AIRCRAFT INSTRUMENT PANEL PLACEMENT

John A. Barnes

January 1968

HUMAN ENGINEERING LABORATORIES

ABERDEEN PROVING GROUND, MARYLAND

This document has been approved for public release and sale; its distribution is unlimited.
Destroy this report when no longer needed.
Do not return it to the originator.

The findings in this report are not to be construed as an official
Department of the Army position unless so designated by other
authorized documents.

Use of trade names in this report does not constitute an official
endorsement or approval of the use of such commercial products.
AIRCRAFT INSTRUMENT PANEL PLACEMENT

John A. Barnes

January 1968

APPROVED

JOHN D. WEISZ
Technical Director
Human Engineering Laboratories

U. S. ARMY HUMAN ENGINEERING LABORATORIES
Aberdeen Proving Ground, Maryland

This document has been approved for public release and sale; its distribution is unlimited.
ABSTRACT

The placement of the aircraft instrument panel has been governed by the 1947 recommendations of the Armed Forces-NRC Vision Committee. This distance, 28 inches from eye to panel, is not always compatible with present-day aircraft designs. A method for determining the placement of the instrument panel is developed and the maximum allowable eye-to-panel distance is given in this paper.
CONTENTS

ABSTRACT ... iii

INTRODUCTION ... 1

VISUAL FACTORS .. 1

ANTHROPOMETRIC FACTORS 7

EVALUATION OF FACTORS 7

CONCLUSIONS ... 10

REFERENCES .. 11

FIGURES

1. Distribution of Panel Viewing Distance Settings: All Subjects, All Trials. Based on 560 Individual Settings 2

2. Probability of Detection as a Function of the Visual Angle Given Constant Illumination and Target Size 3

3. Viewing Distance as a Function of Letter Height Given a Constant 30 FL Luminance Level 6

4. Instrument Panel, Maximum Placement 9

TABLES

1. Constant Letter Height and Stroke Width 4

2. Constant Visual Angle 5

3. Relationship Between Illumination and Visual Acuity 8
INTRODUCTION

The placement of an aircraft instrument panel appears to be a simple matter. Military standards describe the field of vision required for the various types of aircraft, measures are available which anthropometrically describe the population that will use the aircraft, and much experimental data has been published concerning letter heights, stroke widths, viewing distances for various illumination levels, and optimal meter size. In the past, instrument panels have been placed so that the eye-to-panel distance was 28 inches. This was the distance recommended as a standard by the Armed Forces-NRC Vision Committee in 1947. The modern aircraft, especially light-weight rotary-wing types, cannot readily conform to this recommended distance.

This paper will present the various limiting factors concerning instrument panel placement and will recommend a method of determining the most economical envelope of instrument panel placements.

VISUAL FACTORS

A study by Obermayer and Muckler shows a mean preferred eye-to-panel or viewing distance of 29.19 inches with over half of the mean preferences falling in a three-inch range (27.63 to 30.55 inches). Figure 1 displays these results.

While preference is a minor design criterion, it is a factor for consideration. A more important factor in determining design is efficiency in use. Thus, for the aircraft instrument panel, the ease with which various indicators may be read is important. The conditions considered here were those specified by several publications; e.g., The Human Engineering Guide to Equipment Design, MIL-STD-803A-1 (USAF), and Vision and Visual Perception. For low levels of illumination (.1 foot-candle), the minimal letter/figure height for critical markings was given as .15 inch with a stroke width of .019 inch (1/8 of the letter/figure height). These dimensions were verified for this paper by measuring the markings on actual aircraft instruments.
Given constant illumination and contrast, detectability and legibility are determined by the visual angle subtended by the letters or figures. Indicator figure detectability is required 100 percent of the time. Detection probability as a function of visual angle is given in Figure 2. This graph shows that a visual angle of 1.6 minutes or greater is required for 100 percent detectability. The visual angle is determined by the following formula: \(\theta = 2 \arctan \frac{X}{2D} \) where \(X \) is the letter height or stroke width and \(D \) is the eye-to-panel distance. Table 1 gives the visual angle and acuity values for a .15-inch letter height with a stroke width of .019 inch for an eye-to-panel range of 24 to 40 inches. The acuity value is computed as \(1/\text{Visual Angle} \) expressed in minutes of arc.
Fig. 2. PROBABILITY OF DETECTION AS A FUNCTION OF THE VISUAL ANGLE GIVEN CONSTANT ILLUMINATION AND TARGET SIZE
TABLE 1

Constant Letter Height and Stroke Width

<table>
<thead>
<tr>
<th>View Distance (Inches)</th>
<th>Visual Angle H (Minutes)</th>
<th>Visual Angle W (Minutes)</th>
<th>Acuity W</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>21.50</td>
<td>2.68</td>
<td>.3721</td>
</tr>
<tr>
<td>25</td>
<td>20.62</td>
<td>2.57</td>
<td>.3883</td>
</tr>
<tr>
<td>26</td>
<td>19.80</td>
<td>2.47</td>
<td>.4040</td>
</tr>
<tr>
<td>27</td>
<td>19.10</td>
<td>2.37</td>
<td>.4188</td>
</tr>
<tr>
<td>28</td>
<td>18.40</td>
<td>2.30</td>
<td>.4386</td>
</tr>
<tr>
<td>29</td>
<td>17.72</td>
<td>2.21</td>
<td>.4520</td>
</tr>
<tr>
<td>30</td>
<td>17.16</td>
<td>2.16</td>
<td>.4651</td>
</tr>
<tr>
<td>31</td>
<td>16.62</td>
<td>2.10</td>
<td>.4819</td>
</tr>
<tr>
<td>32</td>
<td>16.13</td>
<td>2.02</td>
<td>.4969</td>
</tr>
<tr>
<td>33</td>
<td>15.62</td>
<td>1.93</td>
<td>.5128</td>
</tr>
<tr>
<td>34</td>
<td>15.16</td>
<td>1.88</td>
<td>.5263</td>
</tr>
<tr>
<td>35</td>
<td>14.72</td>
<td>1.83</td>
<td>.5442</td>
</tr>
<tr>
<td>36</td>
<td>14.32</td>
<td>1.75</td>
<td>.5594</td>
</tr>
<tr>
<td>37</td>
<td>13.88</td>
<td>1.72</td>
<td>.5755</td>
</tr>
<tr>
<td>38</td>
<td>13.55</td>
<td>1.70</td>
<td>.5882</td>
</tr>
<tr>
<td>39</td>
<td>13.23</td>
<td>1.63</td>
<td>.6060</td>
</tr>
<tr>
<td>40</td>
<td>12.85</td>
<td>1.60</td>
<td>.6201</td>
</tr>
</tbody>
</table>
TABLE 2

Constant Visual Angle

<table>
<thead>
<tr>
<th>Panel Distance (Inches)</th>
<th>Letter Height (Inches)</th>
<th>Stroke Width (Inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>.129</td>
<td>.016</td>
</tr>
<tr>
<td>25</td>
<td>.134</td>
<td>.017</td>
</tr>
<tr>
<td>26</td>
<td>.140</td>
<td>.017</td>
</tr>
<tr>
<td>27</td>
<td>.145</td>
<td>.018</td>
</tr>
<tr>
<td>28</td>
<td>.150</td>
<td>.019</td>
</tr>
<tr>
<td>29</td>
<td>.156</td>
<td>.020</td>
</tr>
<tr>
<td>30</td>
<td>.161</td>
<td>.020</td>
</tr>
<tr>
<td>31</td>
<td>.167</td>
<td>.021</td>
</tr>
<tr>
<td>32</td>
<td>.172</td>
<td>.022</td>
</tr>
<tr>
<td>33</td>
<td>.177</td>
<td>.022</td>
</tr>
<tr>
<td>34</td>
<td>.183</td>
<td>.023</td>
</tr>
<tr>
<td>35</td>
<td>.188</td>
<td>.024</td>
</tr>
<tr>
<td>36</td>
<td>.194</td>
<td>.024</td>
</tr>
<tr>
<td>37</td>
<td>.199</td>
<td>.025</td>
</tr>
<tr>
<td>38</td>
<td>.204</td>
<td>.026</td>
</tr>
<tr>
<td>39</td>
<td>.210</td>
<td>.026</td>
</tr>
<tr>
<td>40</td>
<td>.215</td>
<td>.027</td>
</tr>
</tbody>
</table>
In Table 2 the visual angle is held constant and the letter height and stroke width are varied to show the change necessary to maintain a constant visibility throughout the given distance range.

A study by Murrell et al using Royal Navy men with 20/20 vision and luminance levels of 30 foot-lamberts reported that a visual angle of two minutes of arc gave the optimal percentage of correct readings and speed of reading. Two minutes of arc is also recommended by Platonov. The relationship of letter height and reading distance as reported by Murrell et al is shown in Figure 3.

Fig. 3. VIEWING DISTANCE AS A FUNCTION OF LETTER HEIGHT GIVEN A CONSTANT 30 FL LUMINANCE LEVEL
Luminance level or level of illumination is a critical factor in determining letter size. If the letter size is fixed and the requirement for 20/20 acuity is maintained, then the minimum level of illumination must be specified. Table 3 from Tscherning shows the relationship between illumination and visual acuity. It can be readily seen that an illumination value of .139 foot-candles is necessary for an acuity of 20/20.

ANTHROPOMETRIC FACTORS

One other factor in panel placement is the physical size of the aviator. The instrument panel must be placed so that the 1st-percentile aviator can reach the panel. The Anthropometry of Naval Aviators (NAEC-ACEL-533), the Anthropometry of Army Aviators (TR EP-150), and the Anthropometry of Flying Personnel (WADC-TR 52-321) were used to determine the size of the 1st and 99th percentile men for this study, but none of these publications contains one necessary measurement, the aviator's maximum functional reach when restrained by a lap belt. This measure is basically the maximum arm reach upwards (as given in TR EP-150) rotated about the Seat Reference Point (SRP) and converted to functional reach. A study now in progress at the U. S. Army Human Engineering Laboratories furnished this measure, 46 inches for the 1st-percentile Army aviator. This was the value for maximum functional reach when restrained by a lap belt that was used in this paper. This measure was considered to extend from the SRP to the top of the instrument panel. Data presented in WADC TR 56-171 verified this value.

EVALUATION OF FACTORS

From Figure 1 the preferred eye-to-panel distance determined from 560 trials is 29.19 inches. These judgments were made by pilots and non-pilots. Figure 2 shows that visual angles in excess of 1.6 minutes of arc are required for 100 percent detectability. Table 1 shows that for a eye-to-panel distance of 40 inches the visual angle for stroke width, the critical measurement in letter recognition, is equal to the minimum value that is required for 100 percent detectability. Table 3 verifies the minimum illumination of .1 foot-candle as the requirement for 20/20 acuity. The physical size of the aviator also determines the placement of the instrument panel as well as his visual abilities.

A survey of pilots now flying helicopters was conducted to determine if vibration should be considered as a factor in this paper. It was the unanimous opinion of these pilots that vibration did not affect their ability to read any of the instruments.
TABLE 3

Relationship Between Illumination and Visual Acuity

<table>
<thead>
<tr>
<th>Illumination</th>
<th>Acuity</th>
<th>Snellen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meter-Candles</td>
<td>Foot-Candles</td>
<td></td>
</tr>
<tr>
<td>.016</td>
<td>.0015</td>
<td>.075</td>
</tr>
<tr>
<td>.020</td>
<td>.0019</td>
<td>.150</td>
</tr>
<tr>
<td>.028</td>
<td>.0026</td>
<td>.210</td>
</tr>
<tr>
<td>.047</td>
<td>.0044</td>
<td>.300</td>
</tr>
<tr>
<td>.120</td>
<td>.01110</td>
<td>.370</td>
</tr>
<tr>
<td>.250</td>
<td>.0230</td>
<td>.500</td>
</tr>
<tr>
<td>.670</td>
<td>.0620</td>
<td>.750</td>
</tr>
<tr>
<td>1.500</td>
<td>.1390</td>
<td>1.000</td>
</tr>
<tr>
<td>16.700</td>
<td>1.5520</td>
<td>1.250</td>
</tr>
<tr>
<td>5400.000</td>
<td>501.7000</td>
<td>1.500</td>
</tr>
</tbody>
</table>
Figure 4 illustrates the results of the evaluation of the factors discussed in this paper. The following are the factors:

1. Illumination levels of .1 foot-candles or greater.
2. Figure heights of .15 inches.
5. A 99th percentile Eye Reference Point (ERP).
7. A 30-inch top of panel height.
8. Panel Reference Point (PRP) at 5 inches from panel top.
CONCLUSIONS

If the present indicator sizes, visibilities, and detection probabilities are to be maintained, aircraft instrument-panel viewing distances in excess of 38 inches are not permissible unless degradation of visual and operational capabilities below the 100 percent level can be justified.
REFERENCES

DISTRIBUTION LIST

HQ, USA Materiel Command, Wash, DC
AMCRDL (Dr. Thomas, Ofc Res & Labs) 1
AMCRD (Air Def & Ml Ofe) 1
AMCRD (Air Mobility Ofc) 1
AMCRD (Comm-Elec Ofc) 1
AMCRD (Ground Mobility Ofc) 1
AMCRD (Weapons Ofc) 1
AMCRD-TE (Dr. Borum) 1
USA Materiel Command Board
Bldg 3072, APG

Pres, USA Maintenance Board
AMXMB-EME, Fort Knox, Ky.

USA Test & Eval Command
Bldg 3071, APG

Dr. J. E. Uhlauer, Dir, Res Labs
USA Behavioral Science Res Lab
Washington, D. C.

USA Behavioral Science Res Lab
Washington, D. C.

Behavioral & Social Science Res Div
Ofc, Chief of Res & Development, DA
Washington, D. C.

CO, USA Res Ofc, Box CM
Duke Station, Durham, N. C.

Deputy Chief of Staff for Personnel
Dept of Army, Wash, D. C.

Personnel Res Div

CO, USA Mobility Equip R&D Labs.
Fort Belvoir, Va.

Tech Document Center
Human Factors Branch
STINFO Branch

Combat Ops Res Gp
Test & Exper Br, PO Box 116
Fort Belvoir, Va.
Dr. Emmoran B. Cobb

CG, USACDC, Ft Belvoir, Va.
CDDCD-C
CDDCMR
CDCRE

CO, USACDC Special Warfare Agency
Fort Bragg, N. C.

CO, USACDC Avn Agency
Fort Rucker, Ala.

CO, USACDC Engineer Agency
Fort Belvoir, Va.

CO, USACDC CBR Agency
Fort McClellan, Ala.

CO, USACDC Comm-Electr Agency
Fort Monmouth, N. J.

CO, USACDC Transportation Agency
Fort Eustis, Va.

CO, USACDC Infantry Agency
Fort Benning, Ga.

CO, USACDC Air Def Agency
Fort Bliss, Texas

USACDC Liaison Office
Bldg 3071, APG

CG, USACDC Combat Arms Group
Fort Leavenworth, Kan.

CO, USACDC Maint Agency, APG

CO, USACDC Artillery Agency
Fort Sill, Okla.

CO, USACDC Armor Agency
Fort Knox, Ky.

CO, USACDC Med Serv Agency
Fort Sam Houston, Texas

CO, USACDC Military Police Agency
Fort Gordon, Ga.

CO, USACDC Supply Agency
Fort Lee, Va.

Director of Research
HumRRO Div No. 5 (Air Defense)
PO Box 6021, Fort Bliss, Texas

USA Armor, Human Res Unit
Fort Knox, Ky.

Library

CO, USA Med Res Lab, Ft Knox
Commandant, Army Logistics
Mgmt Ctr, Fort Lee, Va.
E. P. Neff, Proc Div

Dir Res, USA Avn HRU
PO Box 428, Fort Rucker, Ala.
Librarian

Commandant, USA Artillery &
Missile School, Fort Sill, Okla.
Dir, Dept of Gunnery
USAAMS Tech Library

Hq, USA Tank-Automotive Command

SMOTA-RR
SMOTA-RTS.1

Hq, USA Detroit Arsenal

SMOTA-RCEC

CG, USA Weapons Command
Rock Island Arsenal, Ill.

AMSWE-RDT
AMSWE-SMM-P

SWE-R-DD-PD

CG, USA Med Equip Res & Dev Lab
Fort Totten, Flushing, LI, N. Y.

CO, Yuma Proving Ground
Yuma, Ariz.

Tech Library

CG, USA Electronics Command
Fort Monmouth, N. J.

AMSRL-R-DGA

CG, USA Elec Proving Ground
Fort Huachuca, Ariz.

Tech Info Center

Jeff Abraham, Test Directorate

ATT-R-DD-PD

CO, Harry Diamond Laboratories
Washington, D. C.

AMXDO-EDC (B. I. Green)

CO, USA Edgewood Arsenal
Human Factors Br
Psychology Br

Env Hyg Agency Library

CO, Frankford Arsenal, Phila, Pa.
SMUFA-4/6400/2B-2 (HF)

Library (C2500, B1 51-2)

CO, Picatinny Arsenal, Dover, N. J.

SMUPA-VC1 (Dr. Strauss)

Libr, George Washington Univ.
HumRRO, Alexandria, Va.

CO, USA Res Inst of Environ Med
Natick, Mass.

MEDRI-CL (Dr. Dusek)

Dir, Walter Reed Army Inst Res
Washington, D. C.

Neuropsychiatry Div

CG, USA Missile Command
Redstone Arsenal, Ala.

AMSMR-RBLD

AMSMR-RHP (Chalkin)
The placement of the aircraft instrument panel has been governed by the 1947 recommendations of the Armed Forces-NRC Vision Committee. This distance, 28 inches from eye to panel, is not always compatible with present-day aircraft designs. A criterion for determining the placement of the instrument panel is developed and the maximum allowable eye-to-panel distance is given in this paper.
KEY WORDS

<table>
<thead>
<tr>
<th>Placement of Aircraft Instrument Panel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eye-to-Panel Distance</td>
</tr>
<tr>
<td>Human Factors Engineering</td>
</tr>
</tbody>
</table>