This document has been approved for public release and sale; its distribution is unlimited.

DEPARTMENT OF THE ARMY
Fort Detrick
Frederick, Maryland

Reproduced by the CLEARINGHOUSE
for Federal Scientific & Technical Information Springfield Va. 22151
THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
Journal of Microbiology, Epidemiology and Immunobiology, No. 10, 1953; 83-86.

V. A. Sklehenke

On the History of Vaccination against Tularemia.

Seventy years ago N. A. Gaitski was born. A noted Soviet Scientist who began his work early. He took an early part in anti-plague work, adding to it throughout his life.

One particularly great service of his was the preparation of an anti-tularemia vaccine (live), appreciatively high in anti-epidemic properties content.

Work on the anti-tularemia vaccine was begun in the USSR in 1931 by Khatenever and Levchenko and Sinai. They prepared a glycerine vaccine on killed tularemia bacteria. Later Khatenever tested the heated, formalinised vaccines and others. Tests were conducted on guinea pigs. According to Khatenever, the Guinosol vaccine was the most effective.

In 1931 Khatenever was the first in the world to vaccinate humans against tularemia. Forty-one people were vaccinated with a glycerine vaccine. Unfortunately, the vaccinated were under observation for only three weeks.

In 1934 Miller and Orshobina occupied themselves with the study of tularemia vaccines. They vaccinated rabbits, gophers and white mice with live and killed (agar and glycerine) vaccines. Upon a subsequent infection of these animals a majority of them died.

In 1935 Sinai tested the protective properties of heated glycerine vaccine on white mice, but single, or quadruple immunisations did not protect them from death.
In 1936 Khatsevov and Leveshensky prepared a vaccine from live, weakly virulent cultures and a polivalent vaccine from killed cultures of B. tularensis. The live, weakly virulent strains were poorly effective and allowed death in a majority of the animals upon infection. The polivalent vaccine, according to Khatsevov, gave better results.

In 1937 Miller and Orzhebina reported on the local immunisation against tularemia by the skin method, for which they used a partially lysed culture, soda and water antigens. The authors concluded that this method increased the resistance of the organism.

Khatsevov, and then Buryasov under his supervision, immunised rabbits with a thermost-extract. According to the author a just majority of the rabbits survived.

Tests were made on the use of sera from immunised animals, but according to Miller and Orzhebina the sera proved weak in a prophylactic sense.

Along with the study of the killed tularemia vaccines there were vaccinations of a small group of humans. Orzhebina vaccinated 46 rats with a formalised vaccine, but 22 of them quickly died. Gershunov used a polivalent vaccine on 9 workers of the lab. The results were insignificant, 4 of them quickly became ill. Only in one case did Khatsevov note good results during the use of a killed tularemia vaccine. In 1940, 596 people of the Ryazansk region were vaccinated, after 4-5 months none of them became ill with tularemia.

In foreign countries work along this same line was being conducted. Francis (USA) tested formaline and phenol vaccines. He used sub-lethal doses of tularemia cultures and vaccines of avirulent cultures. The tests gave poor results. Extracts of virulent cultures gave no positive results.
Aaki, Kondo and Tansin (Japan, 1927-1928) immunised rabbits and guinea pigs with a suspension of brain from dead animals. The suspension was first heated to 600 for 15 minutes. According to them the results were good.

K. Kondo (Japan 1930 and 1934) used a heated phenol and formaline vaccine and noted the survival of white mice and guinea pigs upon infection with B. tularensis. He prepared the vaccine from avirulent strains.

In 1932 Downs prepared a vaccine with the addition of 0.2% formaline to a suspension of microbes in a physiological solution. The vaccinations were given 6-8 times. The animals lived, but were ill for periods up to 90 days.

Os and Zalaa Vasfi (Turkey, 1940) immunised animals with a safe endotoxin.

Gotschlich, Galem Sand Bilal and Tansin Berkin (Turkey 1940) used vaccines of live, weaky strains of tularemia. More than 1/3 of the immunised pigs died from the action of the endotoxin. Almost half of the mice died from the tularemia process, the remaining animals survived a subsequent infection.

Feshay, Hesselbrock, Mittenberg and Rodenberg (USA 1942) prepared a vaccine from virulent strains of B. tularensis, worked with a water solution of sodium nitrate and acetic acid. Although this was considered to be a most effective vaccine in the USA, its results were not long lasting or very definite, it did not fully protect the vaccinated person.

Kadull, Beames, Cerdell and Feshay (USA 1950) used phenol and acetone extracts of B. tularensis. This vaccine was rated 2/3 effective.
Our survey of all Soviet and foreign literature indicates that the vaccines prepared from killed cultures of R. tularense are ineffective. They required up to 5 applications, and this did not insure a stable, long lasting protection.

The same difficulty was at first experienced with live cultures, this was because the strains were not of a weak virulence and did not possess high immunogenic qualities.

Specific prophylactics against tularemia were more recently developed by N. A. Gaishki, who, since 1935, together with E. I. Alpert, conducted studies on tularemia immunity. They found an old strain of R. tularense with a weak virulence, but with high immunogenic properties (Moscow strain). This strain was tested on 10 volunteers and proven harmless. At the same time it built up antibodies in the organism. This strain was lost, and only in 1941 did Gaishki find a substitute. One of the weak strains, virulent for white mice and avirulent for guinea pigs, was named 'Tulennii No. 15, the second—Odeatra IV dry.'

Further work on the characteristics of strains of R. Tularense was done by Faibich, Maiski, Emalinov and others.

Gaishki used his weak strains for the preparation of live tularemia vaccines also. In 1942 the first liquid live tularemia vaccine for subcutaneous injection was prepared (called Virus-vaccine).

This vaccine was tested on 50 humans in 1942, 6 people acted as control. All were workers in the anti-plague lab and volunteers.

These tests confirmed the effectiveness and harmlessness of the vaccine. In 1942 1300 people were vaccinated, in 1943–4214 people. This was the first attempt at mass vaccination against tularemia.
The Galiski vaccine had good anti-epidemic properties, but had one deficiency, it quickly deteriorated at room temperature. This was bad for shipping and storage.

In 1944 Galiskii prepared a dry tularemia vaccine. It survived 5 months at 0-2 C. He never finished his work.

Faibich continued Galiskii’s work on the dry vaccine. Using a high vacuum to dry a frozen suspension in a special medium.

Faibich and Tamarin prepared a live dry tularemia vaccine for subcutaneous and cutaneous use. This vaccine survived for two years at a cool temperature. This vaccine is considered as one of the best.

In 1945 Elbert continued a study of the cutaneous method of vaccination. He prepared, together with Sinker, Fushkov and others, a live liquid tularemia vaccine, which allowed for the quick vaccination of large numbers of people.

The en-skine method of vaccination also allowed for the quick detection of immunity. The average skin reaction takes place in 10-15 days. Some reactions are in as little as 2 days, and some 20 days.

Kosmachevski noted other reactions during the introduction of the live vaccine (rise in temperature in 50%, enlarged lymphatic nodes in 30%, etc.). Galiskii and Khishinskaya noted appearances in 20-40% of all those vaccinated.

The vaccination against tularemia causes the formation of a reaction which can be used to detect the degree of immunity, in many cases 8 years later.

Agglutinins in the blood form after 2-4 weeks, and can be detected for 3-5 years. A shorter length of time than the allergic reactions.

Elbert observed that no infections with tularemia took place among those vaccinated, among the non vaccinated the rate was 4.3%
Since 1946 the live tularemia vaccine is used extensively for the prevention of epidemics. It has proven very effective if the vaccinations can be started with in 3-5 days after the initial start of infections. Thus, both the liquid and dry vaccines can be used, both are very effective.

Observations of health workers (those in contact with tularemia) who had been vaccinated indicate that not one single case of infection resulted over a 6 year period.

Infection with tularemia of newly vaccinated personnel is rare after the first week. Most of the cases of infection after vaccination (77.3%) are noted in the first week to twelve days, the others are from 12-16 days, after which there are very few. This, evidently, is because in the first week the antibodies have not yet been built up to a point of resistance.

The works of various authors list the period of immunity to be from 6 months to 10 years. We believe the average time is 4 yrs., (absence of illness, immunochemical reaction, no reaction to revaccination.).

Much credit must be given to Gaiskii, Elbert and Fakich for their work in the study of the tularemia vaccines.