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ABSTRACT

Relationships between the real and imaginary parts of an impedance are

studied. Given the real and imaginary parts in a finite frequency band, a technique

is developed for finding these parts outside the band. Conditions under which the

real part remains positive for all w are given.

Use of a negative impedance converter for realization of a particular ir-
/

pedance arising from impedance loading studies is discussed. A method of com-

pensating for collector capacitance and extending operation of a transistorized

NTIC into the VHF region is giver.
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INTRODUCTION

This report is devoted to those aspects of the impedance loading problem which

are concerned with network theory rather than with field theory.

In seeking to control the radar cross-section of a conducting body by impedance

loading, the scattering behavior of the body is first determined as a furetion of

loading impedance, either lumped (as for a thin wire) or distributed (as, for exam-

ple, with a sphere). The equations are then solved to give the impedance, as a

function of frequency, necessary to obtain the desired cross-section modification.

The network-theory problem is that of synthesizing and realizing this impedance

from numerical data giving its real and imaginary parts over some band of fre-

quencies.

Network synthesis actually involves two separate problems, approximation and

realization. The given data must first be approximated by a rational function of

frequency chosen from an appropriate class of rational functions (e.g., positive-

real functions). A network realizing this rational function is then obtained by any

of several fairly standard techniques.

The approximation problem arising from the impedance-loading study is a

rather unusual one. Both the real and imaginary parts of the impedance are speci-

fied over some relatively large, but finite, band of frequencies; the more common

situation is for some one quantity, such as magnitude, to be specified over the

entire frequency range.

The unusui'I nature of the problem has prompted a theoretical study of the

relations between parts of impedances specified over a finite band. A number of

interesting and useful results have been obtained, and are reported in the next

i I l I,1. .. ,
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sections. These results are expected to form the basis for techniques of handling a

large class of network problems arising in connection with reactive loading.

An experimental program, aimed at more immediate practical results in a

specific case, has also been undertaken. This program has attempted to obtain an

active-network realization of an impedance whose behavior is approximated by a

pure negative reactance; such an impedance was found by Chang and Senior (1967) to

be required to minimize the cross section of a sphere loaded by a slot parallel to

the incident wave.

The principal effort toward realization of a negative reactance has been in

the area of negative impedance converters (NIC's). Considerable success has been

achieved in compensating for high-frequency effects and extending the useful range

of operation of the NIC into the VHF range. These results are discussed in Section3

2
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THEORETICAL STUDIES

The principal theoretical problem arising from the study of impedance loading

can be broadly formulated in the following terms:

Given the real part, R (w), and the imaginary part, X (0), of an impedance

on some frequency interval, w - W < W what can be said concerning the

behavior of these functions outside the band 'I 9] ?

A number of more specific questions can be based on this general statement of

the problem. For example:

Does there exist a function Z (p), analtic in the right-half p-p1ne, whose

real and imaginary parts are equal to (-) and X (w), respectively, for p = jW.

W- 2 ?

If such a function exists, is it unique?

Assuming that Z (p) exists, whzt procedure can be used to find it, at least

for p=jw?

What are the conditions under which Z (p) is positive-real: that- is, under what

conditions will Re [Z (j w)] > 0 for all -W be satisfied?

-All the questions have been considered, some of them by several different

methods. All of them have been answered at least in part; Z (p) does exist, it is

unique, Z (j w) can be found fer all w, and some nLeessary (though not sufficient)

conditions for Z (p) to be positive-real are known.

2.1 General Method of Attack

The most powerful analytic tool in this investigation has been the HlilbeetTrans-

form, which relates the real and imaginary parts of a function analytic in the closed

________________,____ 3 ____________________
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right-half plane. If Z (p) is such a function, then

Z(P) dp = 0 (2.1)

C

where C is the contour shown in Fig. 2-1. Letting the radius of the small semi-

circle approach zero and that of the large semicircle approach infinity, and sepa-

rating real and imaginary parts, we obtain

11(w)- - J R(m) (2.2a)
-D

x (W) 1 RXd X (2.2b)~~Li

These integrals are improper, and must be evaluated in the Cauchy principal-value

sense, that is,

)dX 0 [ D dL + i--'+ (2.3)

The basic Hilbert Transform pair, (2. 2a) and (2. 2b), may be manipulated into

a number of other useful forms. In particular, if the integrals are expressed as

the sum of two integrals, one from -o to 0 and the other from 0 to cD, one

obtains, after a suitable change variable

2 co XX (X) dXRo) -- 2 2 - Rc) (o.4a
0 lk -;.
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flG.2-i COWTOUR OF INTEGRATION FOR ILBERT TRANSFORMS.
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X(W) =2 C R(WdX (2.4b)
T ( 0 X2 2

where i -e has been made of the fact that R () is an even function and X (W) an

odd function.

The Hilb rt Transform need not be applied directly to Z (p). An especially

useful set of relations is obtained by applying the transform to the function

Z (p) / 1 + p2 . Of the four equations thus obtained, the two of greatest value in

this work are

R() (X --- + ' X [f d (<1
7T 0 (X2 _ l (k2 ) t- -

(2.5a)

R R(X) dX o X(X)
(W) 0 2.. W i- < I(2_ 2/ 1 + J , (X2,

(2.5b)

A simplification which has been used in much of this investigation is that of

assuming R (w) and X Mo) known in the band 0 < w < 1 rather than for Wl <w<t2'

ThL assumption results in considerable simplification of the mathematical manip-

ulations without any significant loss of generality, since the results obtained for the

low -pass" case can be readily extended to the "band-pass" case.

The fundamental problem of this investigation has been the solution of the

integral equations, (2. 5a) and (2. 5b), for the unknown parts of R (w) and X (W).

Although closed forms of solution have not been found, a number of numerical

techniques have been developed; these are discussed in succeeding sections of this

report.

_ _ _ _ _ _ _ 6 _ _ _ _ _ _ _i_•_
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2.2 Bounds on Function Behavior

It is reasonable to ask what restrictions are placed on R (w) and X (w) in

(0, 1) under the assumption, necessary for physical realizability of a passive net-

work, that R (w) be non-negative for all w From (2.4b)

X () = 2 R (X) d X 2 O R (X) dX (2.6)

With R () > 0, the second integral in (2.6) is a non-negative, non-decreasing

function of w for 0 < w < 1. Therefore

X(w) > 2_ f1R(X) d 0 < < 1 (2.7)

d -w du[2 0J X) 0 < W < 1 (2.8)

dw~ ~ ww I ox 2 w

By adding and subtracting R (w) inside the integral we get

2tu R()dX _2w I R(X)- R() + 1 R() I- (2.9)
0 2_ w2 7 0  x2 2 +- R) T

where the first integral on the right is now proper. Tbis result indicates that the

bounds of (2. 7) and (2.8) are rather weak, since the function on the right has a

logarithmic singularity, approaching - ow as w -- 1-. For example, for

R (w) X () 0 < < 1 (2.10)
1+w l+W

I _ _ 7 il __________ _
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we have

W + if 1 I n I -+ (2.11)

and also that the slope of the left-hand term of (2. 11) must exceed that of the right-

hand term. These two functions are plotted in Fig. 2-2, which shows the weakness

of the inequality near w = 1.

It should be pointed out that inequalities (2. 7) and (2. 8) become much stronger

if R (1) z 0, but of course this is a special case.

A stronger ineqjuality can be obtained by observing that the second integral on

the right side of (2. 5a) is non-negative for 0 < w < 1. Thus we have

R(w) > - -2 XX(X)D 0 < W < 1 (2.12)-2 2

or more generally

R -(w > _4 2 -2  I0 >X(X)dx , 0 < w< w (2.13)
71j0 0  (X2 _W2)w 2 2 0

Using the same pair of functions as the previous example;

R(w) 1 , X(W) = 2 (2.14)

1+- 1+.2

the inequality (2.13) is shown in Fig. 2-3 for u 0  -2- w =I, and to = 2. It

will be noted that as w increases, the lower bound approaches the function itself,

as one would expect. Letting u co in (2. 13) and comparing with (2.4a), we

8________________________ ____________________O__
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FIG. 2-2: LOWER BOUND ON X(w).
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see that the lo-er bound actually approaches R (w) - R(Do); this makes no dif-

ference in the example or indeed in most cases of practical interest.

If the right side of (2.13) goes negative anywhere on (0, u- 0) .indicating that

R (a) is non-zero), a better lower bound can be obtained by adding a suitable con-

stant to make tb minimum value of the lower bound zero.

2.3 Fourier Methods

One way of approaching the problem of finding R (w) and X (w) outside the band

in which they aze given is by means of the change of variable

- p (2, 15)

l+p

which maps the right-half p-plane into the unit disc in the w- plane. If Z (p) is

analytic for Re (p)> 0, then Z (-) -wfll be anal3tic for w< 1. Thus, a power

series expansion around the origin

Z(w A + Al. + A 2 + .L. (2.16)

converges for wj < 1. On Vie unit circle, let

- (2.17)

Then

j -A c~ j AE-2joZ(-j )  - o +  1 -j * A 2J '

= (A 4- Al cos +A 2 cos2l+ ... )

- j(A 1 sino A+isin20+ ... ) (2.!8)

il
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From (2.15) and (2.17) we have

w= tan i- -I < 0 < 7 (2.19)2"

so that

R_(0) = R(tan-) A + AlCoS0 + A cos2o + ... (2.20)
2 o 1 2

X (0) = X(tanA) = Bsino + B2 sin2o +

= -A ! sin - A2 sin 20 + ... (2.21)

We thus have the Wiener-Lee criterion fo. physical realizability

A + B =0 , n=, 2, .. (2.22)U U

If R (w) and X() are given for wc(0,1), then R () and X¢(0) are known

for - < 0 < (The extension to negative values of 0 comes from the
22

fact that R and X are respectively even and odd.) One possible method of solutiot

is to find a Fourier Series which gives the best fit (in the least-square sense) to

R (0) and X (0), subject to the constraint (2.22). This method was used by

Redheffer (1947); unfortunately, the equations are rather difficult to generate, and

the deternmination of R and X -for j/> recluires the summation of a

Fol-ier Series.

The present investigation made use of a different approach. Assume that the

range 2 < 0 < -* is divided into a equal intervals, and that R () and XC(O)

in each of these intervals inay be approximated by a constant. I hus we have

_____ _____ ____ _____ _____ ____ 12 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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R*() = Rk 
O k-1 < 0 < O[k (2.23)

x*()=xk

where

" + k (2.24)
k 2 2n

The Fourier coefficients are then gieren by

Am 2 / R()cosmo do + n 1 Rkcosmo do

Bm_- 2. X'(O)sinmodo + J " Xksinmod04.

k = 1 1 (2.26)

Applying the Wiener - Lee criterion we obtain, after evaluating the right-hand

Integrals in (2.25) and (2.26)

- ' ( ig) cosm0 + X (0) sinm9) d 0

n Rk sinm~ m -sinmk-1 Cos -Cos m

k=lJ[

(2.27)

For m = 1,2, ... , 2L, (2.27) yields a set of 2n simultaneous linear equations for

the 2n unknowns R1  ... Rn , X 1 , .... X . The coefficient matrix is independent

of R" and X, although it depends on n.

Aside from the approximate nature of the solution, this method has the dis-

advantage that R (w) and X (w) are found as the real and imaginary parts of an

13 _.__
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impedance whose behavior is restricted. From (2. 15) and (2.16) we have

Z(p) A A '1 -PN + .. + A(ti)-p n

a +a 1 p+. +a pn

( n (2.28)
(l+p)

Since all the poles of Z (p) are at p = -1. Z (p) lacks the approximating power of

a general, nth order function.

The computational difficulties of this method are avoided by using an alternative

Fourier method discussed in the next section.

2.4 Alternative Fourier Method

Equations (2.5a) and (2. 5b) may be written in the form

f (WR(w ) +I AX(X) d OD X R ()'dX . 0 < 1

211O Or22)__ 1 2 2 - (2.29a)

.. (W) RX X (X) d
2t1 W 2 2_ _

where f( ) and g(w) are known functions for 0 < w < 1.

Since X (X) is an odd function, it may be vritten as X E (W), where E (A) is

even. This substitution makes the right-hand sides of (2. 29a) and (2.29b) formally

identical, so that it will suffice to consider only one of them.

. ... ._ 14
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Making the change of variable

X= see 0 (2.30)

in (2. 29a) we have

_/2  R*(!)dO (2.31)

0O 1 -iF- cos-

where

R D (0) = R (set 0) (2.32)

Note that if R*(0) > 0 for 0 C :/2, the right-hand side cf (2.31), and

all its partial derivaives with respect to L), are non-negative for 0 < < 1.

Therefore, if f(w) is expanded in a power series about the origin

f( K 112n 
(2.33)

the K 's must all be non-negative.

The term (1 -6 cos 2 0)-1 appearing on the right side of (2. 31) maybe ex-

panded by the binomial theorem into an infinite series which converges absolutely

for w < 1. Thus we have

2 ~ I RnO~ 2n 2nf= R K W cos UdO (2.4)
--_ i 0  

5 =0

Since the series converges absolutely, we may interchange the order of integration

and summation and equate coefficients of like powers, obtaining
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-/2 2

Ka n o0  (0) Cos OdO (2.35)

Since
c~ 2 (u+ 1)2n

Cos )0 < Cos 0 , (2.36)

it follows that if R (0) > 0 for 0 < 0 < z/2, then

K > K > 0, all . (2.27)

This inequality is a necessary (but by no means sufficient) condition for .he exis-

tence of a pair of functions R (w) and X (O), satisfying Eqs. (2.29a) and (2. 29b),

with R (W) > 0 for all w. Such a pair of functions we will call "compatible".

The necessary conditions for compatibility may be summarized by the relations

> 0 n=0, 1, 2,.... (2.38)

0 <w< 1

(u ()~ > >~( >0, al n (2.39)
2 j 21n+l1)

in order to solve for the unknown part of R (0, we make the further change of

variable 0 = #/2 in (2.35). obtaining

K u R7(5) cosn d (2.40)
0

n 210 2

__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ .6 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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where

R' R (sec -) (2- A1)9

Since R'(0) is an. even function it can be expanded in a Fourier cosine series

RA() A I cosm . (2.42)
m=0

Maling use of the trigonometric identity

2n0 1(2n) cos(n-j), (2n(2)3
Cos 2 2 2n1,- 2( e

and stbstituting (2.42) and (2.43) into (2.40) we obtain

n - 1 A cosm4 2(2n)cos(nni)O+(2n) d.
2m=O j=O

(2.44)

From the orthogonality relation

mr =n-j O

cosmocos(n-j)o dd = m =n-j / 0 (2.45)

10 m n-j

we obtain finally

n

K A (2n) (2.4-)
2n+ 1 O

__ _ _ _ __= 0_ _ _ _ _ __ _ _ _ _ _
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This relation is solved recursively to obtain

2 2n+ 1 n
A -K -E A() (n) (2.47)

n n j 11

It would appear that by making use of the relation

n

cosn = 7 bnk Cos (2.48)
k=O

where

2~n-1I
b n= 22 (2.49)

_,n -k 2n (n+k-l1 k-
bnk = (-1)n n-k (n-k-1) 2 2k-1 k#n , (2.50)

in (2.42), one could obtain an expression of the form

R'(0) = Bkcos 2 k t (2.51)
k4 2 (.1

which corresponds to

(0 2k

R(w) M T Bk /  k (2.52)
k=0

However, such a form, since it is a power-series expansion about infinity, will be

meaningful only if Z (p) has no sing-ularities outside the unit circle. Even for

cases satisfying this condition, serious convergence difficulties were encountered,

most probably due to the truncatiori of Eq. (2.42).

18
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This difficulty is easily circumvented by summing the Fourier Series, (2.42),

directly, and then -hanging the abcissa for 0 to w by use of the relation

W = sec - (2.53)
2

Results obtained by applying this technique to known functions have been ex-

cellent. The real and imaginary parts of a known impedance, calculated on (1, ao)

using a seven-term series, agreed with the actual values to three significant digits.

The error due to truncation can be estimated rather easily. We note from

(2.46) and (2.47) that the relationship between .ne first (N+1) A 's and K 's is
n n

independent of the higher-order terms. Thus, truncating the Fourier Series (2.42)

at the Nth term is efc-uivalent to truncating the power series (2. 3.) at the Nth term.

A measure of the error is thus given by

, 2n OD 2n

e(w) = f(w) - K = K n (2.54)
n=0 n n41

where e (o) is positive for all w, since the K 's are all positive.n

To avoid difficulty with singularities, we define

F(w) 1 R(w) + 11 -2 XX() d (2.55)
0(X 2)

and

e*'() = F(w) - I- K n2 -t , (2.56)
n n

where e(0) >0, 0< w< < K .

I9II III I I i lllll ii
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We now define the error by

f e*(w) d,

E 0 (2.57)

1 F(w) dw
0

Defining

I = F(w) dw (2.58)

and carrying out the integration in the numerator of (2.57) we obtain

N

2 ' K (2n-l)(2n-3)... (3)(1)
"5"=0K (2n+2)(2n) ... (4) (2)

E -1 (2.59)

2.5 Direct Computer Solution

A number of attempts were made to obtain a direct solution by means of the

computer. Given Ro(u) and Xo0 (w) for wE (ao Wb ), the objective is to develop

a computer program which will determine either the coefficients of a positive-real

rational function or the element values of a passive network, such that the real and

imaginary parts of the corresponding impedance approximate, in some sense, R (W)

and X(w). 
0

0

The most general approach is by way of a positive-real rational function. The

method which was used may be summarized by the following steps:

___ __ ___ __ ___ __ ___ __ ___ __ 20 =. _ _ _ _ _ _ _ __ _ _ _ _ _ _ _
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1) As a starting point, pick the coefficients of a rational function, Z (p), of

degree n:

na p + ... +alP+a
Z(p) n 1 (2.60)

bnp + .. + b1 p + bo

The program will reject Z (p) if it is not positive-real.

2) Evaluate the real and imaginary parts of Z(p), R(w.) and X(w.) respec-

tively, at the m+ 1 frequencies w., where

W a <W <... < = Wb (2.61)a o 1 "' Wm b

3) Compute the weighted error

_ W, [j(R (w.) RO0(w i)) 2 + I(w) - X (wi)) (2.62)

where the w .'s are the weights.1

4) Determine the partial derivatives of E with respect to the coefficients

a0 , a, ... , a b,  b .... b of (2.60) and compute the gradient direction in

the (2n + 2) - dimensional coefficient space.

5) Move in the negative-gradient direction in coefficient space until one of the

follow ing happens:

a) The error reaches a minimum. In this case, compute the new gradient
and proceed as above.

b) The function ceases to be positive-real. In this case, retreat along the
gradient line back to the positive-real region, compute the gradient
again, and proceed as above.

21
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6) When a point is reached from which no further progress can be made (the

error cannot be reduced further while remaining in the positive-real region) the

search terminates and results are printed.

In practice, this procedure was found to be very slow. This seemed to be due

to the f c that the boundaries of the positive-real region in the coefficient space are

quite irregular, requiring frequent backtracking and gradient computation. In

addition, the process of checking the function for poicitive-real character is quite

time consuming. In addition, since the error is a very complicated function of 'he

coefficients, it was felt that local minima would make the process quite dependent

on the initial values of the coefficient. This line of investigation was therefore not

pursued further.

A simpler, although less general, procedure is to choose a network configuration

and adjust the element values. The condition for physical realizability is now much

simpler; all the element values must be non-negative. The procedure which was

used was a gradient search (steepest descent method) similar to that outlined above.

The most significant difference was that the boundary of the region of physical

realizability is much more easily defined in the present case. Whenever movement

in the negative-gradient direction caused one or more element values to become

negative, they were simply set back to zero before the next step was taken. Thus,

the search technique was actually a modified gradient search, since the direction

of search deviated from the gradient line near the boundaries at the positive -

coefficient region.

This "direct synthesis" technique had much better convergence properties than

the rational function approximation. The improvement appeared to be due to the

simple nature of the constraints in this case (element values non-negative) compared

to those of the previous case (function positive-real). A number of difficulties

22
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remained, however. The method is obviously dependent on the configuraiion chosen

for the network; a ladder network was used in this study for its computational
simplicity, but this may not be the best choice from a practical standpoint. The

problem of local minima and dependence on initial values still remained. Further,

it became apparent that, due to the high dimensionality of the problem and the

extremely nonlinear dependence of the error function on the element values, the

gradient search technique was not a sufficiently powerful method.

A quadratic search was then tried. In contrast to the gradient search, which

essentially linearizes the function to be minimized, the quadratic search retains

another term of the power series expansion. This technique will minimize a

quadratic form in a single step. Unfortunately, the problem at hand did not involve

a quadratic form but a much more complicated function, to which the method was

totally unsuited. In fact, the procedure was unstable, making large jumps in

element-value space without getting any closer to the minimum point.

No further effort was devoted to this area of direct computer solution. It was

quite obvious that much more powerful search techniques would be required

involving much longer computation times. Judging froxm the results obtained thus

far, prospects for success are poor, even with the use of more powerful search

techniques.
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I

EXPERIMENTAT PROGRAM

Since the theoretical studies discussed above are of rather long-range appli-

cability, an experimental study aimed at more immediate results was conducted in

parallel. Efforts were directed toward finding a network realization of the imped-

ance shown in Fig. 3-1. This impedance was determined by Chang and Senior (19614

as the required loading impedance for cross-section reduction of a sphere loaded by

a circumferential slot in the plane of incidence.

In the region of interest, near ka = 1, the desired impedance can be well

approximated by a negative reactance, which suggests realization by an active net-

work. Unfortunately, there exists no really coherent theory for the realization of

active driving-point impedances; the task was therefore one of choosing from a

number of available alternatives those which seemed to have the greatest probability

of success in a reasonably short time.

3.1 Tunnel-Diode Network

Because of its size and simplicity, the tunnel diode appeared to be a likely

choice for an active element. Properly biased, the tunnel diode may be modelled

by a negative resistance in parallel with a capacitance, as shown in Fig. 3-2.

The network in which it is embedded was designed on an intuitive basis; essentially,

the inductance L paralleling the diode gives a pair of poles in the right-half plane,

the RLC combination gives a mirror-image pair in the left-half plane, and L0

moves the poles on to the j w-axis.
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FIG. 3-1: DIPEDANCE TO BE2REAUZED.
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Straightforward network analysis yields

z = ( (3.1)- p2 o 1 Lo L+2

P P 2 L L CL C 2 L L2 C2

o RC

If L is chosen to satisfy
0

1 - 1 1
c - (3.2)

Lo 2R2C 2  RCAT.

then (3. 1) becomes

Z = (1) C ) (3.3)

For p=ju. Z is a pure reactance:

Z(jw) " _ 22 (3.4)

where

- < L (3.5)a b

Obviously, X (u) is positive for 0 < w- < wa and negative for ""a < W b and

thus has negative slope in some region around v ; this is the desired type of

behavior.
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The circuit of Fig. 3-2 was constructed and tested. The predicted frequency

response was not observed; the frequency response being essentially that of a

passive network. It is felt that this was due to second-order effects, most impor-

tantly lead inductance, which were not included in the model of the tunnel diode.

Further effort did not appear justified, and the circuit was abandoned.

3.2 Negative Impedance Converter Development

Another likely active element for synthesis is the Negative Impedance Converter

(NIC). Its use is readily suggested by the negative-reactance characteristic desired

in the present application; in addition, a number of active-synthesis techniques

using the NIC have appeared in the literature.

The NIC is a two-port, active network with the property that its input impedance

is the ncg-cve -f its load impedance. Any linear two-port, active or passive, may

be characterized by its hybrid parameters:

V1 = h I + h V (3.6)
1 11 1 12 v2

12 = h21I1 + h2 2 V2  (3.7)

If the two-port is terminated at port 2 by an impedance ZL. then the input im-

pedance at port 1 is given by

h 1 221
Zin =  

h YLin 1 h22- L

Ifh =h 0, and ifh h 1, then
11 22 12 21

Zin (3.9)
yL L
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which is the desired behavior. In practice, the condition h12 h21 = I has been

satisfied by one or the other of the alternatives

h =h = 1 - (3.10)

If h12 = h21 = I, then V = V1 and the device is known as a current inversion

NIC, or INIC; if h12 = h21 - I , the device is a voltage inversion NWC, or VNIC.
Most of the circuits appearing in recent literature have been INC ts, and our work

has been entirely with this type.

Of the various NIC circuits available, one due to Yanagisawa (19571) was chosen

for stady. An idealized version of the circuit is shown in Fig. 3-3. It is rather

easily shown that, for this circuit

V = V2  (3.11)
1 2

1, KZ
19 (K+1)Z -Z (3.12)

Thus, for large K,

12 - 12)

Yanagisaal's realization of this idealized circuit is given in Fig- 3-4a, with the

small-signal equivalent circuit in Fig. 3-4b; the similarity between this and the

idealized circuit of Fig. 3-3 is quite apparent.

The most important factor limiting the high-frequency performance of this

circuit is the collector-base capacitances of the two transistors. In order to have

a basis for developing techniques of compensating for these capacitances, the
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vi V2

- zi Z2  -

FIG. 3-3: IDEALIZED NEGATIVE IMPEDANCE CONVERTER.
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FIG. 3-4a: NEGATIVE IMPEDANCE CONVERTER
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FIG.3-4b: AC EQUIVALENT CIRCUIT.
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simplified equivalent circuit of Fig. 3-5 was used. Base and emitter resistances

have been neglected, but the two capacitances have been accounted for by the additio

of the capacitance C = 2 C cb"

A fairly straightforward analysis -t this network yields the hybrid parameters:

h 11 0 , h12 1 R

1R I-pCR 2  R2

h21 1'2 I+pCR1 h2 2  1pC +pCR ' (3.14)

where a has been assumed to be unity.

Comparing these parameters with the parameters of an ideal NiC , it will be

seen that the phase shift in h21 is the limiting factor in high-frequency operation;

at sufficiently high fr( aencies, h 21 approaches a negative -real number.

If a capacitance C2 is placed in parallel with R 2 , which is equivalent to the

substitution

R2

R 1 2 (3.15)
2 + PC 2 R 2

the h-parameters now become

hl = 0 , h1 =1!
h11 0h12 1 1

R +P(C 2 -C)R 2  2+ R 2 I
h i = ) +pC , h = - 2 (3.16)21 (R 2 1+pCR 122 pC 1+pCR 1

Now setting R 1 = R2 and C2 = 2 C, we hsve

32
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+ ) c

Vi V2

FIG. 3-5: SIMPLIFIED HIGH-FREQUENCY
MODEL OF NIC.
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hl = 0 , h1 = 1
h11 0h12 1

h21 -1 h22 2pC (3.17)

The only departure from ideal behavior now is the non-zero value of h 22 this can

either be absorbed in the load or compensated for by a capacitance 2p C in parallel

with the input.

The final version of the circuit is given in Fig. 3-6. Resistors R3 and R4

are bias resistors; since at signal frequencies they appear in shunt across the

input and output respectively, their effect is cancelled out by the NIC action.

When this circuit was constructed, some difficulties of stability and reliability

of operation were encountered, but these were eventually overcome. The bias

resistors must be adjusted to prevent "lock-up" (both transistors cut off), but the

adjustment is not critical. Oscillation is possible for certain combinations of load

impedance and generator impedance (impedance seen looking to the left and the

input). For most measurements, it is necessary to pad the input with a resistance

in order to prevent oscillation.

Figure 3-7 shows the input impedance of the NIC over the frequency range

1 - 5 MHz. The load impedance was a 270 Q resistor; a 6802 resistor was

placed in series with the input during measurement to maintain stability, but its

resistance has been subtracted from the measured values so that Fig. 3-7 gives

the actual input impedance at the NIC terminals.

The fact that the negative resistance seen at the input is on the order of -600 2

rather than -270Q? is of no consequence, since this is merely a scale factor which

can easily be accommodated by changing the load.
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FIG. 3-6-. COMPENSATED NIC.
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FIG. 3-7: INPUT BMPEDANCE OF NIC; ZL = 270+J0. (.'s indicate
measured values; the lines are merely to gde the eye.)
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The rather large reactive component of the input impedance is a rather more

serious problem, it indicates that the ratio of input impedance to load impedance

is complex rather than negative-real. However, the circuit is still in the early

stages of development, and considerable improvement can be expected as the

development continues. Furthermore, the INC need not be perfect in order to be

useful; this point is discussed in more detail below.

Measurements have thus far been restricted to the 1 - 5 MHz frequency band.

This is sufficiently high for the effect of collector capacitance to be significant and

low enough that the frequency variation of or may be neglected, and is thus an ideal

range for testing and adjusting the compensation scheme.

Since the NIC is essentially a lowpass device, the problem of increasing tie

band-idth and the problem of increasing the maximum operating frequency are

essentially the same. The critical assumption in the analysis above is that a nf 1,

which implies that operation must be at frequencies well below alpha cut-off. To a

certain extent, then, improvement in NIC performance depends on improvement in

transistor performance. Given the present rate of development of transistor

technology, there are good grounds for optimism in this regard.

There is also the possibility of compensating for the frequency dependence of

a by the addition of more passive elements to the circuit. This has not been tried

so far, since compensation for collector capacitance is a much more pressing

problem in the lover V HF band, but there is no reason to believe that it cannot be

done.

Even if perfect compensation cannot be obtained, the device may still be useful

if some measure of NqC action takes place. Imperfections in the NIC can be over-

come by changes in the load impedance. As a trivial example, suppose that an
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input impedance of -1 j 0 is desired at some particular frequency. Assume

further that a load impedance of 1 j 0 produces an inpat impedance of - 1 - j 1

rather than the desired value. Pro-ided the NIC is operating linearly, a load

impedance

Z _-l+jO = 0.5-j0.5
ZL - 1-j1

should give the desired input impedance.

More generally, the process of obtaining a particular input-impedance

characteristic using an imperfect LMC would require determining, as a function of

frequency, the load impedance needed to give the desired input impedance, and then

finding a passive network realizing (or approximately realizing) the necessary load

impedance.

3.3 Conclusions

The most important result of the experimental program has been the develop-

ment and preliminary evaluation cf an NIC with frequency compensation for

operation in the VHF region. Since NNIC development, as reported in the technical

literature, has generally been at frequencies below 100 kHz, the results which have

been obtained to date are a significant improvement. The immediate objective of

continued development in this area is to obtain usable I'IC action at 50 MJIz or

higher. This objective appears quite attainable.

38



THE UNIVERSITY OF MICHIGAN
5548-8-T

REFERENCES

Chang, S. and T. B.A. Senior (1967), "Study of the Scattering Behavior of a Sphere

with an Arbitraily Placed Circumferential Slot," The University of

Michigan Radiation Laboratory Report 5548-6-T, AFCRL-67-0111,

AD 643717.

Redheffer, R. 3%. (1947), "Design of a Circuit to Approximate a Prescribed Am-

plitude and Phase," J. Math. Phys., 28 (140-147).

Yanagisawa, T. (1957), "RC Active Networks Using Current-Inversion Type

Negative Impedance Converters," IRE Trans. on Circuit Theo CT -,

(140-144).

39 .... ..

I'

I.



5t~~uit ~DOCWAENT CONTROL DATA - R

I- OfIIN& TING ACTIVITY tC69Pu.*IdMW jAKp
1

oUELORT SECUIII V CI-ASSIrZCA-10U

The University of Mchigan Radiation Laboratory. Dept. of UNCLASSIFIED
Electrical Rnid oerng. 201 Catherine Street,fn OJ

AnnA~br, ichgan48108
A- REPORT TI.!LC

,MTWORK THEORY PROBLEMS WN MPEDANCE WOADING

Scientific. interim.
4- AUTI4OUIS (roo -.f s kidw hdffL me?' aso)

E. Lawrence McMahan
Arthur R. B~raun

9. REPORT DATE TTW o rAc

DoD) Element 61445014 OC*P .0$ ..y..em,4. m h

it DoD) Subelement 681-305 AFCRL-68- 0027

I - Distribution of this documenit is unlimited. It may be released to the
Clearinghouse. Depirtment of Commerce, for sale to the general pdblic.

st- SUP016AMENTARV N~OTE. IJi SS0C4SCA. C W-LATANY ACTIVITY

j~rForce C-abridge Research Laboratories (CP
TECHP OTHER jL.G- Hanscom Field

1Bedford, Massachusetts 01730

Relationships between the real and imaginary parts of an impedance are studied- Given
the real and imaginary parts in a finite frequency band, a technique is developed for finding
these parts outside the band. :oaditions under which the real port remains positive for all
w are given.

Use of a negative impedance converter for realization of a particular impedance arising
from inmedance loading studies is discussed- A method of compensating for collector
ca-pacitance and extending operation of a transistorized NIC into the VHF region is given.

."Y41473 Unclassified



Unclassified
Sec i'ity chestairiition

14. KYWRSLINJK A LINK a LINK C

ROLE WT ROLE WT ROLE W

NETWORK THEORY

HILBERT TRANSFORMS

INTEGRAL EQUATIONS

NEGATIVE IMPEDANCE CONVERTERS

IMPEDANCE LOADING

-A4

Unclassified


