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ABSTRACT

Relationships between the real and imaginary paris of an impedance are
studied. Given the real and imaginary pdrts in a finite frequency band, a technique
is developed for finding these parts cutside the band. Conditions under which the
real part remains positive for all w are given,

Use of a negative impedance converter for realization of a particular im-
pedance arising from impedance loading studies is discussed. A method of com-
pensating for collector capacitance and extending operation of a tra.nsistc;rized

NIC into the VHF recion is giver.
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i
INTRODUCTION

This report is devoted to those aspects of the impedance loading problera which
are conceraed with network theory rather than with field theory.

In seeking to control the radar cross-section of a conducting body by impedance
loading, the scattering behavior of the body is first determined as a furction of
loading impedance, either lumped (as for 2 thin wire) or distributed (as, for exam=-
ple, with a sphere). The equations are then solved to give the impedance, as a
function of frequency, necessary to obtain the desired cross-section modification.
The network-theory pr-blem is that of synthesizing and realizing this impedance
from mumerical data giving its real and imaginary parts over some band of fre-
quencies.

Network synthesis acfually involves two separate problems, approximation and
realization. The given data must first be approximated by a rational function of
frequency chosen from an appropriate class of rational functions (e.g., positive-
real functions). A petwork realizing this rational function is then obtained by any
of several fairly standard techniques.

The approximation problem arising from the impedance-loading study is a
rather unusaal one. Both the real and imaginary paris of the impedance are speci-
fied over some relatively large, but {inite, band of frequencies; the more common
situation is for some one quantity, suchas magnitude, to be specified over the
entire frequency range.

The unusurl nature cf the problem has prompted a theoretical study of the
relations between parts of impedances specified over a {inite band. A number of

interesting and useful results have been obtained, and are reported in the next

THE UNIVERSITY OF MICHIGAN —




. THE UNIVERSITY OF MICHIGAN
5548-8-T

seclions. These results are expected to form the basis for techniques of hundling a
large class of network problems arising in connection with reactive loading.

An experimental program, aimed at more immediate practical results ina
specific case, has also been undertaken, This program has attempted to obtain an
active-network realization of an impedance whose behavior is approximated by a
pure negative reactance; such an impedance was found by Chang and Senior (1967) o
be required to minimize the cross section of a sphere loaded by a slot parallel to
the incident wave.

Tke principal effort toward realization of a negative reactance has been in
the area of negative impedance cenverters (NIC's). Considerable success has been
achieved in compensating for high-frequency effects and extending the useful range
of operation of the NIC into the VHF range. These results are discussed in Section3

L]
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u
THEORETICAL STUDIES

The principal theoretical problem arising from the study of impedance loading
can be broadly formulated in the following terms:

Given the real part, R{w), and the imaginary part, X{u), of an impedance
on some frequency interval, @, Lwu<w 2? what can be said concerning the
hehavior of these functions outside the band E'}I’ :..2] ?

A number of more specific questions can be based on this general statement of
the problem. For example:

Does there exist a function Z{p), analytic in the right-half p-piane, whose
real and imaginary paris are egual to R {x) and X {w), respectively, for p = iw,
@ < wX< @, ?

If such a function axists, is it unique ?

Assuming that Z{p) exists, what procedure can be used to find it, at least
for p=ijw?

What are the conditions under which Z{p} is positive-real; that is, under what
conditions will Re[Z(jw)] > 0 forallw be satisfied ?

All ihe questions have been coasidered, some of them by several different
methods. All of them have been answered at least in part; Z{p) does exist, it is
unique, Z{jw) can be found fer all «, and some nceessary {though not sufficient)

conditions for Z(p} to be positive-real are known.

2.1 General Method of Attack
The most powerful analytic tool in this investigaticn has been the Hilhert Trans

form, which relates the real and imaginary parts of a function analytic in the closed

L%
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right-half plane. If Z{p) is such a function, then

& AR dp = 0 (2.1)
C

P -3y

where C 1is the contour shown in Fig. 2-1. Letting the radius of the small semi-
circle approach zero and that of the large semicircle approach infinity, and sepa-
rating real and imaginary parts, we ohain

I“’ X0 da

R = - = QAL . R(@) (2.22)
= _w s
@O
x@ = L [ m@a (2.26)

-0

These integrals are improper, and must be evaluated in the Cauchy principal-value

sense, that is,

© lim wW-€ @
j' dx = c—>0 j dx + j. dxl . {2.3)
- - wte

The basic Hilbert Transform pair, (2_2a) and (2. 2b), may be manipulated into
a number of other useful forms. In particular, if the integrals are expressed as
the sum of two integrais, one from -o to 0 and the cther from 0 to @, one

obtains, after a suitable change of variable

R{) = - = 5—5— + Riw) {2.43)

2 j“” AX () dA
= g A ~u

W
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jw

p-plane

jw

FIG.2-1: CONTGUR OF INTEGRATION FOR HiLBERT TRANSFORMS,




e -meee THE UNIVERSITY OF MICHIGAN
5548-8-T

2 2

20 % R AN
X(w = =2 j. b Al (2.4b)
4 0 A -w

where \ se has been made of the fact that R(w) is an even function and X{w) an
odd function.

The Hilb rt Transform need not be applied directly to Z(p). An especially
nseful sef_g{_x;zc‘alations is obtained by applying the transform to the function
Z (p) / ;/ 1+p . Of the four equations thus obtained, the two of greatest value in

this work are

——  pl @
R = 2 {Ld _j' A +J‘ ARO)AA 1 ococt
[do 0Z- A d1 02 ot
(2.5a)
2 2 1 Rar © X dx
X(w)=———’/1-w I 55 2'+J‘ 55 =), 0 <w<l.
T Lo %M1 -x 1 0% -0 -1
(2.5b)

A simplification which has been used in much of this investigation is that of
assuming R{w) and X(w) knewn in the band 0 < w < 1 rather than for w, <w< W
Thic assumption results in considerable simplification of the mathematical manip-
ulations without any significant loss of generality, since the results obtained for the
"low -pass" case can be readily extended to the "band-pass' case.

The fundamental problem of this investigation has keen the solution of the
integral equations, (2.5a) and (2. 5b), for the unknown parts of R(w) and X(w).
Although closed forms of solution have not been found, a number of numerical
techniques have been developed; these are discussed in succeeding sections of this

report.

¢




BN L N ke

THE UNIVERSITY OF MICHIGAN
5548-8-T

2.2 Bounds on Function Behavior

It is reasonable to ask what restrictions are placed on R (w) and X(w) in
{0, 1) under the assumption, necessary for physical realizability of a passive net-

work, thet R{w) be non-negative for all w . From (2,4b)

1 w
2
X{w) = —-—2: j‘ -———-—-R(;) d; + —7“’ f _R_______ék)d; . (2.6)
0 X -w ' 1 A -w

With R{w) > 0, the second integral in (2.6) is a non-negative , non-decreasing

function of w for 0 < w < 1. Therefore

1
X(w,>?_aj' R 2.7)
- T 2 2
0 A -w
dX () a l20 P! ROOAX
w8 jew SRRl 0<w< 1, (2.8)
dw - duw 7 2 2
0 A -w

By adding and subtracting R (w) inside the integra! we get

1 1
2u j‘ RO z_J’ RQ)-RG) g_R(w,in(l-w\ 2.9

2 ; 2 +
T dg 2, T dg Al 14w/

where the first integral on the right is now proper. This result indicates that the
bounds of (2.7) and (2.8) are rather weak, since the function on the right has a

logarithmic singularity, approaching - as w—>1-. For example, for

Rw) = 12 ., X Y 0 <w<l (2.10)

1+w 1+w2

-]
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we have

+
e [ L (i)
1+w 1+w "

and also that the slope of the left-hand term of (2.11) must exceed that of the right-
hand term. These two fuactions are plotted in Fig. 2-2, which shows the weakness
of the inequality near w=1.

it should be pointed out that inequalities (2. 7) and (2. 8) become much stronger
if R{1) = 0, but of course this is a special case.

A stronger ineguality can be obtained by observing that the second integral on

the right side of (2. 5a) is non-negative for 0 < w < 1. Thus we have

— 1

x 7 .
] R > - 241-u° e R DR (2.12)
: 0 A -w)H-A
or more generally
——s1 p® !
R{w > - -‘:—Z_— Alwf-wz j ° AXQ)d2 , 0<w<x W, (2.13)
0 2 202 2

(O -w We -2
o

Using the same pair of functions as the previous example;

1 ©
5 Xw) = -

1+w 1+w

Riw) =

(2.14)

1
the inequality {2. 13} is shown in Fig. 2-3 for WoT s W, T 1, and W, = 2. It
¥ will be noted that as “, increases, the lower bound approaches the function itself,

as one would expect. Letting wo—-> w in (2.13) and comparing with (2.4a), we
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FIG.2-2: LOWER BOUND ON X(w).
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1.0

FIC.2-3; LOWER BOUNDS ON R{w).
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see that the lower bound actually approaches R {w) - R{m}; this makes no dif-
ference in the example or indeed in most cases of practical interest.

If the right side of (2.13) goes negative anywhere on (0, uo} findicating that
R{m) is non-zero), a beiter lower bound can be obtained by adding a suitable con-

siant to make ihe minimum vaiue of the lower bound zero.

2.3 Fourier Methods

One way of approaching the problem of ficding R (w) and X(w) ocutside the band

in which they ace given is by means of the change of variable
W = o 2. 15)

which maps the right-half p-plane into the unit disc in the w-piane. If Z({(p) is
anaiytic for Re(p) > 0, them Z{w) will be analytic for }w‘ < 1. Thus, a power

series expaunsion around the origin

Z{w) = AO-:* Awt A w + ., (2.16)

z2.17

Then

> v e

-3 -3 =93
2% =4 a4 ¥4 20
0 1 2

1]

(A, + A cosf + A, cos2¢ + ... )

1

- j(Alsinﬁ + AgsinQQ + ) . (2.18)

ii
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From {2.15) and (2.17) we have
w=tmd ,  rcg<q (2.19)
30 that
R¥(@) = Rtan —g-) = A+ Alcosﬁ + Azcos2¢ + ... (2.20)
X*(G) = X(tan-g-) = Blsin¢+ stinzd + ...
= -4, sing - A, sin 2¢ + ... (2.21)

We thus have the Wiener-Lee criterion for physical realizability

A +B =0, n=1,2, ... . (2.22)

I R{w) and X(w) are givenfor we(0, 1), then R*(¢) and X *(ﬂ) are known
for - -j—zr- <g< :zi . (The extension to negative values of § comes from the
fact that R and X are respectively even and odd. ) One possible method of solution
is to find a Fourier Series which gives the best fit (in the least-square sense) to
R*(¢) anc X*(¢), subject to the constraint (2.22). This method was used by
Redheffer (1947); unfortunately, the equations are rather difficult to generate, and
the detern:ination of R¥ and X* for }¢ ,> l;— requires the summation of a
Fourier Series.

The present investigation made use of a different approach. Assume that the
range -';— < @ < 7 is divided into a equal intervals, and that R*(f) and X =(@)

in each of these intervals inay be approximated by a constant. Thus we have

o

[
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R¥(@) = R,
. S A (2.23)
X*(g) = X,
where
¢k = §+ k-z—a . (2.24)

The Fourier coefficients are then given by

/2 2, of,
A i{j R¥(@)cosmf df + 2. J‘ k chosmg d¢}
{2.25)

0 k=199 .
2 7/2 . n gk .
B = = j‘ X" (@)sinm@ dg + j’ X, sinm@ df ¢.
m 4 0 =~ g k
. k-1 (2.26)

Applying the Wiener - Lee criterion we obtain, after evaluating the right-hand
integrals in (2. 25) and (2, 26)

-5}2
- = Gﬁgig) cosmf + X (@) sinm¢) i =
Jo
) Zq? o smmyk-smmilk_1 ) cosmﬂk-cosm 1
= - hk -
=1 k m m
(2.27)

For m=1,2, ..., 2, (2.27) yields a set of 2n simultaneous linear equations for
the 2n unknowns RI’ cees Rn’ Xl, tees Xn . The coefficient matrix isindependent
of R™ and X, although it depends on n.

Aside from the approximate nature of the solution, this method has the dis-

advantage that R{w) and X(w) are found as the real and imaginary parts of an
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impedance whose behavior is restricted. From (2. 15) and (2. 16) we have

1-p\n
~N + —— =
Z(p) A A <1+p> * An (1+;>

a + a +...ta
P P

(2.28)
(1+p)

Since all the poles of Z(p) areat p =-1, Z(p) lacks the approximating power of

a geperal, nth order function.

The computational difficulties of this methed are avoided by using an alternative}
Fourier method discussed in the next section.

2.4 Alternative Fourier Method

Equations (2. 5a) and (2. 5b) may be written in the form

1
fo) = TR@ j’ AX() ax j lR(h)d)L

— s 0<w<1
2 0 2 2
- Y 2y )11 -1 (2. 258)
-x 1 -
) = EXE ROVAA _ _ XD o,
2 do,2 240 2 d1 .2 ,21 7
20l-w  -w )% -2 A -w)fr -1 (2. 29b)

where f{w) and g{w) are known functions for 0 < w < 1.

Since X{(A) is an odd function, it may be written as AE{1),- where E{}) is
even. This substitution makes the right-hand sides of (2. 29a) and (2. 20b) formally
identical, so that it will suffice to consider only one of them.
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Making the change of variable
A = secd {2. 30}
in (2. 29a) we have
2 r=@)as
i) = J‘ —2—9{—9" s {2.31)
0 i-w cos O

where
R¥{6) = R{sec8) . {2.32)

Note that if R¥(9) > 0 for 0 < 6 < /2, the right-hand side ¢f {2.31), and
all its partial derivatives with respect to &, are non-pegativefor 0 < @ < 1.

Therefore, if f{w) is expanded in a power series about the origin

- . 2n
f{w) = Z K © {2.33)

the is 's must all be non-negatne
2
The term {1 -« cos 9) appearing on the right side of (2.31) may be ex-
panded by the binomial theorem into an infinite series which converges absolutely

for w < 1. Thus we have

X

‘ﬂ:l

)

w0 {2
() =Z:’ xn-a;-z‘* --j R (5)Z a6 . (2.34)

n=0

Since the series converges absolutely, we may interchange the order of integration

and summation and equate coefficients of like powers, obiaining
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:/2 E Zn
K = R¥{8) cos” ado . {2.35)
n
0
Since
+ 2 -
t:osz{n i}s < cos"ne , 0<8< 3 R {2.36)

it follows that if R¥(6) > 0 for 0 < 6 < z/2, then

Ku>hn+1 >0, allan (2. :57)
This inequality is a necessary {but by no means sufficient) condition for the exis-~
tence of a pair of functions R{w) and X({uw}, satisfying Eqs. (2.29a) and (2. 26b),
with R{w) > 0 for all w. Such a pair of functions we will call “compatibie”.

The necessary conditions for compatibility may be summarized by the relations

k¢
i%.‘f—) >0, a=01,2,.... (2.38)
<< 1
n A n+i g
(n+1) @ L) > 21 >0, aln. (2.39)

}
e I Cul

In order to solve for the unknown part of R{w), we make the further change of
variable 8= §/2 in (2.35), obtaining

K I- R' (@) oosgn-g—dg (2.40)
4]

"

[~]
ggl bk
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where
R'@) = Risec 2 . (2.41)

Since RY(@} is an even function it can be expanded in a Fourier cosine series

R = Z‘f‘ Ameosmil . {2.32)

m=0

Making use of the trigonometric identity

2n § 1 L 2n 5

L = X {in-j) 5% + (=<8 2.2

cos 5 2211{ }Z,ﬂ 2{ § ) cos{n-1) 7 + () {2.43)
19=

and substituting (2.42) and (2.43) into (2.4C) we obtain

1 T o n-1 9 o
= ———— Tt _3 = Zn
Kn = =371 I Z_;Amcosmg{ Z_ 2{'j Jeos{n-1) §= (5 )}dg .
2 0 m=0 j=0

{2.44)
From the orthogonality relation
x, m=n-j=0
J: cosm@ cos{n-j}g d¢ = —;— , m=p-if 0 {2.43)
° 0, m#n-j
we obtain finally
N n
K = —53 A5 . (2.15)

[
4]
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This relation is solved recursively to obtain

22n+ 1 n

= - 2n
A — K_ ]Z=; Aoy M

It would appear that by making use of the relation

n

- 2k §
cosnl = 2 ' b5 3

k=0

where

2n-
b =277l
nn

_ . .an-k 20 [n+k-1\ _2k-1

Py = VT I (n-k—l) 270 Lk,

in(2.42), one could obtain an expression of the form

®
R' (@) =Z Bkcoszk g—
k=0

which corresponds to

& 2k
R{w) = Z Bk/w
k=0

(2.47)

(2.48)

(2.51)

(2.52)

However, such a form, since it is a power-series expansjon about infinity, will be

meaningful only if Z(p) has n¢ singularities outside the unit circle, Even for

cases satisfying this condition, serious convergence difficulties were encountered,

most probably due to the truncation of Fq. (2.42).

18
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This difficulty is easily circumvented by summing the Fourier Series, (2.42),
directly, and then zhanging the abcissa for § to w by use of the relation

w = sec 5 (2. 53)

Results obtained by applying this technique to known functions have been ex-

cellent. The real and imaginary parts of a known impedance, calculated on (1, o)
using a seven-term series, agreed with the actual values to three significant digits.

The error due to truncation can be zstimated rather easily. We note from
(2.46) and (2.47) that the relationship between ne first (N+1) An's and Kn's is
independent of the higher-order terms. Thus, truncating the Fourier Series (2.42)
at the Nth term is eouivalent to truncating the power series (2. 31) at the Nth term.

A measure of the error is thus given by
{ @
el = f() - Z:‘ ko= D0 kW, (2.54)
n=0 n=N+1

where e(w) is positive for all w, since the Kn's are all positive,

To avoid difficulty with singularities, we define

— 1
Fl) = % R + 41-o2 AX () dx (2. 55)
0 ,2 2 X
A -w) J1-2
and
% N 2 4 2
e¥(w) = Flw) - Z,' K_w -0, (2.56)

n=90

where e*(w} >0, 0< w < 1.
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We now define the error by

1
I e*(w) dw
0

E = — . (2.57)
j F{w)dw
G
Defining
1
I = .f Flw)dw (2.58)
0

and carrying out the integration in the numerator of (2.57) we obtain

n (2n+2)(2n) ... {4)(2)

E=1- 1 . (2.59)

N
7T (2n-1)(2n-3)... (3) (1)

2.5 Direct Computer Solution

A number of attempts were made to obtain a direct solution by means of the
computer. Given Ro(w) and Xo(w) for we (wa, wb), the objective is to develop
a computer program which will determine either the coefficients of a positive-real
rational function or the element values of a passive network, such that the real and
imaginary parts of the corresponding impedance approximate, in some seunse,R 0(m)
and Xo(w).

The most general approach is by way of a positive-real rational function. The
methed which was used may be summarized by the following steps:
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1) As a starting point, pick the coefficients of a rational function, Z({p), of
degree n:

n
a + ,..+&,p+a
np lp o

Z({p) = = . (2.60)

+ ; +
bnp ...*blp b0

The program will reject Z({p) if it is not positive-real .
2) Evaluate the real and imaginary parts of Z(p), R(wi) and X(wi) respec-

tively, at the m+1 frequencies W, . where

= < < e = .
wa wo wl ... < wm wb (2.61)

3) Compute the weighted error

2 { . 2
E =£‘ W, [(R(wi) - Ro(wi)) + \X(wi) - )so(wi))] (2.62)

i=0

where the wi's are the weights.

4) Determine the partial derivatives of E with respect to the coefficients
2, al, ee s 2, bo, bl’ ceas hn of (2.60) and compute the gradient direction in

the (2n+ 2) - dimensional coefficient space.
5) Move in the negative-gradient direction in coefficient space until one of the
following happens:

a) The error reaches a minimum. In this case, compute the new gradient
and proceed as above.

b) The function ceases to be positive-real. In this case, retreat along the
gradient line back to the positive-real region, compute the gradient
again, and proceed as above,
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6) When a point is reached from which no further progress can be made (the
error caanrct be reduced further while remaining in the positive-real region) the
search terminates and results are printed.

In practice, this procedure was found to be very slow. This seemed to be due
to the faer that the boundaries of the positive-real region in the coefficient space are
quite irregular, requiring frequent backtracking and gradient computation. In
addition, the process of checking ihie function for positive~-real character is quite
time consuming. In addition, since the error is a very complicated function of the
coefficients, it was felt that local minima would make the process quite dependent
on the initial values of the coefficient. This line of investigation was therefore oot
pursued further.

A simpler, although less general, procedure is to choose anetwork configuration
and adjust the element values. The condgition for physicai realizability is now much
simpler; all the element values must be non-negative. The procedure which was
used was a gradient search (steepest descent method) similar to that outlined above.
The most significant difference was that the boundary of the region of physical
realizability is much more easily defined in the present case. Whenever movement
in the negaiive-gradient direction caused one or more element values to become
negative, they were simply set back to zero before the next step was taken. Thus,
the search technique was actually a modified gradient search, since the direction
of search deviated from the gradient line near the boundaries at the positive -
coefficient region.

This "direct synthesis" technique had much better ccnvergence properties than
the rational function approximation. The improvement appeared to be due to the
simple nature of the constraints in this case (element values non-negative)compared

to those of the previous case (function positive-real). A number of difficulties
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remained, however. The method is obviously dependent on the configuraiion chosen
for the network; a ladder network was used in this study for its computational
simplicity, but this may not be the best choice from a practical standpoint. The
problem of local minima and dependence on initial values still remained. Further,
it became apparent that, due to the high dimensionality of the problem aad the
extremely nonlinear dependence of the error function on the element values, the
gradient search technigue was not a sufficiently powerful method.

A quadratic search was theun tried. In contrast to the gradient search, which
essentially linearizes the function to be minimized, the quadratic search retains
another term of the power series expansion. This technique will minimize a
quadratic form in a single step. Unfortunately, the problem at hand did not involve
a quadratic form but a much more complicated function, to which the method was
totaliy unsuited. In fact, the procedure was unstable, making large jumps in
element-value space without getting any closer to the minimum point.

No further effort was devoted to this area of direct computer solution, It was
quite obvious that much more powerful search techniques would be required
involving much longer computation times. Judging from the resuits obtained thus
far, prospects for success are poor, even with the use of more powerful search

techniques.

[

(9
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111
EXPERIMENTAL PROGRAM

Since the theoretical studies discussed above are of rather long-range appli-
cability, an experimental study aimed at more immediate results was conducted in
parallel. Efforts were directed toward finding a network realization of the imped-
ance shown in Fig. 3-1. This impedance was determined by Chang and Senior (195674
as the required loading impedance for cross-section reduction of a sphere loaded by
a circumferential slot in the plane of incidence.

In the region of interest, near ka =1, the desired impedance can be well
approximated by a negative reactance, which suggests realization by an active net-
work. Unfortunately, there exists no really coherent theory for the realization of
active driving-point impedances; the task was therefore one of choosing from a
number of available alternatives those which seemed to have the greatest probability

of success in a reasonably short time.

3.1 Tunnel-Diode Network

Because of its size and simplicity, the tunnel diode appeared to be a likely
choice for- an active element. Properly biased, the tunnel diode may be modelled
by a negative resistance in parallel with a capacitance, as shown in Fig. 3-2.

The network in which it is embedded was designed on an intuitive basis; essentially,
the inductance L paralleling the diode gives a pair of poles in the right-half plane,
the RLC combination gives a mirror-image pair in the left-haif plane, and Lo

moves the poles on fo the ju-axis.
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Straightforward network analysis yields
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2 1
o 2)
Z=(-2é)

P*

2 PP T 1c

v =
LC RCVLC

For p=jw. Z is z pure reactance:

2 2
wlw ~-u’)
3 = D {2} ] = :—

Z(Gw iX{w} i C) ;) 3 ,2)2

\.‘db w
where
B < .
a b

behavior.

Obviously, X{w) ispositivefor 0 < u < w and negative for W, <w

3.1)

(3.2)

{3.3)

{3.4}

thus has negative slope in some region arcund w3 this is the desired type of
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The circuit of Fig. 3-2 was consfructed and tested. The predicted frequency
response was nof observed; the frequency response being essentially that of a
passive network. It is felt that this was due to second-order effects, most impor-
tantly lead inductance, which were pot inciuded in the model of the tunnel diode.
Further effort did not appear justified, and the circuit was abandoned.

3.2 Negative Impedance Converter Development

Another likely active ¢lement for synthesis is the Negative Impedance Ccaverter
{NIC). Its use is readily suggested by the negative-reactance characteristic desired
in the present application; in addition, a number of active-synthesis techniques
using the NIC have appecared in the literature.

The NIC is a two-port, active network with the property that itsinputimpedance
is the ncgziive of its load impedance. Any linear two-port, active or passive, may

be characterized by its hybrid parameters:

v

A 44
1 hll I1 + h12 Vo (3.6)

<+ 4 3vn
I hy L) + RV, - .7

If the two-port is terminated at port 2 by an impedance Z L’ then the input im-
pedance at port 1 is given by

h _h
Z. =h _ - g—jz—fl— . (3.8}
in 11 29 L
i hn =h22=0, and if h12h21=" then
1 .
4 T me—— = - {3.9
Z, 5 r (3.9)

o
-y
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which is the desired behavior. In practice, the condition n__h_, =1 has been

12 723
satisfied by one or the other of the aiternatives
hxz = hzz = I 1 . {3.10)
i hl 5 = h,) 1 = 1, then ‘.-'2 = ‘v‘1 and the device is known as a current inversion

NIC, or INIC;if h o = h,, -1, the device is a voltage inversion NIC, or VNiC.

AMost of the circuit:iseappeii’ing in recent literature have been INIC's, and our work
has been entirely with this type.

Of the various NIC circuiis available, one dae to Yanagisax;'a {1857) was chosen
for study. An idealized version of the circuit is shown in Fig. 3-3. 1t is rather

easily shown that, for this circuit

Y17 Yy . (3.11)
i, KZ_‘
f; T =D z;~ Zi . {(3.12)
Thus, for large K,
';i "";}‘ - {3.12)
2 2

Yanagisawa's realization of this idealized circuit is given in Fig. 3-$a, with the
small-signal equivalesnt circuit in Fig. 3-3b; the similarity between this and the
idealized circuit of Fig. 3-3 is quite apparent.

The most imporiant factor limiting the high-frequency periormance of thi

/]

circuit is the cellector-base capacitances of the twoe iransisiors. In order to have

a basis for developing techniques of compensating for these capacitances, the

9
(2]
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FIG. 3-4a; NEGATIVE IMPEDANCE CONVERTER

FIG. 3-4b: AC EQUIVALENT CIRCUIT.
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simplified equivalent circuit of Fig. 3-5 was used. Base and emitter resistances

have been neglected, but the two capacitances have been accounted for by the addition
of the capacitance C = Zch.
A fairly straightforward analysis of this network yields the hybric parameters:

hn =0, hlz =1,
R
14 =L
(Rl\ 1-pCR2 R,
h,, = |=— ] =™, h., = pC ———tr, (3.14)
21 Rz/ 1+pCR, 22 l-rpCRl

where o has been assumed to be unity.

Comparing these parameters with the parameters of an ideal NiIC, it will be
seen that the phase shift in h21 is the limiting factor in high-frequency operation;
at sufficiently high fre- uencies, h21 approaches a negative real number.

If a capacitance C 2 is placed in parallel with R2 , which is equivalent to the
substitution
R2
R > , {3.15)
2 1+ pC2R2

the h-parameters now become

by =0 hg=t - R
1
1+ —=+
R. \ 1+p(C.-CIR 7. TPC,R,
h =| =t 2_" 2, -ope 2 (3.16)
: 21 R, I+pCR, =~ 22 P 1+pCR, A

Now setting Rl = R2 and C2 =2C, we hgve

L
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¥ = h =
By 9% 2t
By = 1, h22 = 2pC . (3.17)
The only departure from ideal behavior now is the non-zero value of h22; this can

either be absorbed in the load or compensated for by a capacitance 2pC in parallel
with the input.

The final version of the circuit is given in Fig. 3-6. Resistors R3 and R 4
are bias resistors; since at signal frequencies they appear in shuunt across the
input and output respectively, their effect is cancelled out by the NIC action.

When this circuit was constructed, some difficulties of stability and reliability
of operation were encountered, but these were eventually overcome. The bias
resistors must be adiusted to prevent ‘lock-up” (both transistors cut off), but the
adjustment is not critical. Oscillation is possible for certain combinations of load
impedance and generator impedance (impedance seen looking to the left and the
input). For most measurements, it is necessary to pad the input with a resistance
in order to prevent oscillation.

Figure 3-7 shows the input imp=dance of the NIC over the frequency range
1 -~ 5 MHz. The load impedance was a 270 Q resistor; a 680% resistor was
placed in series with the input during measurement to maintain stability, but its
resistance has been subtracted from the measured values so that Fig. 3-7 gives
the actual input impedance at the NIC terminals.

The fact that the negative resistance seen at the input is on the order of-600 Q
rather than -270Q is of no consequence, since this is merely a scale factor which

can easily be accommodated by changing the load.
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The rather large reactive component of the input impedance is a rather more
serious problem, it indicates that the ratio of input impedance fo load impedance
is complex rather than negative-real. However, the circuit is still in the early
stages of development, and considerable improvement can be expected as the
development continues. Furthermore, the NIC need not be perfect in order te be
useful; this point is discussed in more detail below.

Measurements have thus far been restricted to the 1 - 5 MHz freguency band.
This is sufficiently high for the effect of coliector capacitance to be significant and
low enough that the frequency variation of o may be neglected, and is thus an ideal
range for testing and adiusting the compensation scheme,

Since the NIC is essentially a iowpass device, the problem of increasing tae
bandwidth and the problem of increasing the maximum operating frequency are
essentially the same. The critical assumption in the analysis above is that o ¥ 1,
which implies that operation must be at frequencies well below alpha cut-off. Toa
certain extent, then, improvement in NIC performance depends on improvement in
transistor performance. Given the present rate of development of transistor
techuology, there are good grounds for optimism in this regard.

There is also the possibility of compensating for the frequency dependence of
a by the 2:idition of more passive elements to the circuit. This has not been tried
so far, siuce compensation for collecior capacitance is a much more pressing
problem in the lower VHF band, but there is no reason to believe that it cannot be
done.

Even if perfect compensation cannot be obtained, the device may stiil be useful
if some measure of NIC action takes place. Imperfections in the NIC can be over-

come by changes in the load impedance. As a trivial example, suppose that an
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input impedance of -1+ j0 is desired at some particular frequency. Assume
further that a load impedance of 1 +j0 produces an input impedance of -1-j1
rather than the desired value. Provided the NIC is operating linearly, a load
impedance

-1+j0
L =-1-51

et 4

= 0.5-3j0.5

should give the desired input impedance.

More generally, the process of obtaining a particular input-impedance
characteristic using an imperfect NIC would require determining, as a function of
frequency, the load impedance needed to give the desired input impedance, and then
finding a passive network realizing {(or approximately realizing) the necessary load
impedance.

3.3 Conclusioas

The most important result of the experimental program has been the develop-
ment and preliminary evaluation ¢f an NIC with frequency compensation for
operation in the VHF region. Since NIC development, as reported in the technical
literature, has generally been at frequencies below 10¢ kHz, the results which have
been obtained to date are a sigpificant improvement. The immediate objective of
continued development in this area is to obtain usable NIC action at 50 MHz or
higher. This objective appears quite attainable.
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