0-1)-d o O.

\mmnmmwmwoﬁ=wmmdwgb"mm

- -1- - -1 -1-
9o91=(0o01)do0o01o(ooo )d=(0ool)d°

-1-d -1d -1-d -1d
(6o0 ) wmo)owoo>owoa)=wow=w.
Alsoenloezo"lo(aoo-l)do(oao'l)'d., =0-100'°0'-10

T elyrlythy

Corollary 3
If ois }a‘n epimorphism from S to S', then

(0o a 1)'d » 0 is an isomorphism trom SV

to S'.
The proof of this result is trivial. Corollaries 1, 2, and 3 are
analogous to results of a similar nature concerning congruences on

algebras. K A is analgébra and = is a congruence, then it is cus-

tomary to speak of the quotient aigebra A /= whose clements co'rrespond
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to congruence classes. In our notation, if S is a relational system
and ¢ is a generalized congruence on S then Sw is the quotient sys-
tem, The analogy is exact when S is a monadic algebra and o is a
congruence on S.

1.2.6 Let § and S' be two semigroups. Then a relation o C

S x S' will be called a generalized semigroup congruence iff whenever

(Sl‘ sl') is in s and (sz, sz') is in ¢ then (Sl’ Sy 8¢ sz') is in 0. The
analogy between this substitution property and that of the previous
section should be clear. Properties (ii) and (iii) in the previous
definition are not applicable in this case since the semigroup opersa-
tion is single valued.
Remark 5
The property of being a generalized semigroup congru-
ence is preserved under Pierce product and under in-
finite set theoretical intersection whenever these opera-
tions are applicable.
Proof; Suppose ¢, and U, are generalized semigroup congruences
and 0, o 0, can be formed. To show that it is also a generalized
semigroup congruence, let (Sl’ s,") and (s2, sz") be in 0y ° 0y Then,
we can find elements s;' and sz' such that (sl, sl') and (SZ’ sz') are
in gy while (sl‘, sl") and (sz’, s2") are in 0y Hence, (s 159 s'ls'z)
is in o4 and (sl',sz',sl"sz") is in 0y Thus, (slsz,sl"sz”) is in

o) -0y and the first half of the remark is proved.

ST
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Next, suppose that T is a set of generalized semigroup congru-
ences o, all between S and 8'. Let (Sl’ sl') and (sz, sz') both be in

m o. Then, they are in eachoe Z. Consequently, (slsz, sl'sz')
oce X
is ineach oce Z so it is in m o. This completes the proof of the
ce 2
remark.

Remark 6

If o is a reflexive generalized semigroup congruence

on a single semigroup S, then o = o* is also.
Proof: This remark could be proved easily if we had closure under
set theoretical union as in the case of relational systems. However,
such closure does not hold in the semigroup case. We therefore as-
sume (Sl’ sl') and (82’ sz') are both in o™, Hence, for some m and n,
we have (s 1 sl') e o and (sz, sz') ¢ 0. Therefore (8152’ I sz')
is in om o g = gt < o+, and the remark is proved.

Using the same defining rules as we used for generalized con-
gruences on relational systems, we can define such concepts as semi-
group congruences and semigroup homomorphisms, the iatter being
further classified as epimorphisms, endomorphisms, etc.

Remark 1

The mapping F of a relational system S = (A, Q. F). when
extended to form a mapping from A* to ¥ * is a semi-

group homomorphism from the free monoid generated

by A to the input monoid of S.
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Proof: The substitution property is just our previously noted rule:

F_, = FS ° Ft for all s,t in A*. Hence, this result is obvious.

st
12,17 Let Q be any set and © an operator mapping (7(Q) either

to itself or another family of sets. Then, we shall call @ a dis-

tributive cperator iff for every family o/ of subsets T of Q the equa-

tion
a(\Jm - u 2(T)
Te. €
holds. A special case of the above equation occurs when J is empty,

giving (¢) = ¢. The property of finite distributivity requires only

that the defining equation hold for finite nonempty families J .
Remark 8
A necessary and sufficient condition for @ to be

distributive is that (T) = U Q(q) for every
qe T
subset T of Q.

Proof: This condition is clearly necessary since T is the union of

singleton sews of its elements. It is also sufficient since
o\ m-all {q)—U ’{q})—Unm
Te. ge Tel Ted q €T

Lemma 3

If Q is a distributive operator mapping [~ (Q) to itself
and if Q ¥T) denotes the closure of @ applied to the sub-
set T of Q, then Q*T) is the minimum of all subsets T'

of Q such that T' > Tand T' 2 (T).

e

LT
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Proof: Abbreviate Q(Q(...(T)...)) as Qn(T), where n is the num-
ber of times Q is applied. Then, we may write Q *(T) = Coj Qn(T),
where 0(T) = T. Thus, we see that Q*T) D T and Q*(TT_%
Q(OXT)), so Q%(T) satisfies the two given conditions. To show that
it is a minimum, we take T' to be any set such that T' > Tand
T' 5 Q(T'). Let q be an element of Q*(T). Then q is in "(T) for
some n > 0. Hence, for some sequence Qp Qqr+-+» 4, = We have
Qg € T and q; € Q(qi_l) for i=1,...,n by remark 8. Thus, by induc-
tion, we see that d is in T' and each q, is in T' since 91 is in T'.
Hence, each term in the sequence is in T', and q is therefore in T'.
This completes the proof since we have shown that Q*(T) is a subset
of any T'.
Remark 9
Givena pair S, S' of similar relational systems, not neces-
sarily distinct, and a reiation % C Qx Q', then there is a
unique minimum relation ¢ C QX Q' satisfying (i) ¢ 2 Oy

and (i) 6 > \_J F;l °0s F,'".
ae A

If we define Q(X) = U F-1 e XoF ' theno-= Q‘(oo). Also, if
ac A ° a
there is any generalized congruence ¢' between S aud S' such that

g'D %’ then ¢ is the minimum such generalized congruence.

Proof. The first part of this remark follows from lemma 3 and

the observation that the operator Q of the remark is distributive.

The second part of the remark can be proved by first noting that
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0 ¢ o' since 0 is minimal over relations satisfying (i) and (ii). There-
fore, 0°Fa'oQ'>_g_cr'°Fa'oQ'>£Fa°Q>. Similarly, we
show that ¢ "o F, o Q >C F,'s Q' >. Thus, o isa generalized
congruence and the proof is complete.

We may think of remark 9 as providing us with an algorithm

for constructing o= Q*(oo) when % is given. To carry out this algo-

. : - -1 ° '
rithm, we define G,=9 Y Q(oi) =0; U akejA F,” °q F' for
i=0,1,2,... . Then each element of o is contained in some 0;- While

this algorithm appears to be infinite, there are many important cases
in which it may be terminated after some finite rumber n of steps.
In particular, if Ol = O then clearly g =0. It is also clear that
when each F, and each Fa' is finitary, the algorithm terminates. A
fairly obvious special case of this situation occurs when the reiational
systems S and S' are finite, i.e. Q and Q' are finite.
Theorem 9

LetS=(A,Q, F) and S' = {A,Q', F') be similar relational

systems and let % C QX Q' be a relation such that for

allae A, % ° Fa'oQ‘>5FaoQ>and

-1 1 [} 3 -
% °Fa°Q>£Fa o Q' > . Define Q(X) =

U F oXo(F ')-1. Then o= b‘(&d) is the unique
acA ? a

maximum generalized congruence relation between S and
S' such thato C % IfS=8"and % is symmetric, then o
is symmetric. If S = §' I8 single valued and % is an

equivaience relation, then ¢ is a congruence reiation,

sty R s TR e o s RS G b RS

AT REN
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Proof: The operator Q as defined in the theorem is clearly a dis-

tributive operator. By lemma 3, we see that o is the minimum rela-

-1

tion satisfyingc 2 50 and F_ o 0o (F,) "¢ o for eachae A. The

condition ¢ 2 50 may be rewritten 0 C %- Hence, oo Fa' 0 Q' >

. S -1
EGOFa o Q >g_FaoQ>. Also, ¢ g._oo , SO0 oFa°Q>

-1 ' ' e = ' -1
«C—GO °Fa°Q>QFa o Q' >. ThecondmonFaooo(Fa) C
o is equivalent to Fa- 1 0o 0o Fa' C o, by the following argument:

F oaow;flg6<=>ng}6°(gﬁdoaﬁ=o<=>

a
-1 1

. -1 . -1 -
Tr(o o Fa'°0 °Fa )=0<=)Tr(Fa 000 F, "0 )= 0<=>

F a °0° Fa' Co. Thus, the two conditions are equivalent to o being

a generalized congruence such that ¢ C % Since ¢ is a minimum,
we see that o is the maximum such generalized congruence.

Next, we assume that S = S' and that % is symmetric. Hence,
50 is also symmetric. Define recursively, 6;{: q U Q(&i), for
i=0,1,... . Taking c}i as symmetric, so is £(0,) from its defini-
tion, so ﬁ is symmetric, completing the inductive step. But, if
(9,q') is in ¢ then(q,q') is in Gi for some i and hence (q', q) is in
ﬁ C 0. Thus, 0 is symmetric so 0 is symmetric.

Finally, we assume that S = §' is single valued and that % is an
equivalence relation. Thus, 50 is irreflexive. Let us assume in-
ductively that 6: is irreflexive. Then F, ° % o F;l is irreflexive
because Fa is determinate. Hence, Q(&I) is irreflexive and so is

ei+1 . Since each element of ¢ is in some 5;, we see that ¢ is irre-

flexive and thus o i8 reflexive. Now 00 is transitive so 00 ° 0 C 00.
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Because of the symmetry of o,, this property is equivalent to

T ° 9% S 9 by the following argument: % ° % S % <=>

-1 -1
Tr(cr oooooo) 0(—-—>Tr(o % 000)=0<'-—=>
1 1 e - P - _—
Tr(cr0 00'0 ° 0, )=0<-——->00 00y £ 9 ‘\—->ooooo_g__00 .
Let us assume inductively that o is transitive. We wish to prove

. 4 15 tI iti i !
that .1 is transitive so we write 01+1 o o +1°5%,1°

( 5. F - 5 U o F o3 o F1
@Ua\g{\Fa°oi°Fa)'°i+l°JiU %,1° Fa o0 Fy

Now, %1 € o, so %.1°9% C G o0 C oi by the transitivity of 0.

o — -l o~ o
Also, Fa g; o Fa c 0.1 by the definition of 0’i+1 and hence

— -1 L -1 -
Tr(}?‘:l o, 0 F "o 0i+1) = 0 giving Tr(Fa °0g, ,0 F_o o'i) =0

i+l a

-~ >~ —1 N . -1
== Fy oo 0.1° Fa C 0. But F, is productive, so IQ < °F, -
- -1
Hence %.1° F g F 0 F °0; 1° Fa c Fa ° 0. Thus,
kjoi+1°Fa° L)F oaooroF CUFoanl
ae A a€e A

. -1
This gives us %,1° %41 E‘.(’l U U F o ° F =0, 1 Hence,

%1 is transitive completing our mductwe step and the proof of the
theorem.

As was the case with our previous result, remark 9, this theorem
mity also be regarded as defining an algorithm for finrding a congru-
ence relation o with the properties described in the theorem. It is true
that the algorithm may not always be finite, but in many practical cases

it may be shown to terminate after a {inite number of steps. We shall

call this the Moore algorithm since the process was invented by E. F.

Moore for the case in which § is a finite monadic algebra and % is an
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equivalence relation. In this case ois a congruence relation and the
prccess terminates after a finite number of steps. Moore was able
to construct od which is an epimorphism and Sw which is the image
system under od. He called SW the "reduced machine, "

1.2.8 A pa:tial ordering on a set Q was defined in section 1. 1,3
as a relation ¢ C Q X Q which is reflexive, antisymmetric, and tran-
sitive. One example of a partial ordering is the relation C of set in-
clusion among a family J of subsets of a set T. We see that the
relation Ti _C_._ Tj between two such subsets must be reflexive, anti-
symmetric, and transitive, Therefore, it is a partial order. This
means that any family of relations on the same pair Q X Q' of sets is

partially ordered by set inclusion. However, other examples of par-

tially ordered sets abound in mathematics and in everyday experience.

If ¢ C QX Qis a partial ordering and P is a subset of Q, then
we say that q is an upper bound of P iff (p, q) is in o whernover p is in
P. Similarly, we say q' is 2 lower bound of P iff (q', p) is in o when-
ever p is in P. A set P may or may not possess upper bounds and
lower bounds when o is any given partial ordering. However, an im-
portant special case occurs when every nonempty set P not only has
an upper bound and a lower bcund but it has a unigue minimum upper

bound and a unique maximum lower bound. A partia. ordering of this

type & called a complete lattice. “pecifically, there is a unique upper

bound, cailed the supremum of .’ and written Sup(P), which has the

property that if q is any upper bound of P, then (Sup(P), q) is in
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Also, there is a unique lower vound, called the infimum of P and written

Inf (P), which has the property that if q' is any lower bound of P, then
(q', Inf(P)) is in 0.

In case it is only possible to assert that Sup (P) and Inf (P) exist
when P is finite, we say simply that o is a lattice, the adjective ""com-
plete' being reserved for lattices in which it is known to be true in
general,

A notation that is frequently used with lattices is to write p U q
and p N q to represent the supremum and infimum respectively of the
two element set {p,q}. A great disadvantage of this notation is that
the same symbols are used for set theoretical union and intersection.
When we discuss the partial ordering among sets in a family this no-
tation is clearly ambiguous because the set theoretical and lattice the-
oretical operations may not signify the same result. It will be neces-
sary to avoid such ambiguity by carefully explaining which type of opera-
tion is intended in cases of uncertainty.

A great convenience of the p .:q and p N g uotation is that one
may derive simple algebraic rules which apply to lattices, The reader
may verify the following:

. pn(@nr)y=(pnq)d randpi(qur)=(pugq) U r, associativity,
2. phrgq=q Y pandp U q=q U p, commutativity.

3. phr p=pandp u p=p, idempotence.

has

pr(puq)=pandp v (pn q) =p, absorption.
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Many other identities may be derived. Il is also possible to regard
the operations p U qand p n § as fundamental and from their prop-
erties derive the properties of partial ordering in a lattice. For
this purpose we may define o by either of the two rules:

5. prq=p<=> (pa)e g or

5'. pU g=q<=>(p,q) € 0, both of which are equivalent.

By introducing this algebraic notation we have changed our em-
phasis from the set gto the set Q. From the point of view of the
operacions U and N, a laitice is an algebra whose carrier set is Q.

When the entire carrier set  of a lattice has a supremum and
an infimum these elements are written Iand O respectively. We
note that Sup (Q; = Iand Inf (Q) = 9 always exist in the case of com-
olete lattices. These elements obey the special rules.

6. O p=0Oandiup=1
7. Oup=pandIn p=p.
¥ .J isa family of subsets of a set T and </ forms a lattice
ar set inclusicn, then the relation Ti < Tj between members f

./ has the " me meaning in the lattice .’ and in the family of sets

A L. . . . .
./ . However, the set theoretical union and intersection of a sub-
Uy 4 vof < whi twriteas | | Tama [ ] 1
family .7 'of «-, which we shail write as T ana | | 1
. T'\é/ 7 T ¢

respectively may not be the sume as the lattice thecretical Sup (. )

aniInf(J/ ).




43

Remark 10

We always have k} T' < Sup(J ') andInf (S ") £
Te J'

(W T', if Sup (../ ') and Inf (. ') exist. However,
'I" E kv! Al

when U T'is in / then it is Sup (.7 '), and when
T'e .J'

T'is in </ then it is Inf (</ ).

T'e J'
Proof: Let T' be any element of ./ '. Then T' < Sup (.'') by the

definition of Sup (~ ' '). Hence, taking the union over /', we obtain

b

kj T' < Sup (.o 9. I U T'is in ./ we see that it is an

s we:

T'e T'€«.
X upper bound of . / '. Hence, U T' > Sup (=’ ') by the defini-
T'e '

}
tion of Sup (' ). This yields b’ T' = Sup (.. ") and one half of
T'e /'

the remark is proved. The second half may be proved by a dual argu-

ment.
The family of all generaliz~d congruences ¢ between two
relational! systems Sand S' forms a complete lattice under
set inclusion,

Proof:  Since this set of generalized congruences is closed under set

theoretical union and intersection, we may use remuark 10 to show that

the supremum and infimum of any family of generalized conrances

between S and §° must be just the union and intersection respectively.

Thas., the proot follows,




44

The following theorem is a generalization of a result due to
E. H. Moore (not E. F. Moore) and is useful in determining which
partially ordered sets are lattices.

Theorem 10

IfoC QX% Q isa part.al ordering of Q such that every
nonempty subset P of Q has an infimum and Q has an
upper bound I, then ¢ is a complete lattice.
Proof: To prove this theorem, we must show that every nonempty
subset P of Q has a supremum. Let P' be the set of upper bounds of
P. We see that P' is nonempty since I is an upper bound of P and
therefore a member of P'. Hence, Inf (P') exists and by its defini-
tion, we see that (q, Inf (P')) is in ¢ whenever q is in F so Inf (P')
is in P'. Also, (Inf (P'), q') is in ¢ whenever q' is in P', so Inf (P')
= Sup (P). This completes the proof of the theorem since F was cho-
sen arbitrarily.
It may be noted that the dual ~f theorem 10 may be stated 2nd
is equally valid.
Given two partial orderings o, . Q% Q; and gy C Qy X Q2
such that Q, C Q2 and oy C 0y, We say that 0y is a subordering of

~—

g However, if %9 and 0, are both lattices we would not generally

assert that ¢, is a sublattice of Ty because we regard a lattice as an

algebra. To illustrate this difference, let p ‘g andp ' q repre-
1 2

sent the supremum of {p. g} in o, and o, respectively. Cleariy.

(p q p- q) isin g, but we cannot generally conclude that p q
1 1
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and p U q are equal. The same comment applies to the infimum.

Thus, we shall only say that 0y is a sublattice of Ty when the supre-

mum and infimum of any set in the first system are the same as the
supremum and infimum of that set in the second.
The following two theorems are analogous to results obtained
by Garrett Rirkhoff concerning congruence relations on algebras
Theorem 11
The family @ of equivalence relations 6 C QX Q ona
set Q forms a complete lattice under set inclusion. I
(. is a nonempty subset of @ , thenInf ((7 ) = {,ﬁ 6

I fe C
and Sup (. ) = ( u 6)*.
ge C.

Proof: We note that if ¢ is a nonempty set of equivalence rela-

tions, then m g is an equivalence relation. Therefore,
fe

(W g=Inf (" ). Furthermore, QX Q is an equivalence relation
e

SO @ has an upper bound. Hence, by theorem 1€, @ is a com-

plete lattice under set inclusion. It is also not difficult to see that

b !

Sup () = ( \\/J 6)* because Sup (2 ) > L} g . Since k_} o) *
e 2 ge e O

is reflexive and symmetric and is the minimum transitive relation

including U 6. it is the minimum equivalence relation including
g€

, g. Thus the theorem is proved.
e’
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Theorem 12
The family 2 of cdngruence relations cC QX Qona
relational system S = (A, Q, F) forms a complete lattice
under set inclusion which is a sublattice of the lattice of
equlvalence relations on Q.

Proof: Assume that 2 is nonempty so that the lattice of congruence

relations if it exists is nondegenerate. Then, if ¢ is a nonempty
family of congruence relations gon S, we see that m o is a con-
ge
gruence relation because it is both an equivalence relation and a gen-
: Lo+
eralized congruence. Also, (‘\J a* = ( b g) since eachoe
CE Q. ge ¢
is reflexive. From our results concerning closure of generalized
congruences under union and transitive extension, we see that
] §
(b’ 0) is a generalized congruence and since it is an equivalence,
TE
it must be a congruence. Hence, both Sup (£ ) and Inf () are in .
so it forms a sublattice of the lattice of equivalence relations, and
the theorem is proved.

It is interesting to compare theorem 12 with remark 11. From
remark 1l we see that the family of generalized congruences on a sys-
tem S forms a complete lattice under set inclusion. The subset of this
lattice consisting of all congruences is also a complete lattice under
set inclusion. However. the second lattice is not gencrally a sublattice
of the first. il is clear that the reason is that the union of a set of equiv-

alence relations is not generally transitive and hence not another equiva-

lence relation. Therefure the Sup { (L) over the lattice of generalized
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congruences may differ from the Sup () over the lattice of con-

gruences.




Section 2

Use uf Multiple Index Matrices in Generalized Automata Theory

2.1 Introduction

An important generalization of automata theory occurs when one
allows the transition function of an automaton to have several argu-
ments. An ordinary automaton has a function fa associated with each
input configuration @ which maps the present state i to the next state j.
However, in the generalization, these functions may have several
arguments i(l),...,i(p) rather than a single argument i. Mezei
and Wrigh'. [31], and Thatcher and Wright [42] have shown that many
of the results of automata theory carry over in this generalization.

It is no longer reasonable to regard the arguments i(1), ..., i(p)
as states of a machine, since we may think of a machine as possessing
only a single state at a given time. Nevertheless, it is likely that the
new automata theory will have greater and more direct applicability to
machines than the old, because the operations actually carried out by
computers do usually have several arguments, and it is muct more
natural and convenient to describe a computer in terms of the opera-
tions it can perform than by means of a state transition table or diagram.

Difficulties with this generalization have not been so much concep-
tual as notational. Thus, with the object of placing the entire theory
within the framework of modern mathematics, Eilenberg and Wright
[7] have represented the generalized automata as categories, drawing

heavily upon earlier work of Lawvere [26] in universa! aigebra.

48
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In this paper we wish to describe an alternative method of
systematizing the treatment of generalized automata in a way which
we believe presents a number of advantages :
(1) The method is based on familiar mathematical notions which
are used frequently in switching and automata theory. It does
not require the introduction of category theory although category
theory may be applied to this as to many other mathematical sys-

tems,.

(2) There is a convenient way of visualizing the constructions of
the system which enables one to anticipate resu'ts.

(3) The present approach is in scme respects similar to the product
and permutation category (PROP) method described by MaclLane
[29], but is based upon a single operation and permits the deri-
vation of such notions as direct product and its properties in
terms »of this operation. Also, there is complete left-right duality
in the theory.

(4) There is a natural generalization to relational systems which
does not require the assumption of a distributive law with re-

spect to set union. A further possibility of generalization has to

do with matrices of numbers.

- s R A AN
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2.2 Multiple Index Matrices

If A is a matrix, then aij is often written to represent the ele-
ment in the i-th row and the j-th column of A. However, to avoid
cumbersome subscripts, we shall write [i(1) ... i(p) aj(1) ... j(q)]
to represent the matrix element when there are p row indices
i(1),...,i(p) and q column indices j(1),...,j(q). Our concern will
be with matrices in which all indices have the same range K, where
K is assumed to contain at least two elements. The matrix elements
are the Boclean quantities 1 or 0, i.e. truth or falsity, but most of
what we have to say applies equally well to matrices whose elements
are numbers.

We shall call the above matrix A a (p, q) index matrix and allow
p and q to be any integers greater than or equal to zero. Whenp= 0
andq > 0 we call A a row vector and when p > 0 and q = 0 we call it
a column vector, If p=q = 0, it is called a scalar.

An alternative terminology derived from network theory is te
call p and q the numbers oI input and cutput lines respectively. Wz

can thus represcnt A as a hox in the diagram below,

p Q;
— A
1 1
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We interpret this diagram as a device or process A which re-
quires p signals or arguments, taken from K and denoted by i(1),..., '
i(p), on the input lines 1,...,p respectively. It produces some con-
figuration of q signals or results, also taken from K and denoted by
j(1),...,i(q), on the corresponding output lines, such that the matrix
element [i(1) ... i(p) aj(1) ... j(q)] has the value 1, i.e. is a true
proposition. The sequence j(1), ..., j(q) may not be precisely speci-
fied by this requirement just as the '"next state’ of 4 nondeterministic .
machine is not precisely specified. and may be regarded as depend-
ing upon unspecified data or conditions. .
QOur basic rule concerns the formation of matrix product. Let
A and A" be (p, q) index and (p', q') index. matrices respectively. Then
the matrix product AA' = B is defined by treating two cases.
Case 1. If q > p’, then B has p row indices andq" =q' + p - p' column
indices. Each element of B is defined by the rule: [i(1) ... i{p) bj{1)
coo @)= S D Lo i(p) ak(l) L., k(PDIG'+D) .. (@M k(D) ..
K(p') a'i(1) ... (@) k(1) ... k(p') € K. A diagram representing this

case is shown below,

P q T
‘,
"+1 "+1
A Eone
p A q
1 1 1
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Case 2. If q <p', then B has p" = p +p' - q row indices and q' coluran
indices. Each element of B is defined by the rule: [i(1) ...

i(p") bi(Y) ... i(q)] = Z{i(1) ... i(p) ak(]) ... k()i K1) ...

k(q) i(p+1} ... i(p") a'i(1) ... j(q)] k(1) ... kiq) € K.

In this case we have the following diagram.

Al P ———>
b+l q+1 A !

p A q
—— e p— ~——————
1 1 1

When working with Boolean matrices, we interpret sum and
product as union and intersection in the above expression. When using
strict logical notation if one regards each matrix element as a prop-
osition, one should replace the symbol Zby 3, the symbol = by <=>,

and insert & between the two elements on the right.

2.3 Il.inked Lines and Reduced Matrices

Let A be a (p, q) index matrix. Then, we shall say that the m-th
row index is linked with the n-th column index if and only if
(1) [i(1)... i(p)aj(l)... jlg)] = 0 whenever i(m) £ j(n), and
(2) [i(1)... i(p)aj(1) ... j(g)] is independent of x = i(m) = j(n)

whenever i(m) = j(n).
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If the p-th row index and the q-th colunin index are linked, then
we may reduce A to a(p-1,q-1) index matrix A1 in which the element
[i() ... W(p-1) a;i(1) ... i(q-1)] is simply taken as equal to the element
[i(Y) ... i(p-1xajil) ... j(g-1)x] which is the same for all x inK. A
reduced matrix is one in which the p-th row index and q-th column in-
dex are not linked. It is clear that to any matrix A there corresponds
a unique reduced matrix Ar ohtained by repeatedly eliminating the
highest numbered row and column indices until this is nc 'onger possible.

Two matrices may be regarded as equivalent if they have the
same reduced matrix. It is possible to show that this equivalence rela-
tion is actually a congruence relation with respect to matrix multipli-
cation. That is to say, we obtain equivalent results regardless of
whether we multiply two matrices or their reductions. Thus, in the
remainder of this abstract we shall work with these congruence classes
of matrices, generally using reduced matrices as representatives of

imeir classes, In particular, we shall take the numbers p, q associated
with any =lass to be those of the reduced representative of that cl-ss.

A diagram corresponding to a congruence class of matrices may

be drawn as follows.

S e e wmm cmma W tmr e N e

) -
D+ qQ+2 Y
p+l q+l

p >

v s o TR LS TR
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The box labelled A corresponds to the reduced representative of the
class, Above this box we inmragine an infinite number of lines corres-
ponding to the linked indices of other members ot the class. Any in-
put sigral or argument on a liuie numbered n > p will pass ur-hanged as

a result on the linked output line numbered n-p+q.

2.4 The Group

Let ;4 be the group of all finite permutations of the set of all
natural numbers {1,2,...}. We can construct a set ~ o multiple
index matrices which is isomorphis to ,17 with matrix multiplication
corresponding to the group operation. This construction is possible
for any given index range K of cardinality two or greater.

Let S be a permutation in // wh.ch leaves ail numbers greater
than n fixed and maps {1,2,...,n} to {sy P sn}. We construct
a corresponding matrix d with p = q = n whose matrix elements
[i(1)...i(n) hi(s,). .. i(sn)] are 1 for any sequence i{1),..., i(n) in K,
and whose other matrix elements are all 0.

It may be shown that each row index number m of His linked to
the column index numbered S Thus, on our diagram H is an opera-
tion corresponding to a scrambling of the lines when passing from in-
put to output as given by the permutation §. It is possible to prove
that matrix multiplication of members of ¢ corresponds to the product
of the permutations. Note that the members of % are not permutation
matrices in the usual sense since they do no! permute the members of

K hut rather the indices.
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As a converient set of generators for A we shall choose the
matrices T correspcnding ‘o the cyclic permutations (12 ... n) of
the first n natural numbers. We shall write nnm for the m-th power

of L A rliagram for ngl may be drawn as follows.

n n
n-m+l ) m+l
n-m m
1 1

2.5 Relational Systems

The importance of the group # in connection with multiplication
of multiple index matrices should be clear since by choosing a suitable
member H of 7% we may make any connection AHB of output lines of
A with input lines of B.

Define a relational system A as any set of multiple index ma-

trices with some common index range K, called the carrier and with

the following two properties:




o6

(1) -ﬁ is closed under matrix multiplication

(2) A isa subset of S’ .
It is possible to show that matrix multiplication is associative so A
is a semigroup. Also, A“ is a group whose unit element is the scalar
1 which is a unit element for f . Thus, ,7? is 2 monoid or semi-
group with a unii.

Using the definitions given earlier we may prove the commuta-
tion law: Ang;p, A'ng+q, = "g;p' A'ngﬂ, A. A pictorial represen-
tation of the left and right sides o: this equation is shown on the follow-

ing page.
The direct product A ® A' is defined to be the quantity appear-

ing on either side of this equation. An alternative way of representing

A @ A' is by the diagram shown below.

p+p’ A’ q+q’ —>

L EAN -
p+l a+l

—_— >
p A q

T ] 1 —>

It is possible to prove that direct product is associative and that it has
various other properties.

An important special case of a relational system is that of an
algebra. Each matrix R in (1,') is then single valued in the sense

that for every sequence i(1)....,i(p) in K, there is exactly one sequence

et e sl
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j(1),...,i(q) in K such that [i(1) ... i(p) rj(1) ... j(a)) = 1. All cther
matrix elements have the valie 0. Furthermore, f: can be generated
from # anda set (X 0 of matrices with q =1.

For example, a semigroup may be generated from a single bi-
nary operation. Letting B denote this operation, we see that p =2
and q = 1, The associative law may be written: B3 = ng Br,B. To
describe 2 monoid we include the unit element E as an operation with

p=0andq =1 The unit rules are EB = E1r2B = e. Here, e denotes the

unit of > ratner than the unit of the monoid being described.

2.6 Relational Semigroups

A relational semigroup {RSG) is a slightly more abstract entity
than a relational system. It is defined as any semigroup J with the
following thr-e properties.

(1) 6/’ contains the subgroup f/ consisting of all finite permutations

of the natural numbers. Also, the unit e of A is the unit of & .

(2) Associated with each member T of </ there are two integers p(T),
q(T). both > 0, which obey the following rules.

(@) p(TT") < max (T). AT') - q(T) + p(T))

(b) q(TT') < max (q(T"). g(T) - p(T") +q(T"))

() PTT') - q(TT") = p(T) - q(T) + p(T') - q(T")

(d) p{e) = q(e) = 0, and p(S) = n,

where S is any element of a-/ and n is the largest number not {ixed un-

der the permutation S. Note that {a) and (b) are equivalent because of

(c).
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(3) The commutation law holds. Ina formal statement of this law, we
should replace each of the elements of .4 Ly a corresponding element
of /( .

It is possible to show that to every relational system there

corresponds an RSG defined in the obvious way with each matrix of

the relational system corresponding to an element of the RSG. 1t is
an open question whether to each RSG there corresponds a relational
system.

Let </ and /' betwo RSG's. Then any mapping h: J - J @

with the following three properties will be called an RSG homomorphism.

(1) h preserves the product operation, i.e. for T 1 and T2 in ,

h(T, T2) = h(Tl)h('I‘?_).

(2)  h is the identity map frema A in o to . in S
(3) a. p(T) > olh(T)),
b. a(T) > q(h(T)),
c. PT)-aT) = p{h(T) - q(n(T)), for Tin /. Again,
a and b are equivalent because of c.

If there is a homororphism h from an RSG \.,/ onto the RSG of a
velational system 4", then we shall say that .’ represents X
Fach T in .~ will be said to represent its image h(T) in c,:f’?.

The triple (h, ./ , .\ ) may be regarded as analogous to a ma-
chine in ordinary automata theory. Herc, an element T of ,,,' corres-
ponds to an input sequence. Rs image H(T) is the Boolean matrix des-

cribing the set of all pairs (i.j) such that T causes the transition from
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state i to state j. There are also elements of J whose images are a
row vector and a column vector corresponding to the sets of initial and
termiral states respectively.

It may be noted that an RSG plays the same role with respect to
a relational system as does a theory to an algebra in the Eilenberg and
Wright development [7].

A subset T of an RSG ./ will be called recognizable if and only
if / represents a relational system /' with finite carrier K such
that I' represents just the true scalars in A . We may show that this
type of set is a generalization of a regular set in the autumaton case.
Similar clcsure properties may be proved to hold but the proofs are
more difficult and not simple generalizations oi the proofs in the auto-
maton case.

Let & be a relational system with ¢ .rrier K and f any mapping

from K onto some set K'. Then, for each matrix R in A we may

form a matrix R' on the carrier K' letting [i'(1) ... i"(p)r'j'1) ... j'(qQ)] =

T{i(t) ... i(p) rj(1) ... j(q)], where the sum is taken over all matrix
elements of R such that £(i(1)) = i'(1),..., f(i(p)) = i"(p), Ki(1)) =
i'(1),...,1(i(q)) = i'(q). If the image &''of .Y is a relational sys-

tem and if the corresponding mapping is an RSG homomecerphism, then

we shall call f a relational system homomorphism from A to A

- - eo .-

A somewhat different definition uf homomorphism has been given
by Yeh [45] for relational systems generated by (1, 1) index matrices.
His definition is more general in some respects and less general in
others but fails t.. nossess input-output symmetry.
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Again, if we are given a relational system ﬁ with carrier K,
then we define a subset G of K to be recogrizable if and only if there
is a relational system homomorphism f from A to a relational sys-
tem (X' with finite carrier K' such that G consists of just those ele-
ments mapping to a given sukLcst G' of K'.

In the case in which A’ is an algebra the above definition may
be shown to be equivalent to that given by Mezei and Wright [31]. Clo-
sure results continue to hold, however, in this generalized case.

An important and interesting question concerns when the homomorphic
image of a recognizable set is also recognizable. A partial answer to

this question has been found.

2.7 Free Relational Semigroups

Let Q be a set of letters w with a pair (p(w), q(w) of nonnegative
integers associated with each w in 2. We may then form the free RSG

generated by @ which we write <#(). It has the property that if h is

any mapping from Q to an RSG 4 such that pw) > p(h(w)),
a(w) > q(h(w)), and p(w) - q(w) = p(h(w)) - q(h(w)) then h may be ex-
tended to an RSG homomorphism.

One may interpret each element T of f(Q) as a combinational
network composed of blocks with labels w taken from Q and having p(w)
inputs and q(w) outputs. The network itself has p/T) inputs and q(T)
outputs. Each input of a biock is either an input of the network or 2alse
connected to an output of one other block. A similar rule holds for out-

puts. If () represents a relational system A, then for any T in

il A IR SRR Rl T

e S g S v
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& () we may regard the image h(T) in as the operation carried
out by the network T.

Another application of (/5 (©2) is to language theory. Y.et Q@ con-
sist of a set 0T of (0,1) symbols A, a single (2,1) symbol B, and a
(1, 0) symbol C. Then, we may use £ () to represent the free semi-
grovp .f (Jt ) generated by JZ . Each Ae J( represents a row vec-
tor with a single unit corresponding to that generator in ,,( (U7 ), the
element B represents the concatenation operation, and C represents
a column vector consisting only of units. Since ,{ (U ) is an algebra,
e2ch row vec. °~ contains a single unit and represents the element or
elements ¢ 7 ) corresponding to the positicn of that unit,

if ¢ is recognizable on {/t(ﬂ ), then the row vectors R such that
RC is represented by a member of I are just the strings in a context
free language. Conversely, for every context free language on A {Jo)
tiiere is a recognizable I' on 97(9 ). The finite relational system
which is used to recognize I' is just the context free grammar of the
language. Prcductions in this grammar constitute a list of the unit
(or true) raatrix elements. The matrix element [i(1)i(2}bj(1)] = 1 of
B is written as a production j(1) - i{1)i(2). and the matrix element
[aj(1)] = 1 of A ¢ U7 is written j(1) ~ A where A is taken as a terminal
symbol. Finally {i(1)c! =1 of C is written C = i(1), where C is the
initial symbol. This difference in convention is of little consequence.
However, we may note that the elements of I' may be regarded as

trees, or hrackeied strings while their images in _{ (:7 ) nave had
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the brackets removed.

Another interesting avenue of study concerns relational systems
in which the group 4/ is augmented by certain other matrices and the
closure is taken under matcix v ultiplication. One such matrix is the
column vectcr consisting entirely of units, already mentioned in con-
nection with languages. A nother is the bifurcator or (I} 2) index ma-
trix F in which [i(1)£j(1)j(2)] is true if and only if i(1) = j(1} = j(2).

In the system of Eilenberg and Wright [7] both these operations are
implicitly assumed. Finally, a third matrix is one which may be
thought of as a union. This is a (2, !) index U in which [i(1)i(2)uj(1)]

is true if and only if either i{1) = i(1) or i(2) = i(1).
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Section 3

Asymptotic Decomposability of Machines i

3.1 Introduction

Series-parallel decomposition of sequential machines has been

studied extensively from the point of view of the decomposition of

specific machines [18, 23, 47]. Putzolu[36, 37] has recently obtained
results concerning the likelihood that randomly chosen machines ad-
mit this decomposition. His analysis treated the case in which a
state behavior type of realization was assumed and decomposition in-
volving state splitting was not permitted. In the present paper we at-
tack the analogous problem in which state splitting is allowed.

For definiteness and convenience we define here some of the
concepts which will be needed in our study. Let [n] represent the set
{1, ey n}, when n is any positive integer. Define a machine with n
states and p inputs as any mapping § from [nf] x [p] to [n], and write

. [[n]]il o] x [pl to represent the set of all such mappings. Following
(18], a decomposition of § € Knﬂﬂnﬂ x [pl into two machines

“In Il [nyll % [n,pl

Y l[i‘i-l}] v and 6 9 € [[n2]] is specifiea jy giving a

L€
‘mapping h from a subset of [[nII] X {[n2]]_-_dntc {ni such that whenever
i =h(j, %) and x ¢ [pll, then h(s 1(j, X), 62(1(, (f-l)p +X)) 1s defined and
equals 6 (i, X). A decomposition of § into more than two machines is
defined and equals ¢ (i, x}. “A decbmposuion of 6 into more than two

machines is }define‘d recurs.ively as the ‘r‘esult of further décomposiug

either &, or §, or both and repeating an arbitrary number of times. An

. e
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r-component decomposition is one which results from the performance

of the basic decomposition process r-1 times and therefoie yields r
machines. We need not formulate here the well known associative

principle which permits one to speak of the decomposition of 6 intor

machines 61, cee Gr without specifying the steps by which they were

obtained. We shall say that § is non-trivially decomposable if it

admits an r-component decomposition in which each of the resulting

r machines has fewer states than .
If cne is interested only in state behavior realizations, then the
mapping h is always taken as one-to-one. In this case to determine .
whether or not a m: “hine is nontrivially decomposahle one need only
consider 2-component decompositions. However, in the more general

ciose treated here there is no such restriction.

3.2 A Criterion for Decomposability

A machine § ¢ [[n]]i[n]] x ol is called a group rachine if each
restriction § ( , x) is a permutation of [n]. From any machine &

we may derive a group machine § ' by the simple expedient of letting

8'( .x)=06( ,x)if 6( .x) happens to be a permutation and letting
5 '\ .X) be the identity map otherwise. We note that the corresponding
group machine is the same as the original maci:ine if and only if the
original machine is a group machine.
Theorem 1
A machine § is nontrivially decomposable if and

only if the corresponding group machine § ' is

" nontrivally decomposable.
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This theorem may be easily proved using results of Krohn and
Rhodes [23] or of Zeiger [47]. Therefore we do not present a formal
proof here. In following the construction of Zeiger one may decom-
pose the machine § into components 6 { and § 97 where 9 has fewer
states than 6, and ¢ 1 is a permutation reset machine of the same num-
ber of states as 6 . The permutations of & i correspond to those of
6 ' and one may then show that to any nontrivial decomposition of § '
there is an isomorphic nontrivial decomposition of & 1

As a corollary to theorem 1 we have the result that if
b € [[nIil[nﬂ x {p] is a machine of n >3 states such that for no input
x e [p]l is 6 ( ,x) a permutation, then § is nontrivially decomposable,
It is this corollary which is required in the proof of thcorem 2 in the
next section. We note that in Zeiger's constructio., if 6 ( ,x) is never
a permutation, then é 1 is 2 reset machine. Then, any nontrivial
partition on {[n] - ﬂnlﬂ has the substitution property for 6 1 Hence

8 1 (and consequently 6) is nontrivially decomposable.

3.3 Decomposability of Randomly Selected Machines

In this section we shall be concerned with estimating what frac-
tion of the set [[n]]{I o] x Lpl is rontrivially decompcsable, and in par-
ticular shall investigate the way this function of n and p behaves as n

and p approach .




6"

Theorgri Z ; §

If pnl/ze_n ~0as n -, then the probability ap-
proaches 1 that a machine 6 will be nontrivially
decomposable if it is chosen at random from
gnplnl = Lol

Proof: I € [[n]][[n]] x ol is a machine such that for no x e [ p]]

is 6 ( , x) a permutation then § is surely decomposable by the fol-

lowing reasoning. Since n > 2and§'( ,x) is the identity function
for all X, we may decompose § ' in any way we wish using state be-
havior realizations and identity functions for the components. By
theorem 1, 6 is thus nontrivially decomposable. Now there are n!
permutations and n" mappings of [n] into [n] so the probability that
no mapping 6 ( , x) be a permutation is (1 - Ein)p. However using

n
! ! a2 .
Stirling's formula, we have (1 - i'ﬁ)p > 1- -p—%'- =1- V2n pnl/"‘e n

n n
1+ 0(%)) ~1lasp ~w. This completes the proof of the theorem.

_ Lemma 1
The fraction of all permutations of n letters in which
[n/m]
no cycle has a length divisibleky mis 0 (1 - m).
i=1

Proof: Write T (n) for the number of permutations ¢ of [n]} having

no cycle with a length divisible by m. For r < m, if the cycle con-

taining the letter 1 has length r, then there are Tm(n—r) ways in which
the remaining cycles may be chosen. The cycle containing 1 may be

chosen in (n-1)! /(n-r)! ways. Hence, there are
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m-zl [(n-1)1 /(n-r)!]Tm(n—r) permutations of type ¢ in which the cycle
c?nltaining 1 has length less thar. a. Now, the cycle containing 1 must
not have length m, but if it has length greater than m, then we may
treat the portion of this cycle consisting of 1 and the chain of m let-
ters following 1 as if they were a single letter. This chain may be
chosen in (n-1)! /(n-m-1)! ways and following its choice there are
Tm(:a-m) ways in which the remainder of the permutation may be cho-
sen. Thus, we obtain

m-1
T (n) = rgl [(n-1)1 /(n-r)l]Tm(n—r) + [(n-l)!/(n-m-l)l]Tm(n-m).
This difference equation has a unique solution subject to the ccnditions

that Tm(l) =land T m(O) =1, where it is assumed that coefficients for

terms in Tm(n-r) vanish when r > n, To prove the lemma, we show that

T (n) =n! T (1- 71—-) is a solution to the difference equation.
m i=1 im

We may check directly that Tm(n) = n! when n < m and also

Tm(m) = (m-1)(m-1)!. To justify our formula when n > m it is

more convenient to derive the following (m+1)-st order difference
equation:

nTm(n-l)—Tm(n) = [(n-l)!/(n-m)l](n-m-l)[(n-m)Tm(n-m-l)-Tm(n-m)].
(5]

m
Substituting T _(n)=nl N0 (1 - —l-). we may check that both sides
m i=1 im

vanish when n is not divisible by m. Otherwise both sides have the
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m
value (n-1)! II (1 - %1). No spurious solution is posgsible since

i=j
the first m+1 points agree with the solution to our original equation.

=

This completes the proof of the lemma.

An immediate consequence of this lemma follows from the fact
that when m is a prime or a power of a prime, the order of a permu-
tation is divisible Dy m if and only if it has a cycle whose length is

divisible by m. In this case, there are exactly

n
(2]
Tm(n) =n! O (- T:B) permutations of n letters whose order is not
i=1

divisible by m. In our application the exact formula is less convenient

than an asympictic expression which may be derived as follows.

n
n [Yn_ 1 L
[ I (i- ) (n'm
I (1__}_) _ =1 .- m
i=1 m [imjl ra- ‘;'{)

1
LBl
ra-1)

The asymptotic result holds when m remains fixed and n ~ «, see
1

reference {43]. Also, n! ~ V21 nz (g)n, so we have

1 11
_ m™ VT (- &) an
R @
" m

R N




70

In particular, we obtain:

1

N 8 | N 6 n.n
x2(n) 2(3) , and T3(“) 2.67n (E) .

The second of the ' ~v;.ressions is used in the proof of theorem 3.
A group G of permutations on a set [n]] of n letters is called
imprimitive (16] if there is a nontrivial partition on [n] into disjoint

subsets Sl’ cees 8, with the substitution property [18]. This means that

for all g € G and sets 8; in the pertitior, there is some set Sj in the
partition such that S8 <& Sj‘ Since G is a group, one can easily show
that actually S8 = Sj‘ If there is no such partition, then G is called
primitive and we have the following lemma.
Lemma 2
Two randomiy chosen permutations on a set of n
letters generate a primitive group with probability

approaching 1 as n approaches w.

Proof: Agaw write [n]] = {1,...,n} for the set of n letters to be

permuted, and let 0 and y be chosen randomly from the seu of n! per-
mutations of [In]]. We see that the group generated by g and y is im-
primitive if [[n" ~an be partitioned into tw nonempty sets of cardi-

nality ny, and n-n, such that g and y both permute the letters of these

1
sets among themselves. Partitions of this type will be called separa-
ble, and we see that there are (nl ! )2((n-nl)!)2 ways in which o and y
may be chosen so that the partition into two such sets is separable.

While it is clear that for a given 0 and y there may be more than one
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separable partition, we have the upper bound

@, 2
Y (D - n)1)
n1=1 1

number of ways ¢ and y may be chosen so as to allow [[n] to
2
have a separable partition. Thus, of the (n!) ways to choose o and

y tre fraction allowing a separable partition is no greater than

rm
‘%' nl!(n-nl)! 1 9
————— . The {irst two terms of this summ are = +
L ] -
n1=1 n! n " n{n-1)
. n . 6
while the [-2-] - 2 remaining terms are each no greater than AR (E-a)
n
[‘Z‘] nll(n—nl)! 1 1
We may therefore write Y S =240 (<), and we ob-
n =1 n! 1 -1?
1=

serve that this bound approaches 0 as n approaches .

Even if there is no separable partition of [n] there may yet be
a partition with the substitution property. For this to occur, each
class in such a partition must be capable of being mapped into any
glven class by a suitably chosen permutation in the group generated by
ocandy. Hence, all classes must contain the same number of letters.

be the number of letters in a class and a the number of classes.
nt

Let n1

Thenn=an ways of form-

1 where 1 -’a, n, and there are
al{n,!
ing such a partition. For any given partition of this {ype the permutations
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o and ¥ may together be chosen in [al(n1 l)a]2

ways so that the sub-

stitution property is satisfied. Thu: n! al (nl!)a is an upper bound
to the nuraber of ways that o and y may be chosen so some partition
into a equal classes has the substitution property. The ratio of this
bound to (nl)2 may be written

(n)* 2.2 2.3 . 3 3
e a2 - anae o @ Ee - G -

M M
Gaean) - )

We have takena > 1 and as a consequence no factor in this product

2
may be greater than 3 and an upper bound to the product is there-

n

(5]
tore (" < &?

Since the number of possible %hoices for n,
clearly cannot exceed n, there is the upper bound n(%EQ] to the
probability that for randomly chosen permutations o and ;' there is

a partition with the substitution property which is not separable. Since
this bound slso approaches 0 as n approaches w the proof of the lem-
ma is complete,

One may conclude slightly more than ic contained in the state-
ment of the lemma if a trivial refinement is made in the proof. The
actual fraction of the pairs o,y having a separable partition with
nl=l is lcss thanrll but is asymptotic to% as n ~®. Thus, we see

that these partitions account for almost all cases in which the group

generated by 0 a~~ .- ‘mpromitive as n ~«. The prooability that

i et L il
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this group +vill be imprimitive is thus asymptotic to —lﬂ .

Theorem 3

1
If pnoe ™ = as n =, then the probability approaches

SRl IS,

0 that a machine & will be nontrivially decomposable if ;

nf x [p]

it is chosen at random from [[n]]lI
Proof: By the theory of Krohn and Rhodes [23], if there exist inputs
x ¢ [ pl such that the corresponding mappings & ( ,x) are permutations
which generate the alternating group An on n¥4 letters, then the ma-
chine 6 is indecomposable. This fact follows because some compo-

nent in any decomposition of 5 must have an input semigroup with a

subgroup which is the inverse homomorphic image of A o Therefore,
this component must have at least n states, so § fails io satisfy our
criterion of nontrivial decomposability. We shall show that the prob-
: apility approaches 1 as n approaches « that An is a subgroup of the in-
put semigroup of § .

Let s be any permutation of [ n]] which cyclically permutes some

¢et {i,j,k} C [n] of three states and produces a permutation of some
order v on the remaining states whick is not divisible by 3. Then s
may be used to generate a cyclic permutation t of {1, j, k}, since we may
take t=s” which cyclically permutes {i,j, k}, leaving the remaining let-

{n-
ters fixed. We compute that there are _..._.__:“("‘1)\n 2)

cyclic permutations
of some set {i,j,kl C [n. Furthermore, for each such permutation

there are T3(n-3) permutations of the remaining states whose order v
n{n-1)(n-2)
3

O T

is not divisibie by 3. Hence, there are T3(n-3) per._.utations
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of type s. By lemma 1 and the asymptotic expression for T3(n) de-

rived from it, we have

3 § -3 %»/'2_
T4(n-3) ~ K(n-3) (“;3) -3 _gn @, where K - %-(% - 2.67.
3

| s

Thus, n(_n-_%)(n_—Z) Ts(n-S) ~ %nq (r—;)n. The probability that none of
the first [-g‘ inputs yields a permutation of type s is therefore

- [g] n(n-1)(n-2)T,(n-3)

n(n-l)(n-z)T3(n-3)[§] 3 B
) < e

(1-

3nn

Hence, the provability approaches 1 that at least one of the inputs
xel [%’] ] yields a permutation s = §( ,x) which may be used to gen-
erate a cyclic permutation t of three s 1ites.

The probability also approaches 1 that each of the two sets

| [2321 -0 [g] I and[pl - [%E] | contains some input yielding a
permutation because these sets contain on the order of g inputs. By
lemma 2, we note that two raudomly chosen permutations of [n] gen-
erate a primitive group G with probability appruaching 1 as n approaches
©. Hence. we assume that a primitive group G on [n] is generated from

two of the inputs in [p] - [ [g] I and that a cyclic permutation t of three

states is generated from cne of the inputs in | [g] i




T A e s

5

Let {,’// be the set of all elements of the group G U {t} which
cyclically permute three states, leaving all otlers fixed. It is known
[16] that if ?/» contains all such cyclic permutations, then An is a sub-
group of G U {t}. Define § C [n] x [n] as the set of all pairs (i, i)
both lying in soime cycle of an element of 'f,/f . Then 6 is an equivalence
relation since if (il, i2) lie on a cycle of t and (Lz, 13) lie on a cycle of
1.-1

t]' t, if the third mem-

bers of the cycles for (il, iz) and (12, 13) are distinct and on a cycle

t2, then (il, 13) lie on a cycle (i1 i, 13) = t1 t2

(ili213) = tzt1 if the third members are the same. This construction
shows us thai: whenever il, 12, and 13 are in the same § class, then

the cycle (i;lyiy) is in i Also, ginduces a partition ou [[n]] which

has the substitution property with respect to G. For, let g be any ele-

ment of G, then (i 2) € 6 with corresponding t1 € 7~ ., we see that

r! i
g-ltlg is also a cvclic permutation in g for the pair (ilg’ izg). Conse-

quently (ilg, i2g) is in §. But G was assumed to be primitive and 7

is nonempty since it contains t, sc¢ :/. must contain all cy:lic permu-
v

tations of three states. Thus, </ generates An’ with probability

¥

approaching 1 as n approaches w. This completes the proof.

3.4 Additional Remarks

The condition for nontrivial decomposability stated in section 2., 1

- applies to each input of a machine separately. Therefore, for fixed

n. the probability of nontrivial decomposibility can never increase as
p increases. However, the theorems of section 3.3 fail to provide in-

forn.ation concerning the probability of nontrivial decomposability in
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certain cases as indicated by the following corollary to theorems 2
and 3.

Corollary 1

n-ln .
If —l—n—n—p approaches a limit ¢ as n approaches « then

the probability of nontrivial decomposability approaches

1iff> %— and approaches 0 if ¢ < %

Proof: If lim (Err'-lmT > %, then for some € > 0 and n, we have
n-—w
1

nlnp o 1 ¢ whenever n>n. Hence, p n2 e ™ < 1/nf and since
Inn 2 0

ltpne -0 as n~w, we may apply theorem 2. If lim (-rﬁ—hr:—% < %,
n-—w

n-ln 1
then for some ¢ > 0 and no we have 'HTP < g ¢ whenever
1
n>ng. Hence, pn e™™ > n® andsince n® = as n ~w, we may

applv theorem 3. This completes the proof.

We note that nothing is known about the case in which £ lies in
the range % << ;- It is conjectured that this ""gap' is removable
and that a more delicate pair of theorems similar to 2 and 3 is valid

in whick the same exponents of nappear, In particular, it seems
1
possible that the condition p n““'y e~ may be sufficient to obtain

the conclusion of theorem 3.

Corollary 2

If 1ﬁn_p approaches a limit {'as n approaches «, then
the probability of nontrivial decomposability app:oaches

1if (' > 1 and approaches 0 if ' T 1.

b, SR i

E e e
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This result follows easily from corollary 1, and permits one to
compare the probability of this type of decomposition with state be-
havior decomposition. In [36,37] it is shown that the limiting value
of H%" is an appropriate quantity to consider in order to determine
whether the limiting probability of nontrivial state behavior decompo-
sition is 1 or 0.

Another question of some interest concerns whether or not a ma-
chine 6 is nontrivially decomposable into just two components § 1 and
o X each having fewer states than 6. As was pointed out in the intro-
duction, a machine may be nontrivially decomposable without being
nontrivially decomposable into two components. An example is the
universal 4-state machine which is decomposable into 4 components
of 3, 2,2 and 3 states, but not into two components each of fewer than
4 states.

According to [1o] a machine admits a nontrivial 2-component
decomposition if and only if it admits a nontrivial set system decoem-
position.

Using methods similar to those used in the proof of theorem 2,
it is possible to show that if %‘}%—P > g as n ~w, then for any k > 0,
the probability that a randomly chcsen § ¢ [ nl}ﬂ n x [p] admits at
least k nontrivial SP set systems approaches 1; correspondingly, the

expected number of nontrivial SP set systems of a machine approaches

@.
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b ‘ An unsettled question is whether set system (i.e. 2-component)
nontrivial decomposability isalmost surely satisfied if

S ¢ Blnp o1 on-w Itis hoped that further studies may pro-
2 = Inn 2 ’

vide answers to some of these questions.

et e, et




Section 4

The Recognizability of Equational Sets

Automata theory and the theory of formal languages are closely
related: automata recognize, parse and translate languages; languages
are used to program and describe automata, This research is con-
cerned with some specific results relating the generation and recog-
nizability of languages.

It is well known to automata theorists that a language is gene-
rated by a left linear grammar iff it is recognized by some finite au-
tomaton. In this case, there is an effective process whereby one can
find a deterministic system (i. e. finite automaton) which recognizes
the language generated by a non-deterministic system (i.e. left
linear grammar). It has been shown by Mezei and Weight [31] that
this effective process can be generalized to any case where the lan-
guages in question are subsets of the set T of all fully parenthesized
legal algebraic expressions or computation trees on some fixed set
of operator symbols & (each symbol in  has a given constant spec-
ifying the number of operands required). In this generalization,
""generated by a left linear grammar' is replaced by "generated by a
context free grammar which allows cnly legal algebraic expressions
(on © and some finite set of nonterminals) to be substituted for non-
terminals.' (Such sets are called equational by Mezei and Wright [31},
grammatical by Muller [33], and algebraic by Eilenberg and Wright

[20]. They might also be called algebraic context free languages. ),

79
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"it is recognized by some finite antomaton" is replaced by it is the
inverse homomorphic image in T' of a subset of a finite algebra on

Q." (Such sets are called "recognizable'" by Mezei and Wright [31],
and "finite tree automaton definable" by Rabin [38]. Notice that T must
be made into an algebra on  for homomorphism to be defined; this
can be done in a natural way, and the resulting algebra is called the
generic algebra on Q.

The definitions of equationality and recognizability can, in fact,
be made in any algebra 0U on Q. Equational sets in Jt are precisely
the homomorphic images of equational sets in T. Recognizable sets
in J{ are the inverse homomorphic images in 0U of subsets of fi-
nite 1lgebras on Q. It is now of interest to ask for which aigebras
the equational sets and the recognizable sets coincide.

In any finitely generated algebra, recognizable sets are equa-
tional. However, in a finitely generated free semigroup the equational
sets are the usual context free languages while the recognizable sets
are just the regular events. Hence there exist finitely generated 2lge-
bras in which not all equat:,nal sets are recognizable. Thus the fol-
lowing conditions on a ficitely generated algebra 97 on @, each of
which by itself implies that the equational sets of J' are recognizable,

are of interest:

1) ©7 1is isomorphic to a generic algebra modulo a con-
gruence p. defined by an algebraic phrase structure

*
grammar G by (x,y) € Pg iff x %—-> and y T) X. (See
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Ginsburg [15] for definitions of phrase structure grammar

*
and 'f>; when the strings being opera‘:d are legal alge-

braic expressions on  and some set of nonterminals, G

is called algebraic iff the rules of G allow only replace-

ment of one legal algebraic subexpression by another).

This condition includes the case where 01 is finitely pre-

sentable on a generic algebra. The following is used in

the proof of sufficiency: Theorem: Every algebraic phrase
structure language i a generic algebra is equational.
2) JU is isomorphic to a generic monadic algebra moculo a

congruence which is a binary transduction. (See Elgot and

5 Mezei [8] for the definition of binary transduction.) This
includes the monadic case of (1) but is not included by it,
as may be seen using a monadic algebra with idempotent
operators. The latter is of interest in asynchronous switch-
ing theory. The condition above has been generalized to ]
non-monac.c algebras.

3) J7 is a subset of an algebra ¢35 on some set Q' of opera- ; ’
tor symbols, where the equational subsets of /i~ are recog-
nizable, and where certain relations hold between the opera-

tions defined on JI by © and the operations defined on 4>

by Q'. This result is due to Muller [33].

If the equational sets of an algebra J7 are recognizable, then

ali word problems on J( are solvable. The converse, unfortunately,
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E : does not hold.

It is thought that these results have some implications for paren-
thesis languages, loop free parallel computation, data structures

(lists in particular) and possibly other areas.




Section 5

Algebraic Isomorphism Invariants for Transition Graphs

The material presented here summarizes and concludes re-

search already appearing in the 1966 and 1967 annual reports. In

the meantime these results were issued as Systems Engineering
Laboratory Technical Report No. 21, "Algebraic Isomorphism In-

variants for Transition Graphs, ' where full proofs and bibliographical

references are to be found, Here an effort has been made to present

in a self-contained and compact form the more significant results.

A transition graph G is a finite, directed graph such that every

point of G has outdegree 0 or 1. (By a directed graph G = (X,v) we )
mean the graph of a relationy on a set X, Thus "loops" are permitted. )

Thus G = (X, y) is a transition graph if and only if v is a partial trans-
formation on X. Accordingly, we say that a transition graph G = (X, v)

is a transformation graph if y is a (complete) transformation on X

and that G = (X,y) is a permutation graph ify is a permutation on X.

The composition G o G' of two graphs G = (X,y) and G' = ‘X,y")
(G and G' are defined on the same set of points) is the result of com-

posing their lines, i.e.

GoG' = (X, vv")
where yy' is the composition of the relations y andy'.
Let fin denote the set of all digraphs on the points
N = {L2.....n}. Then obviously ( A o ) is a semigroup. If

further we let /7. n( F) denote the muitiplicative semigroup of linear

83
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transformations on an n-dimensional vector space V over a field F,

the natural representation of ﬂn relative to F and some represen-

tation basis (1 = {a Pegree ,an} (A is any basis for V) is the
function:
p: #n - 77=n(F)

where p(G) = T

G is defined as follows:

Lif (1,j) ey
n
aiTG = jZ:l aijaj where aij =

0 otherwise,
for all a; € [L . (Thus, ithe natural representation of ﬂ n relative
to Fand (1 is simply a linear transformation equivalent of the usual
representation of graphs by adjacency matrices. More precisely, if
the adjacency matrix AG of G is regarded as being over the represen-
tation field F then A , is just the matrix of T

G
sentation basis /Z .)

G with respect to the repre-
In terms of the natural representation we observe, first of all,
the following weli known result (usually stated for adjacency matrices
over the reals):
Theorem 1
If two graphs G and G' are isomorphic (G £ G') then,
under the natural representation (relative to any choice
of representation field F and basis 2, the representing

m ~ ~
transformations T and TG' are similar (TG Tg,).
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Note that the condition "TG ~ TG," is stronger than that of being
"cospectral" since the latter requires only that TG and TG' have the

same characteristic polynomial, In particular, for example, one can
show that all n-point directed trees which are either to or from a point
must be cospectral and yet many such trees can be d.stinguished by the
fact that their representations are nonsimilar,
In what follows we assume that the natural representation is re-
stricted to the semigroup un of transition graphs on N n
Theorem 2
There exist nonisomorphic transition graphs that are
similarly represented.

Proof: Consider the following two graphs in U &
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and suppnse that the representation fieid is the reals. Then one can
show that TG and TG' have tife same nontrivial invariant polyaomials
(invariant factors), namely

x3 - x2 and x

and so TG ~ TG"

theorem holds.

As G and G’ are obviously nonisomorphic, the

Thus, even for this relatively restricted class cf gra pns, a com-
plete set of similarity invariants for the representing linear transfor-
mations (e. g. their invariant polynomials or elementary divisors) fails
to yield a complete set of isomorphism invariants. The investigation
suminarized below is concerned with the discovery of just why this is
so, the main result being a graphical characterization of the structural
information conveyed by any complete set of similarity invariants.

Summarizing, first of all, some well known results regarding
the general structure of transition graphs, every (weak) component of
a transition graph is either a flower {a weakly connected transformation

graph) or a tree-to-a-point. (Trees-to-a-point will subsequently be

referred to as "trees.') Also, transition graphs are obviously unipathic
and consequently we can use the notation [x, y] to denote a path from x
toy. #[x,y] will denote the length cf path [x,y]. A cycle-point of a
transition graph is any point that lies in a cycle. A tree-point is any
point that is not a cycle-point. Thus every point cf a transition graph
G is a cycle-point iff G is a permutation graph: every point of G is a

tree-point iff G is a forest. The period of a flower G is the rumber of

- -
o e i A oA LBt o A A, w08 S
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cycle-points of G (i. e. the length of ite unique cycle). The root ofa
tree G is the unique point of G having cutdegree 0.

If G is a transition graph and x is 2 point of G, let C(x) denote
the (weak) component determined by x. Then the notion of "height, "
as usually defined for trees, can be extended to transition graphs as

follows:

Nefinition 1
If G = (X,v) is a transition graph and x € X then the

height h(x) of x is defined as follows:

i) I C(x) is a flower then .
h(x) = min {f[x, s}y is a cycle-point of C{x)}
ii) I C(x) is a tree then
n(x) = ¢[x, xo] where x, is the root of C(x),
(Note that h(x) = 0 if and only if x is either a cycle-point
or a root.)
Definition 2

The height h(G) of a transition graph G is the maximum

height of any point of G.

1
For connected transition graphs (i.e. trees and flowers), we
find that the invariant polynomials of the representing transformations

are intimately related to the heights of certain points in the corresponding

- e 4 = -

l"Connected" will subsequently mean "weakly connected" unless other-
wise qualified.
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graphs. This important relationship can be expressed in the form of an
aigorithm for computing the invariant polynomials of TG directly from
the structure of G. K G = (X.y) is a transition graph let R(G, x) denote

the reachable set of x, i.e.

R(G,x) = {yl[x,y] is a path of G}

and if Y is a proper subset of X let G-Y denote the removal of Y from

G, i.e,
G - Y = G restricted to the set of points X - Y.

Then given any transition graph G we define a sequence of subgraphs
Gl’ng --.,Gt

as follows:

i) Kx isa point of maximum height in G, = (X,,7;) and R(G,, x,) # X,
then
Giy1 = Gj - RGyxp.

Otnerwise the sequence terminates, that is, Gt = Gi' We say

that such a sequence is derived from G and although a derived sequence

is not necessarily unique (even up to isomorphism) we obtain the follow-

ing important result,
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Theorem 3
If G is a connected transition graph and Gy, Gy, ..., G, is a se-
quence of subgraphs derived from G then the representing linear
transformation TG has t nontrivial invariant polynomials tpi(x),
i=1, 2,...,t, which can be graphically determined as follows:

i) If G is a flower of period r then

h(G,)+r h(G,)
WI(X) = X 1 -X 1 .

If G is a tree then

h(G1)+1
Wl(x) = X
ii) Ift > 1 then
h(Gi)+1
zpi(x) = X , 1=2,8,...,t.

The proof of the theorem is based on the classicai decomposition
of a vector space V (relative to a linear transformation T on V) into
cyclic subspaces Vl’ V2, ceey Vt such that the minimum polynomial of
Vi coincides with the i-th nentrivial invariant polynomial of T. The
process of forming a derived sequence of subgraphs parallels this de-
compgasition process where points of maximum height correspond to
vectors which generate the various cyclic subspaces. The grapb ob-
tained on removing a maximum reachable set R(Gi, xi) corresponds to
the linear transformation T induced by T oa the quotient space
V/iV,® v, ®...8 Vi Therefore, although a somewhat lengthy proof
is required to take care of all the details, the verification is conceptually

rather straightforward.

e B




90

To illustrate the theorem, consider the following transition

graph which is a flower of period 2 on 12 points .

Forming a derived sequence of subgraphs:
Gl = G
and as h(3) = h(G,) (we could have also chosen point 7) and

R(G,,3) = {1,2,3,4,5,6} we have:

12e—<¢— 11

9]
LX)
il
©

10

. -
i 7 vt btz




Ash(T) = h(Gy):

L d

A

Ga = o
3 10 12
Removing R(Gs, 1),

G, =
4 10

and as R(G & 10) = {10}, the process termiuates. Accordingly, T

11

G

has four nontrivial invariant polynomials, namely

v = 0o x

Yyl) = X

Ya(x) = x°
and Y = x

If we remove the connectedness constraint, the procedure of the

previous theorem cannot, in general, be applied. However, if we re-

quire that the transition graph be a forest1 then such a generalization

is possible, that is:

1In what follows we will use the term "forest' to mean '"transition
graph forest.” Thus G is a forest f every component of G is a

tree-to-a-point,
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Theorem 4

If G is a forest and Gl’ Gz, ceny Gt is a sequence of

subgraphs derived from G then T , has t nontrivial

G
invariant polynomials \pi(x) where

h(G,)+1
Y = x ; i=1,2,...,t.

In order to obtain a graphical characterization of the invariant

polynomials for arbitrary transition graphs, we first define two se-

quences of numerical invariants that relate directly to the structure

of a transition graph G. If x is a tree-point of G the depth d(x) of x

is the length of the longest (directed) path to x, i.e.

Accordingly

d(x) = max{‘\y,x|l{y, x] is a path of G}.

Definition 3

EGe U n then the depth sequence of G is the sequence

G(G) = (dO’ dl’ ceey dn_]_)

where
dj = the number of tree-points x of G such
that d(x) = j,
=0, 1,...,n-1

Thus if6(G) = (dy dyy .., d ), the sum
n-1

]

0

—
H

is simple the total number of tree-points oi G.

In particular,




93

if G is a forest then t=n; if (; is a permutation graph,
t=0.
A second sequence describes the cycle structure of a transition
graph and is defined as follows :

Definition 4

———

fGe ?Ln the period sequence of G is the sequence

7(G) = (rl, Toreees rn)
where
rj = the number of componeints of G that are
flowers of period j,
=L, 2,...,n,
Note that when G is a permutation graph, m(G) corresponds

to the usual description of cycle structure for permutations.

At the other extreme, if G is a forest then #(G) = (0,0,...,0).

Example: The transition graph

a0

10
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has depth sequence

6(G) = (51,1,1,:0,0,0,0,0,0)

and period sequence
7(G) = (0,1,0,0,0,0,0,0,0,0).
The study of transition graphs decomposes rather naturally into
the study of two important subclasses, namely forests and permuta-
tion graphs. If we suppose first that G is a forest, it follows that T

G

is nilpotent and, accordingly, for some integer 1 <t<n, TG has t
invariant polynomials

€ e €
t
X ,X ,...,X

where €; > €1 (1<i<t). (The integers e, are simetimes re-
ferred to as the indices of a nilpotent linear transfcrmation.) By
applying theorem 4, the indices of a representing nilpotent transfor-
mation TG can be related directly to the structure of G as follows:

Theorem 5

If G is a forest and T, has indices €pey.a.r

G
then the depth sequence of G is

5(G) = (dgdp..ond )
where dj = l{i!ei >ijtl, j=0,1,...,n-1,
In other words the number of points of G having depth
j is equal to the number of invariant polynomials of TG
having degree greater than j.

Turning this result around we can show, conversely, that the

depth sequence uniquely determines the invariant polynomials of TG




that is,

Theorem 6
If G is a forest with depth sequence
a(G) = (dos dl’ . .,dn_l)
then, for each integer i (1< i< n), ioccurs exactly
mpo= 49
times as an index of TG.
Combining the previous two results we have proved that forests

are similarly renresented if and only if they have the same depth

seque.ce, i.e,

Theorem 7
L If G and G' are forests then TG ~ TG' if and only if
‘ ‘ 5(G) = 8(G).
“ This, then, completes the graphical characterization of similarity

for forests,

| To this point, the transition graphs considered have been such

that similarity invariants of their corresponding linear transformations

do not depend on the nature of the representation field. However, when
we consider transition graphs having nontrivial period sequences (i.e.,
multi-flower transition graphs) this is no longer the case. To illus-
trate this fact, consider the following two-component permutation

graph:

G:
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If the representation field F is a field of characteristic 0 (say, the

reals) then the characteristic polynomial ¢ is given by :
G

$p (x) = x2-2x+1.
G

On the other hand, if F = FZ’ the 2-element field, then
¢T \1() = X2 + L
G

Consequently, if G is compared with the connected permutation graph

which, over any field, is represented by a transformation having

the characteristic polynomial

if F has characteristic 0 then we see that the nonisomorphic graphs
G and G' can be distinguished by their corresponding characteristic
polynomials. On the cother hand, if the representation field is Fz,

we observe that TG and TG'
(i.e. G and G' are cospectral over Fz). An important questions, there-

have the same characteristic polynomial

fore, is whether the graphical interpretation of a complete set of sim-
ilarity invariatns (the characteristic polynomial is generally incom-
plete) will likewise depend on the choice of representation field. We
begin the investigation of this question by graphically formulating the

elementary divisors of T . relative to the various possible choices of

G

e
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a representation field F.

In determining the elementary divisors of TG we note first of
all that we can restrict our attention to prime fields (a field is prime
if it contains no proper subfields). This is possible since TG is de-
fine 1 in terms of the scalars 0 and 1 and, consequently, if F is a re-
presentation field of characteristic k (k=0 or some prime p) TG is
also over the prime subfield Fk of F. As two linear transformations
are similar over Fk if and only if they are similar over any exten-
sion of Fk (i. e., any field of characteristic k), no loss of generality
will result from such a restriction.

Let Fk denote a prime field of characteristic k and let @i(x) de-

note the i-th cyclotomic polynomial (over Fk) where i is any positive

integer not divisible by k (k [ 1). (If k=0, &(x) is defined for all
i> 1. @i(x), by definition, is the polynomial whose roots are all the
primitive i-th roots of unity found in any extension of Fk.) I we
suppose now that G is a permutation graph and consider first the case
where F = Fy = Q (the rational numbers) the elementary divisors of
T can be graphically determined as follows:

G
Theorem 8

If G is a permutation graph with period sequence
"(G) = (rxi 1‘2' sy rn)
and the natural representation is over Q then, for all

i such that 1 < i <a, the cyclotomic polynomial d»i(k)

nccurs exactly

i
g
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times as an elementary divisor of T Moreover, when

G
taken in their totality, these are all the elementary di-
visors of TG'
To express a similar result for fields of prime characteristic p,
if j is some positive integer, let ¢(j) denote the exponent of p the prime
decomposition of j {if p { j, €(j) = 0). Thus j can be written:
i = ipel
where p / j'. If further we let 6 i, § d2note the familiar Kronecker
deita then
Theorem 9
If G is a permutation graph with period sequence
7(G) = (rl, Ty ...,rn)
and ke natural representation is over Fp (p a prime)
then, for all i such that 1<i<nandp/{ i, each pri-
maryl factor of the polynomial
40"

occurs exactly

e - v
M 1]"3 C()
times as an elementary divisor of T (k=0, 1, ... ,log_p)).

P T

lln the prime decomposition of a polynomial, the primary factoic are
the various powers of the prime factors.
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Moreover, vhen taken in their totality, these are all the
elementary divisors of TG.

For each of the formulations given by the theorems 8 and 9, if

one now supposes that the inegers m, or m(.k)

i {  are given and regards

the formulae as a systera of equations in the n unknowns
TR PYRERER
it can be shown, in each case, that the system has a unique solution.
(The proof for the characteristic 0 case is immedir.e whereas the
proof for the characteristic p case is somewhat more involved.) This
proves
Theorem 10
If G is a permutation graph then over an arbitrarily chosen
prime field (and hence over any field) the elementary di-
visors of TG uniquely determine the period sequence of G.
Combining the previous three resnlts, it follows that two per-
mutation graphs are similarly represented if and only if they have the
same period sequence, i.e.,
Theorem 1.
If G and G' are permutation graphs then TG ~ TG’
if and only if #(G) = =(G').
Having graphically characterized similar representations ‘or
forests in theorem 7, and permutation graphs in theorem 11, we now

obtain a general solution by showing that aa arbitrary transition graph

can always be analyzed in terms of a suitably determined forest and/or
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permutation graph. Let G = (X,y) be a transition graph and let Xp

denote the set of all tree-points of G and X,, the set of all cycle-

P
points of G. Then
Definition §
The reduction G of a transition graph G = (X, y) is
the graph
G = (X,7)

wnere

y =y - {xNxy) ey, xe Xp Ve XP}.

In short, G is the rezult of removing all the lines of G that are
from a tree-point and to a cycle-point. Alternatively, if we iet GF
denote the restriction of G to Xp (assuming Xp # f) and let Gp de-
note the restricticn of G to Xp (assuming Xp #8) then Gp is a forest,

G,isa perniutation graph ana G can be described as fol'ows:

P
= G if G is a forest
G if G is a permutation graph
GF + GP otherwise.
Thus any transition graph that contains both tree and cycle points re-
duces to the (direct) sum of a forest and a permutation graph. The
justificaticn of this reduction is complete once we establish the follow-
ing important property.
Theorem 12
If G is a transition graoch and G is the reduction of G

then, over an arbitrarily chosen representation field,
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Given the above property along with the fact that
i)y G = GF + GP (assuming G is neither a forest nor a permutation
graph)
ii) The depth sequences 6 (G) and 6 (€ :,) are essentially the same;
and
iii) The pericd sequences n(G) and ﬂ(GP) are essentially the same,
we are able to combine the characterizations obtained for furests and
permutation graphs and establisn the main result of our investigation,
Theorem 13
If G and G' are transition rraphs then T

~T,, ifand

G G’
only if 6 (G) = 6(G") and n(G) : 7(C').
In other words, two transition graphs with n points are similarly
represented (over an arbitrary field F) if and only if they agree both

in the number points that are tree-points of depth j {0 <j <n-1)

and in the nuinker of components that are flowers of period k (1 <k <n).

Example: Each of the following nonisomorphic transition graphé has

depth sequence (2, 1, 0, 0) and period sequence (1, 0, 0, 0) and cbnsecjuently

the representing transformations of all six graphs are similar,

f\ 2
O N O

<y
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2
P
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1, 1
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Applying the previous theorem, it becomes relatively easy to
distinguish subclasses of transition graphs for which a complete set
of similarity invariants yields a complete set of isomorphism invari-
ants. To be more precise, let

Jyo= {ipty, ot}
denote the set of isomorphism invariants defined on '/Z/n as follows:
fi(G) = wi(x), the i-th invariant polynomial of TG’
i=1,2,...,n.

We refer to  J n 28 the set of rational isomorphisin invariants and,

ac a consequence of the previous theorem, obtain the following cri-

terion for completeness :




Illgg_rem 14

r 4 c U , then J o i8 2 complete set of iso-

morphism invariants for Y if and only if

ne

6(G) =6(G")and n(G) =m(G") =>G = G'
forall G,G' in ¥ .

Applying this criterion, it is immediate that:

Theorem 15
Che rational isomorphism invariants are complete

for the class

:rn = {GIG € \'.'f‘!-'na h(G) = 0}

of all zero-height transition graphs.
As “ I includes class jn of permutation graphs on N n Ve have

Corollary 15. 1

GG e }(n then G = G' if and only if Te~ T

(over an arbitrary representation field).
(The corollary ii known for representations over a field of character-
istic 0. On the other hand, the goneralization to fields of prime char-
acteristic appears to be new.)

Completeness classes containing graphs with nontrivial tree struc-
tures have also been discovered, the most interesting being a generali-
zation of ""honiogeneous' trees. We say that a transition graph is
homogeneous if points of the same heignt have the same indegree and
the same outdegree. Every homogeneous transition graph is either a

furest or a transformation graph and by a rather straightfoiward

in e SN R TR LGARR
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argument one can prove:
Theorem 16
The rational isomorphism invariants are complete for
the class ¥ n of homogeneous transition graphs,
Stating this result in terms of the representing linear transformations
we have:

Corollary 16, 1

G, G e %n thenG = G' if and only if

Tg~ Tgr -




Section 6

Iterative Network Realization of Sequential Machines

This research is a continuation of the study of a class of itera-
tive networks which was described in the 1967 annual report. It is
primarily concerned with the realization of sequential machines using
a special type of cellular network. This section will summarize the
results obtained during the past year, Proofs and additional details
can be found in S{TL technical report no. 06920-22-T.

In the 1967 report, some of the cellular networks that have ap-
peared in the literature were examined and classified according to in-
terconnection structure and cell type. The special class of "iterative
networks' was then informally described in terms of these classifica-
tions. This class of networks was formalized by means of the following
mathematical model,

Definition 1

An (abstract) iterative network is a 6-tuple

N = (G, X,n,S,%,6) where:

L. G is a finite group called the interconnection group

of Nwithn = |G|T.

X is a subset of G withk = |X].

o

3. 7 is a one-to-one function, called the group ordering

for G, mapping In onto G such that the image of ik is x”.

- e am - -

i |G| denotes the cardinality of the set G.

i I, denotes the set {1.2,...,n}.

1095
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S is a finite set of internal symbols with | sl > 2.

% is a finite set of inputs symbols with |zl > 1,

6 is a function mapping Sk x T into S and called

the cell function of N.

The following definition aliows an iterative network to be interpreted

as a sequential machine.

Definition 2

Let N = (G, X,n, S, Z,6) be an iterative network. Then

the machine realized by N is the sequential machine

M(N) = (SG,Z:,5) where:

1.

SG, the set of all functions from G to S, is the

set of all states.

T is the set of input symbols.

§ is the state transition function mapping sSxs
into SG, and defined as follows. For f in SG and
¢ in T, the successor state of f under input ¢ is
the function (f, )5 which takes an element g of

G into the element

[(gx s -0 (gx 100

of & where in = X, for i=1,2,..., k.

The function & is called the behavior of the network N.
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There are several notations in the literature of one machine
imitating another. When the machines in question do not have out-
puts, then the only thing which must be imitated is the state transition
function. This is usually done by finding states or sets of states
in the imitating machine which behave in the same way, with respect
to their respective transition functions, as the states of the machine
being imitated. We will use the following notion of one machine

imitating another,

Definition 3
Let M and M' be sequential machines. Then M

is said to realize M' if there is a submachine

of M isomerphic to M'.

This definition is frequently weakened even more by only requiring
that M' be a homomorphic image of a submachine of M. However,
for our use, the stronger version is sufficient.

It is by means of this concept of imitation that the abstract
theory of machines is usually linked to the physical circuits used
to realize them. In our case, the circuit has been modeled as an

iterative network which realizes sequential machines as follows.

Definition 4
Let M be a sequential machine, N an ilerative network,
and M(N) the machine realized by N. Then the network

N realizes the machine M if and only if M(N) realizes M.
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Note that any iterative network N will always realize M(N), the ma-
chine realized by N. In general, it will also realize many other
machines as well. Hence the machine realized by the iterative net-
work N is the sequential machine M(N) (definition 3) while 2 ma-
chine realized by N is any machine isomorphic to a submachine of
M(N).

In order to find an iterative network which realizes a given
sequential machine, it is first necessary to find a group which can
be used as the network's interconnection group. The following re-
sult suggests that we should use some subgroup of the machine's

automorphism group.

Theorem 1
The interconnection group G of the iterative network
N is isomorphic to a subgroup of the automorphism

group of M(N).
The next result states that, in fact, any subgroup may be used.

Theorem 2
Let M = (Q. =, A) be a sequential machine and G
be any group of automorphisms of M. Then
there is an iterative network N which uses G

as its interconnection group and wihich realizes M.
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There are two cases in which Theorem 2 results in '"trivial"
realizations. The first is when the automorphism group of the
machine to be realized is trivial. This results in a network with
only one cell which is as complex as the machine. The second case
arises when the cardinality of the set of internal symbols is equal
to the number of states in Q. In this case, all of the cells are as
complex as the original machine and nothing is gained by using more
than one cell.

It has been shown that the second case can always he avoided
it the number of states in Q is greater than 2. However, both
cases can be avoided simultaneously by extending Theorem 2 to ob-
tain a "binary network".

An iterative network is called binary if the cardinality of its

set of internal symbols is two. That is, if N=(G,X,n,S,Z,8) is

an iterative network, then N is a binary netwo:k if and only if

|S| = 2. In this case, every cell has a single output terminal which can take
on only two distinct values. We ask the following question. Given

an arbitrary sequential machine, can we find a binary iterative net-

work which realizes it ? The answer is given by the following theorem.

Theorem 3
Given any sequential machine M = (Q. . 1), there
exists at least one binary iterative network which

realizes it.

PRV ST RS R
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The proof of this result involves first embedding the machine
to be realized in a larger machine which has a nontrivial automor-
phism group. Then the techniques used in the proof of Theorem 2
are used to realize this machine. Since the relation of ma-
chine realization is transitive, this resulting network will realize
the original machine.

Although the proof of Theorem 3 is constructive, it can not
be considered a practical design technique due to the large num-
ber of cells in the realizing network., This procedure can, however,
be applied successfully to certain special classes of machines to get
more practical binary realizations. In particular, the class of
autonomous machines and the class of total automata (i. e. strongly
connected sequential machines whose automorphism group is as
large as possible) can be realized with binary networks where the
number of cells is the same order of magnitude as the number of
states in the machine. In addition, total automata can be realized
with binary networks where the number of internal cell input ter-

minals is equal to tiie number of external input symbois.
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Section 7

Optimal Sequencing of Jobs Subject to Deadlines

7.1 Introduction

Held and Karp [19] have deveioped a general dynamic program-
ming algorithm for problems involving the sequencing of jobs subject
to deadlines. There are a number of these problems, however, for
which a certaia "consistency principle' holds. This principle can
be stated as follows:

Given a set of jobs which are to be processed subject
to deadlines, there exists a linear ordering of the
complete set of jobs, such that for any subset of
these jobs, an optimal sequence exists in which the
ordering of the jobs completed on time is consistent

with the linear ordering.

This paper demonstrates how this consistency principle can
be exploited to cbtain solution methods which are considerably
more efficient thar that of Held and Karp. Problems considered

are (i) a single machine and jobs with individual deadlines

i1l
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(Moore [32]). (2) tie same problem with partial ordering restric-
tions on the sequence, (3) two machines in series and jobs with

a common deadline (Jobnson [2G]), and (4) a single machine, jobs
with a common deadline, and individual linear deferral costs
(McNaugiaton [30] and Smith [ 41}). These problems are dealt with
in Seciions 2, 3, 4, and 5, respectively. Two concluding sections
discuss auditional problems with partial ordering restrictions and

multi- machine generalizations.

7.2 Single Machine. Multiple Deadlines

Let there be given jobs Jl’ JZ’ ceey Jn' For each job Ji’ let
ti denote its processing time on a single machire, Di’ its deadline,
and roare sard which is earned if processing of the job is com-
pleted by the deadii:e. Withovt loss of generality, assume ihat

Di<D for i=1,2,...,n-1.

= Viel?

We wish to {iad a sequence for the jobs which maxi-
mizes the s of the earned rewards. According to Moore [3z],
there exists an optimal sequence in wlich (1) the jobs complcted
on time (meeting deadlines) precede the tardy jobs and (2) the on-
time jobs are orderad according to their deadlines, earliest dead-
line first.

It follows that the problem consists of making a selection of

the jobs which are to be completed on time. Givelwn .uch a selection,

the ordering i these jobs is determined solely by . eir deadlines;




"N TR AT T 10

- e

113

the ordering of the remaining (tardy) jobs which follow is arbi-
trary. The selection problem can be formulated as an integer
linear program as follows:
n
Maximize ifl r.X,
subjectto Tx <D
where
X = 1 if job Ji is selected

= 0 otherwise,

and T and D are of form

t1 0 0 0 0 0 D1
t1 t2 0 0 0 0 D2
t1 t2 t3 0 0 0 D3

T = 3 D =
t1 t2 t3 tn—2 0 0 Dn-2
tl t2 t3 e e tn_2 tn-l 0 Dn-l
L_tl t2 t3 tn-2 tn-1 tr_l__ _Dn |

As one might expect from the special structure of this prob-
iem, it can be solved by dynamic programming techniques similar

to these used for the well known ""knapsack" problem.

A,

N =T S o)
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Definition: Let f.i(t) = the maximum attainable
total reward for a selection of jobs from the
set of jobs {Jl e Ji}, subject to the con-
straint that the completion time of no job is

later than t.

A recursion relation for fi(t) can be formulated as follows:
1) Consider ! < D;. If there exists an qptimal schedule

in which Ji is completed on time, then Ji can be the

last on time job and fi(t) = fi- (t—ti) + 15 If no such

1
schedule exists, then fi(t) = fi-l(t)'

2) Fort > Di > ... >Dy, f(t) = fi(Di) and can be com-

1’ i
puted in the manner indicated above.
Hence, for i=1,2,...,n:

fi(t) = fi(Di) for t > D,

f,(t) = max {fi_l(t), ri+fi_1(t-ti)} for0 < t < D;

subject to the boundary conditions
£,(0)

fo(t) =0

0

1.(t) = -~ o fort - 0
The maximum attainable total reward for the complete set of
jobs is given by fn(Dn).

Assuming that all of the processing times and deadlines are

integers, the length of the computation grows no more rapidly than
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nDn, i.e. proportional to the product of the number of jobs and
the longest deadline.

Note also that the problem is symmetric with respect to time.
This means that with slight modification of the recursion equations,
one can just as well solve a problem in which the times Di denote

earliest possible starting times for the jobs, and one determines a

sequence which maximizes the sum of the earned rewards, subject

to a common deadline, t, for all jobs.

7.3 Single Machine Problems with Partial Ordering Restrictions

In the single machine problem just discussed, it was assumed
that any sequence for the jobs was feasible. An additional compli-
cation arises, however, when it is required that the sequence for
the jobs must be consistent with a given partial ordering Q, which
may be due to technological restrictions of various kinds.

First we shall develop necessary and sufficient conditions
for the existence of a sequence in which all jobs are completed
on time, consistent with the given partial ordering restrictions.
These conditions generalize the result of Smith |41}
that an unrestricted set of jobs can all be completed on time if and
only if they are completed on time when they are sequenced ac-
cording to deadlines.

Again let there be given jobs Jl' J2 ..... ‘,n' where job Ji
has processing time t, and deadline D, with an arbitrary partizl order-

ing Q. The object is to find a linear ordering L
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such that all jobs can be processed on time consistent with Q
iff they are on time in the sequence defined by L.
Assume, without loss of generality, that D1 < D2 <...<D

and for each job, Ji’ define a vector, VI, as follows:

i i i i
V = (VI’VZ’.“’VH)

where \' 1 if (Ji’ Jk) € Q

- s

0 otherwise.

Let L denote the relation on the jobs obtained by ordering

these vectors lexicographically from the largest to the smallest.
Lemma 1: L is a linear ordering.

Proof : Since L is determined by a lexicographic ordering, it is
known to be both reflexive and transitive. Hence, it is only neces-
sary to show that L is antisymmetric. Consider a pair of jobs,

J,and 3, i#k where V' > V5. We must show that V' > v*.
Kk

Suppose vi = Vk, then V = Vlk =1, since Q is a partial ordering.

Hence (Ji’ Jk) and (Jk’ Ji) € Q, a contradiction siace Q iz a
partial ordering and i#k.

Hence V, # Vi andVv, > Vi

Lemma 2: L is consistent with Q.

Prooi: If (Ji’ Jk) € Q. then qu = 1 implies that qu = 1.

Further, Vki = 0 while Vli =1. Hence V' > Vk and (J..J. )€ L.

W
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Theorem : All jobs in the set J can be completed on time con-
sistent with the partial ordering Q iff they are on time in the

sequence defined by L.

Proof: If - Obvious
Only if:

Consider an arbitrary sequence S = (Ji e Ji ) in which all jobs

1 n
are completed on time consistent with the partial ordering Q,

where S is distinct from L. Then there exists a pair of adjacent

jobs, J. J. in the schedule S where
i, i
k k+l

i .
Vk+1 S Vlk.

Thus, there must be a first position, say q, in which the vector
i 4
\' k+l contains a 1, but the vector Vlk contains a 0. Clearly, q# ik

and there are two cases to consider:

1) - ik+1
Then D. < D. anda new schedule, S, may be
et T X 1
defined from S by interchanging Ji and Ji in which
k k+l
Ji and Ji are still on time.
k k+l
2) g~ i,y
ThenjobJ hasD < D. , D, and(J. ,J )e G.
q T ka Kk ka1 @

Hence Jq follows both Ji and Ji in the schedule S and a

k+1 k
new schedule, S1 may be defined from S by intey::hanging Ji and
3
J. in which J, and Ji are still on time.

k+1 k+l
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If S1 is L, we are done. Otherwise the above process is
repeated to obtain schedules 82 . Sp where Sp is L.

Q.E.D.

This result can be used to obtain a dynamic programming
solution to the following problem. All jobs are to be completed
on time, subject to the partial ordering restriction Q, where for
each job :Ii there is a choice of one of m processing times tli,
tzi, vty tmi with associated rewards rli, rzi, cee rmi. (It is
reasonable to assume that the rewards would be proportional to
the processing times. )

Since all jobs are to be completed on time consistent with Q,
the only sequence that need be considered is that defined by L.
Consequently, let us now assume that the jobs are reindexed accord-
ing to L. and let fi(t) denote the maximum attainable total reward

associated with the first i jobs in the sequence L, subject to the

condition that no job is compieted later than time t.

A recursion equation for fi(t) is as follows., Fori=1,2,....n:
- ~
fi(t) = fi(Di) for t Di
= max {rJ. + f. (t—tJ.)} for 0. t-. D.,
i i-1 i ~ i
j=1.2,.... m

subject to the boundary conditions

0

1l

£,(0)

0

{()

() = - fort 0.
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The case in which it is not required that all jobs are com-

pleted on time is discussed in Section 6.

7.4 Two Machines in Series, Common Dradline

We now deal with the problem of ¢wo machines in series
aind a common deadline where each job must be processed by hoth
machines, in sequence. Consider a set of jobs, J = {Jl, N Jn}
where for each job Ji’ a, denotes its processing time on the first
of two machines, and b1 its processing time on the second. Let
I denote a reward which is earned if job Ji is completed by the
second machine by a deadline T (common to all jobs). The prob-
lem is to find a sequence for the set of jobs which maximizes the
sum of the earned rewards.

It follows irom the results of the previous chapter and those
of Johnson [20] that there exists an optimal sequence in which (1)
the jobs completed on time precede the tardy jobs: (2) the jobs

are processed in the same order by both machines: and (3) the

on-time jobs are ordered according te the {ollowing relatior :

Job J precedes J only if minja ,b | . min{a ,b !,
p q p q - qQ P

Cnce again, the problem consists of making a selection of

the jobs which are to be compivied on time.  Given such a selection,.
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the ordering of these jobs is determined by Johnson's relation;
the ordering of the remaining jobs which follow is arbitrary.

Without loss of generality, assume that
min {aj’ bj+1} < min {aj+1, bj}, for j=1,...,n-1.

Let fi(tl, tz) = the maximum attainable reward for a selec-
tion of jobs from among Jl’ ceny Ji’ subject to the constraint that
the completion time of no job is later than time t1 on the first ma-
chine or t2 on the second. Following the type of argument used in
Section 2, a recursion relation for fi(tl, tz) can be formulated as
follows.

For i=0,1,2,...,n:
£(t;, ty) = max { £ y(tpty).ry + fi_l(min{ ty-ap t2—ai-bi}, t2-bi)}

subject to the boundary conditions :

fo(tl,tz) =0
fi(O, 0 =0
fi(tl,tz) = - (t1 <0 or t2 < 0)

The maximum attainable total reward for the complete set of
jobs is, of course, given by fn(T. T). Assuming all processing
times are integers, the length of the computation grows no more

9
rapidly than nT".
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7.5 Single Machine, Common Deadline, Linear Deferral Costs

As a further example of the consistency principle, consider
the problem of a single machine, a common deadline, and linear
deferral costs.

Consider a set of jobs J = {Jl, e Jn}, where for each job
Ji’ ai denotes its processing time and ry a reward which is earned
only if the job is completed by a deadline T (common to all jobs).
In addition, let P; denote a linear deferral cost coefficient. If the
job Ji is completed at a time t < T, the net reward earned for that
job (reward minus deferral cost} is ri-pit.

Consider the position of a contractor who is free to accept
or reject jobs. For each job Ji which is accepted and completed
prior to the deadline, a reward ri is earned. However, the deferral
of the job causes a cost to be incurred which is determined by the
coefficient p;: What selection of jobs maximizes profit?

Given any selection of jobs, such that the sum of their
processing times is no greater than T. the jobs should be ordered
according to the ratios pi/ai, the job with the largest ratio being
processed first. This result has been found by McNaughton {30}
and Smith [41].

. . Pi . Py
Without loss of generality, assume o

- a.
i+l

fi(t) = the maximum attainable total net profit for a selection of

Let

jobs from among Jl’ J2’ cees Ji‘ subject to the constraint that the

starting time of the first job is t and the last job is completed no
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later than T.
An appropriate set of tecursion equations is as follows for

t> 0.

4 ’ L
Ii(t) 3 max ‘fi-l(t)ri - pi(t+ai) + Ii_l(tmi)}

subject to the boundary conditions

fi(T) =0
fo(t) = 0
fi(t) = -® fort > T.

The maximum attainable total net profit for the complete set of jobs
is given by fn(O). Assuming all processing times are integers, the
length of the computaticn grows as nT.

There is an interesting variation of this problem in which the
deadline is not controlling. E.g., T is as large as the sum of all
the processing times. In this case, the selection of jobs is con-
trolled solely by the question of whether or not jobs can be com-

pleted before their deferral costs exceed their rewards.

7 6 Additional Partial Ordering Consideratious

It would be desirable to be able to extend the results of Sec-
tions 2, 4, and 5 to the situation in which optimal sequences are
to be derived subject to the restriction that either (a) ail jobs are
ordered ronsistently with an arbitrary partial ordering Q or (b) all
on time jobs are so ordered. (Section 3 presented such results

for the case in which all jobs were required to be on time.)
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Unfortunately, the results obtained above do not generalize except
for very special partial orderings for which the consistency prin-
ciple can be shown to hold.

One such case arises when the partial ordering induces a par-
titioning of the jobs into a sequence of equivalence classes,

(E ., E_} where

P p
1) For each equivalence class, Ei’ Jr’ Js € Ei’
implies that Jr and JS are not related by Q.

2) Jr € Ei’ JS € Ei+ implies that (J , JS) € Q.

1

In this case, the dynamic program ning aigorithms previousiy
defined may be applied to each equivalence class individually and
the optimal sequence can be obtained by concatenating the recuiung
sequences for E.‘.' E2’ ce e Ep. (The individual solutions, of course,
take into account that the starting time for the first job in the i-th
equivalence zlass equals the sum of the processing times for the jobs
in the previous i-1 equivalence classes.)

There are also other situations in which Q may not be o! ihis
special form, but the parameters of the problem are such that the

consistency principle can be shown to hold.

7.7 Machines in Parallel

Each of the problem formulations and solution methoas given
abuve can be extended 1n a very natural way to the situation in

which there are many machines, or sets of machines. n marllel.
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and any given job can be processed by any given machine. In eaxch
such extension, the jobs that are assigned to any given machine
are processed in an order which is consistent with the ordering
obtained by solving the associated single machine prcblem.
Consider the extension of the problem of multiple deadlines

(Section 2 above). Let there be given a set of jobs, J = {J1 ces Jn}.

For each job J., let a; x denote its processing time on the k-th

]

of M machines and 2 reward which is earned if processing of
y

the job is performed on machine k and completed prior to the dead-
line for the job, Di'
As before, we assume without loss of generality, that Di <

D for t=1,2,...,n-1. (Note that it is feasible to have different

i+1’
deadlines on different machines. However, it must be the case

that Di < Di forall k.) Let fi(t1 e tn) = the maximum

+1,k

attainable reward for a selection of jobs from among J J2, ceey Ji’

1’

subject to the constraint that the completion time of no job is later

than t{ for machine k. Now, we have, for i=0,1,...,n:

)\

£ty o ty) = bty ety Dyt ot ), G > D

),

. — 1
mzl\{x {11’ kg (tpte, LTS ,tm)},

1]

max {fiﬂl(tl, tys veest

otherwise

subjec® to the boundary conditions
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fo(tl,tz,...,tm) =0
fi(0,0,...,O) = 9
fi(tl,tz,...,tm) = - ifanytk<0

The length of the computation implied by these recursion

b2
i
4
i

. m .
equations grows as mnDn . Some saving, of course, can be

realized through exploitation of symmetry in the case in which

o I b G R gl

all machines are identical, i.e.a, =a, andr. =r. for
maci ' e et e T
all j, p, q. g
The formulation of recursicn equations for the extensions .

of the problem described in Sections 4 and 5 is quite similar,
and results in computations which grow as mnsz and mnTm,
respectively. One should compare the extension of the deferral
cost case with the solution method given by Rothkopf [40] for the
multi-machine deferral cost problein without deadlines. In that
case, a computational growth of mnT™ 1 g possible.

We note that in the generalizations of the problems of Sec-
tions 4 and 5, it is possible to have some variation in the
characteristics of the individual machines, provided the existence
of a single linear ordering is not interfered with. In the case of
sets of two machines in series, it must be possible to find a linear
ordering such that, for all k,

min(aj’k, hj+1,k) < min(aj+1’k, bj,k)

and in the case of linear deferral costs,
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Pk o Pl x
a. - a.
j, K j+l, k

The rewards, rj K’ need be related in no particular way.
b




Section 8

THE THEORY OF FORMAL LANGUAGES AND ITS iIMPACT ON THE

DESIGN AND IMPLEMENTATION OF PROGRAMMING LANGUAGES

Leonarda Y. Liv

8.1 Introduction

Recently, research in the area of formal languages has been
intensified because of interesting interpreations with respect to pro-
gramming languages. A formal language is any set of finite length
strings of symbols over a {inite alphabet. The theory of formal
languages is concerned with the description of languages, their prop-
erties, structures, reiationships and their recognition. Some of the
results of this theory are of direct interest to the designer of compu-
ters, programming languages and compilers. Some of these results

are briefly reviewed in this section.

8.2 Finite Descriptions of Languages

Formal languages were first considered by mathematical lin-
guists as mathematical models for natural languages[5]. If a natural
language had cnly a finite number of sentences, it could be completely
specified by a finite list. However, this is not the case. Almost
every meaningful language has an infinite number of sentences.
Chomsky defined four types of grammars [ 3, 4].

A type 0 grammar is a 4-tuple G=(N, 2, P,S). Nand Z are

two disjoint nonempty sets of nunterminal symbols and terminal
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symhols respectively. S is a special nonterminal symbol (sentence
symbol). P is a finite nonempty set of production rules of the form
a = B. a is any string of nonterminal symbols and terminal symbols
with at least one nonterminal symbel in it. B is any string of termi-
ual and nonterminal symbols. Let Wy Woy @ 3’71’72 be strings of
terminal symbols and nonterminal symbols. If (ol =¥12Y g9
Wo = alﬂyz, and @ -3 is in P, then W ===> Wy is used to denote
this fact (“"1 =D Wy is usec whenever G is understood). Wy ——é——> W,
if there exist Wy Wy» -+ e Wy such that w; ?> W1 for1 <i<n
(wo ——*—-> Wy is used whenever G is understood}. The language gen-
erated by G is denoted by L(G).

L(G) = {xIS %> x and x is a string of terminal symbols}.

A type 1 grammar (context sensitive grammar ), G, is a re-

stricted type 0 grammar in that the length of 8 is longer than or e-
qual to the length of a for every production rulea =8 in G. A lun-

guage is a coatext-sensitive language if it can be generatec by a con-

text sensitive grammar.

A type 2 grammar (context fiee grammar), , is a restricied

type 1 grammar in that every production rule (n G is of the form
A -, where A is a single nonterminal svmbol and 3 is a string of

terminal and nonterminal symbols. A language is called a context-

_free language if it can be generat.d by a context free grammar.

A type 3 grammar, G, ‘s a restricted type 2 grammar in that

every production rule ie o’ the form A —aB or A ~-a where A, B are
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nonterminal symbols and a is a terminal symbol.

It is well known that the context free grammars form the back-
bone of the syntax of programming languages. The most represen-
tative example of this is the use of caitext free grammar in specify-
ing most of the syntactic rules of ALGOL 60[34]. Clearly, this per-
mits a more precise and efficient specification of the programming
languages. However, attention should be paid to the fact that context
free grammars are not quite powerful enough to completely specify

most programming languages. Parts which are not appropriate for

context free specifications are specified by English in ALGOL 60 [34].

On tlie other hand, the context sensitive grammars can completely
specify the programming languages. Ar interesting problem is to
define some class of languages, lying between the class of context
sensitive languages and the class of context free languages, that is
powerful enough to model the programming languages and may be
parased efficiently. Little is known about classes of languages which
lie between the class of context sensitive languages and the class of

context free languages. Indexed grammars [1], programmed gram-

mars [39], and finite-reversal pushdown automata {27} specify classes

of such languages.

8.3 Ambiguity

When a programming language is being designed, it is always
essential to know whether the "interpretation'” of every sentence in

the language is unique or not. This idea has been formalized in the
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theory of formal languages. A grammar is ambiguous if there exist
two '"distinct'" derivations ofa sentencel. A language is inherently
ambiguous if every grammar generating the language is ambiguous.
It has been shown that, 1) there does not exist an algorithm to decide
whether a context free grammar is ambiguous; and 2) there does not
exist an algorithm to decide whether a context free language is inher-
ently ambiguous [2,12,13]. These negative results are important
since they prevent research workers from looking for such algorithms.
Furthermore, they point to the need of a restricted class of context
free languages with the property that the ambiguity problems concern-
ing this class is decidable and this class of languages is powerful
enough to specify the ""context-free syntax' of the programming lan-
guages. The class of deterministic coniext free languages [14, 17|
seems to fit these requirements. However, further research is

needed.

8.4 Efficient Parsing Algorithms

An important property of a language is the amount of time neces-
sary to recognize a sentence of the language. A language can be parsed
in linear time if there exists an algorithm such that, for an arbitrary

input sentence of length n and a specification of the language, the time

lLet G =(N, ¥, P,S) bea grammar. Then, for every sentence x in
S R . o .
L(G), there exist & derivation S T4 F Ay _G.> a,FX
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(i. e. number of steps) required by this algorithm to parse this sen-
tence is proportional to n. The general context free grammars, re-
quire more than linear time to parse a context free language in gen-
eral. It has been shown by Younger [46] that there exists an algo-

rithm to recognize context free languages in time n3.

When recognizers are really built, context free grammars are
rarely used. Restrictions are always put on the grammar to assure
that it can be parsed in linear time. The operator precedence gram-
mar defined by Floyd [10] is the most well known one. It is often used
to recognize portions of 2 programmirg language. Unfortunately, the
operator precedence grammars are not rich enough to specify all the
"context-free syntax' of the programming languages. Precedence
grammars [44], extended precedence grammars [28], simple deter-
ministic context free grammars [22], LR(k) grammars [21] have also
been defined. All of them specify classes of languages richer than
the class of context free languages. Theoretically they can also be
parsed in linear time. However, they are still much lecs efficient

than the operator precedence grammar in a strictly practica! sense.

8.5 Conclusion

The body of knowledge in the area of formal languages has been
growing very rapidly in recent years. The concept of a grammar has
been used for specifying programming languages and building efficient

compilers.




.“.
[ ]
&

The basic drawback in the definition of a formal language is
the lack of meaning associated with each sentence. Thus it is nct
surprising that the application of formal languages appears to be
limited to the syntax specification and the parsing algorithms and
that various practical problems concerning compilers cannot be
answered satisfactorily by the theories in the area of formal lan-
guages.

The next step requires the assignment of meaning to each
sentence in a formal language. Some investigations indicate that
the complexity of the research problem increases considerably
but there are > encouraging results. For example, it is known
that . .~ d: es . exist an algorithm to decide whether two arbi-
trary con‘ext free grammars generate the same language [24]. How-
ever, it has been shown [35] that there exists an algorithm to decide

whether two context free grammars are structurally equivalent in

the sense that they not only generate the same language but also
"giructure'' these sentences in the same manner (the same meaning).
It is possible that, after assigning ''meaning ' to each sentence in a
language, algorithms to solve some problems which have been proven
to be unsolvable at least this seems to be a promising direction {cr

future resezarch.
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