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ABSTRACT

Electrical networks copnsisting of lumped lincar and memoryless non-
linear elemunts and an arlbitrary number of lessless transmission lines
are considered It is5 shown that a large class of such networks may be
described by & system of functional-differential equations having the form

:(t) = ?(;t)

where the state of the system at time ¢ > O is repres«nted by X,, a point

!
in the space CH( (-e0, 0], E" ) of bounded cerntinuous functions mapping the
interval (=e CJ] into En, With the compact cpen topology, and the function
T mapping CH( (-a,01, E® ) inte E® is continucus and locally Lipschitzian.
A Lyapunov functicnal is presented and use ™ t. obtain several theorems con-
cerrning the statility and instability cf the equilibrium solution, X = O,

cf the network  Several exarples o the theory are presented.
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Chapter 1

INTRODUCTION

In this digsertation several theorems are presented which state
sufficient conditions to ensure that an equilibrium state of a nonlinear
distributed network is stable, asymptotically stable, completely stable,
or unstable. We use the name '"nonlinear distributed network" to refer
to an electrical network consisting of lumped linear and memoryless
nonlinear elements and an arbitrary number of lossless transmission
lines. The technical literature abounds with such theory fof lumped
nonlinear networks [1,2]; while, for linear networks, both lumped and
distributed, the problem is simply that of locating the roots of the
network's characteristic equationl. To the author's best knowledge,
relatively little has been written concerning the more general case
of nonlinear distributed networks.

There appear to be at least two ways of obtaining stability
criteria for nonlinear distributed networks: One way is to write the
partial differential equations which govern the distributed elements
of the network and then consider as boundary conditions or constraints,

the algebraic and ordinary differential equations which arise by

lMuch has been written on methods for determining the location of

the zero: of exponential sums, that is, functions of the complex variable
n C,.z

z of the form: Hoz) = = Ak(z)e k , where the A, ore polynomials in z,
k=0

and the C, are constants. The characteristic equations for linear

networks containing lo. .ess transmission lines are of this form. The

reader is referred to references [3,4,5,6], and especially Chapters 12

and 1% of reference [7], where further references are to be found. For

tertain kinds of linear distributed networks, several authors have

obtained sufficient conditions to ensure that all roots of the charac-

teristic equation have negative real parts. See, for example, [8].
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applying Kirchoff's laws to the lumped portion of the network. Then,
applying the Lyapunov theory for dynamical systems [9) (of which the
boundary value problem is a particular kind) stability criteria may

be obtained. This approach has been considered by Brayton and

Miranker [10]. On the other hand, one may treat each distributed
element in the network as a two-port and obtain mathematical expressions
which show the manner jn which the electrical variables at the ports arc
related. These relations, along with the current—voltage‘relations of
the lumped elements, may then be intrcduced into the Kirchoff's

voltage and current law equations to obtain a system of functional-
differential equations which describes the behavior of the network
(functional-differential equationg are obtained because the expressions
which relate the electrical variables at the ports of the distributed
elements are functional equations). The Lyapunov theory for functional- -
differential equations may then be applied to this system to obtain
stability criteria. This second approach is the one that we shall
consider.

Functional-differential equations, and the application of Lyapunov's
second methed for determining the stability of solutions of these equa-
tions, have been treated by several authors in the mathematical liter-
ature [11,12,13). Recently, J.K. Hale has published several theorems
(12,13] which we have found to te particularly suitable for the kind
of functionel-differentiaL equations which describe a large class of
nonlinear distributcd networks. We make use of three of these theorems
in our work and will state them in the next chapter.

Let us now consider a simple example which will serve to demon

strate the purpose ana cceope of this work. We start with the lumped
2



network of Pgure 1.1, vhich .- ahall, at first, sssume tu e lincar.
We also assuwme R,00 > 0. The resfstor » may be negative. Obvioualy,

. v =0 ip an equilibrium state for this network., If we vizh to determine

(£ - I S

Figure 1.1. A simple lumped linear network.

s L b o G

: wvhether or not this iz a stable equilibrium, the procedure {s very
simple: we compute the value of conductance for the parallel combina-
tion of registors; and, if it is positive, the equilibrium is stabdle.
Letting € =« 1/r and G = 1/R we have gllc = g + G and hence our stability
criterion 1s: If g > -G, the equilibriﬁn state is stable,

o : Let us now add a lossless transmission line to our network, &8 in ”’
Figure 1.2 where I“t’ Ct' and § denote, respectively, the inductance
per urit length, the capacitance per unit length, and the length of

the transmission line. With this modification ve may find that a

- [
80 " <)
Lt,Ct,l L
L__ %
Y(g) =~—b ¥ r - C 3 R
o O~ *- 4

Figure l.c. A simple distributed linear network.
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stable equilibrium state has become unstable. For example, let
ra-l.78, R=1.42,C=1/9, L, ~81/57, C, = 3T/8L, 8 = x/6. Ve see
that r € -R, vhich implies that g > -, and therefore the equilidrium
state v = 0 for the lumped network of Figure 1.1 is stable. (learly

v =0 45 alse an cquilibrium state for the distributed network. We
shall now show that this equilibrium state 1s ungtable. Since the
network is linear, what must be ghown is that there exists at least
one root of the netwnrik's characteristic equation which has a positive
real part. It is a vell-known fact [14 pp.90-94, 15 pp.262-264] that the
zeros of the sdmittance Y(s) seen at the port a-b in Figure 1.2 are
roots of this network's characteristic equation, In fact, due to the
particularly simple nature of this network, these are the only roots
of the characteristic equation. The admittance Y(s) is given by the

formula

+sc+lz‘-" .
o | (R + zo;e'

" T3 b 1:]
‘(R + Zo)e - (R - Zo)e

Y(s) =

L % L

>+ (R - zo)e'ﬁ

a
where 2 = ‘\/Lt/ct = -;-%- =2.19 end 1t = af = L.C, # = % . Now, ¥(s)

has zeros at approximately s - % + Ll

&+ 45 (35 + 38)
Y(%:Jl)='f"fg*(%:ﬁ)%+%} L_é..l.'e(—ll+ ’") -0.77e (L+Jn)
5.0 127 60 L guqpe 2276

- 0.96L + 0.056 # JO.111 + 0.457[ 1.104 + jJo.2kb)
= (=0.56L + 0.0%€ + 0.505) + J(0.111 « G.11%)
0
thus, for the distri“uted network, the equilibrium state v = 0 is unstable.
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It need not alvays happen that the addition of lossless trans-
mission lines to a lumped network with a stable equilibrium state cauges
the resulting distributed network to have an unstable equilidbrium. In
particular, if C = 1 in our example, both the lumped and distributed
networks have stable equilibria v = 0. It is o&iou that changing
the capacitor's value has no effect on the stability of the lumped net-
work. For the distributed network, however, all uf the zeros of ¥(s)
now have pegative rea) parts. This fact is proved in Appendix A.

It is interesting to note that if the lumped network of Figure 1.1
has an ungstable equilibrium then the distributed network of Figure 1.2
also has an unstable equilibrium. That is, the addition of a losgsless
transmigsion line to our lumped network, when it is unstable, cannot
make it stable. This fact is proved in Appendix A.

The stability criterion for the linear lumped network of Figure 1.1
may be expressed graphically as in Figure l.3a. A straight line is

drawn in the i-v pilane {wher i ind v denote, respectively, the current

i=k2(R 1Zy W
1 i
' 1=kl(R ’ZO )V
~ Stable = NP2 stable <

> ¢ '
8 Nz
g =%

g ST Grrahlion N,
/l (a . ) .‘Unst{.giblo: .

Figure 1.3. 3Stability criteria for lumped and Jdistridbuted networke.
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through and the voltage across the resistor v) whose location is deter-
mined by the parameter R (G = 1/R). This line and the line v = O divide
the plane into two regions. If the i-v curve of the resistor r (which

in our case is the straight line i = gv) lies in the region which is
labeled "stable", then the network of Figure 1.l has a stable equilibrium
state v = 0. If the i-v curve of the resistor r lies in the region
labeled "unstable", then the network of Fipgure 1.1 has an unstable equi-
librium state.

Some of the stability criteria which we shall derive will be similar
to this simple criterion. When our theory is applied to the distributed
network of Figure 1.2, two lines are determined in the i-v plane. The
position of these lines depends only on the parameters R and ZO. These
lines, together with the line v = 0, divide the plane intc three rggions
as shown in Figure l.3b. We allow the resistor r to have, in fact,
aimost any reasonable (nonlinear) i-v curve. Our results are (in part):
1) If the i-v curve for the resistor r lies in the region labeled
"stable" in Figure 1l.3b, then the equilibrium state v = O for the distrib-
uted network of Figure 1.2 is completely stab]el.

2) If the i-v curve for the resistor r lies in the region labeled
"unstable" in Figure 1.3b, then the equilibrium state v = 0 for the distrib-
uted network of Figure 1.2 is unstable.

3) If the i-v curve of the resistor r lies in the remaining region of
Figure 1.3b, then it is uncertain whether or not the equilibrium state

v = 0 for the distributed network of Figure 1.2 is stable.

lComplete stability, scmetimes referred to as asymptotic stability
in the large, is asymptotic stability where the region of asymptotic
ctability is comprised of all the points from which a meotion, or trajectory,
may originate [16 p. 8, 17 pp.56-66].
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Seversl important features of our results should be emphasized at
this point. The following remarks refer particularly %o cur example;
they apply, hovever, for the most part, to all networks vhich are members
of the rather large class for which the theory is applicable. First of
all, since our gystem is nonlinear, it is significant that the theory can
guarantee complete stability. If the system were linear it would be
setisfactory to guarantee only asymptotic stability since linearity
would then imply complete stability. Since all systems, however, are
to some extent nonlinear, it is really complete stability (or at least
asymptotic stability with some knowledge of the extent of asymptotic
stability) that is needed for practical applications [17 p.57). Next,
we should not be too surprised to find that there exists & region in
the 1-v plane for which the stability question is left unresolved. The
criteria are based upon a knowledge of only the values of the resistor
R and the characteristic impedance zo. In the numerical example it was
found that, with all other parameters fixed, a network could be made
stable or unstable by adjusting the value of the capacitor C. It is,
therefore, rather surprising that regions can indeed be found where
complete stability and instability can be assured regardless of the
value of 50 many parameters, e€.g., C, a, £. On the other hand, it is
clear that if all of the parameter values were considered the stability
criteria that one might develop would not be nearly sc easy to apply as
our results. In many instances it might be significant that our criteria
do not depend upon the lengih of the transmission line. For instance,
if one were designing circuits which would be jinterconnected by trans-

mission lines, it might be important to know that the resulting network

7




would be stable regardless o) the actual length of these lines. We should
alac point out at this time that the stavility and instability regions
cbtained by our methods are not necessarily the beat regions which might
be found. For example, it is obvious from physical considerations that
the region labeled “stable” in Figure 1.3b should always contain the

firat and third quadrants. For certain values of R and Zo' however, the
line i = kl(R,zo)v has positive slope. This unfortunate circumstance

does not occur in vhat is hoped will be the more usual situations; that
is, vhen the transmission line is terminated in a resistor R whose value
is somewhat close to the characteristic impcdance of the line. If, in
fact, 0.5 < R/Zo < 2,0 it turns out that the stable region will include
the first and third quadrants. Another characteristic of our results is
that the regions labeled "stable" and "unstable" in Figure l1.3b are always
contained in the corresponding regions in Figure l.3a. This, of course,
is to be expected since, as was pointed out earlier, the theory does not
take into account the length of the transmission line. If transmission
lines of infinitesimal length were present in a network of lumped elements,
it is obvicus from physical considerations that the behavior of the net.
work should approximate that of the corresponding lumped network. 1If,

in our example, R/Zo-* 1, the regions labeled "stable" and “unstable"

in Figure l.3b approach the correspondirg regions in Figure l.3a. This

iz a satisfying resul* since, when ZO = R, the distributed network is
+quivalent, for most purpsses, to the lumped network. Thus, our results
.umbered 1) and ) atove npply also to the lumped network if the references
"o Figures 1 %b and 1 ¢ ore hanged to read Figures 1.3 and 1.1 respec-
“ively  Since we Fave sivWn (in Appendizx A) that when the networks ot

8




Figures 1.1 and 1.2 are linear, the distributed netwvork is unstable
whenever the lumped network ig unstable, one might expect the zame to
apply as well vhen r i3 a nonlinear resistor. Our results besr this

out whenever R € 2, however, we do noL guarantee this property (although

t might 5Lill be true) when R > &y
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Chapter 1
LYAPUNOV STABILITY THEORY FOR
PUMCTIONAL -DIFFEHENTIAL EQUATIONS

In this chapter we give precise definitions of the terms which will
be used in our application of the stadbility thecry of functional-differen-
tial equations. Moat of the terms used are standaid ones in the mathe-
matical literature; see, for example, [11,18,19]. We also state three
theoremg of J.K. Hale (12,13], upon which much of our work {s based. For
proof of these theorems the reader is referred to Hale's paper,

reference [12].

l. DPasic Definitions end Notation
The real n-dimensional Euclidean space is denoted by En, and x| =

(xi + e+ xa)l/2

0 denotes the norm of an element x in E®. The elements

t denotes the corresponding

% in E® are taken to be column vectors and X
row vector. Similarly, if M is anm ., n matrix mapping E® into ET then
Mt denotes the transpose of M; also, |[M|| denotes the norm of M, defined
by |M]' = sup(|Mx|l: X ¢ E®, Xl = 1 }. With the above definition for
[ix]', 1t can be shown [20 pp.59-60) that |M| ='erj where A is the largest
eigenvalue of the matrix M. 1r X, ¥ € E° then C5,¥) = XYyt
XY, denotes the scalar product of x and y.

If £ is 8 function mapping a set X into a get Y then, for every
x & X, f(x) denotes that point in Y into which x is mapped by f; if A
{s a subset of X then f[A] denotes the collection of points in ¥
iefined by f[A) = (y: ¥+ Y, y = f{x) for some x .. A}.

We denote by C( (-=,0}, E® ), or cometimes by C, the space of

10




« continuous functions mupping the interval (-«,0] into EN. The topology
on C is taken to be the compact open topology.l It is fairly easy to
show (see Appendix B) that the topological space C with the compact open
topology is metrirable, with metric p defined as follows: For a fixed
real number b, 0 <b <1, and for a sequence of points [tk], 0=t <
by < eee <t <t < ..., with lim t = o define, for every Q,v in

oo K—

c, D(E’,G) m > where me = mln(bkx Sup”ﬁ(t) = —‘i(t)"' - k+]_ Sts
k= 0

-tk) ] C is a complete linear metric space.2 It is clear that

convergence in the compact open topology is equivalent to uniform

lThe compact open topology for C is constructed as follows: For each
subset K of (-»,0] and each subset U of E", let A(K,U) denote_the set

gf all members of C which carry K into U; that is, A(K,U) = (Q

@ CC, oKl ©U}. Let the family Q of all sets of the form A(K,U), for

K a compact subset of (-w,0] and U open in E", be a subbase for a topology
for C. The topology for C which is uniquely determined by this subbase
(that is, the smallest topology for C which contains @) is called the
compact open topology. It is denoted by SC. The family of finite
intersections of members of Q is then a base for the compact open

topology; each member of this base is of the form n A(K u. ), where

i=1
egch K. is a compact subset of (-o,0] and each U, is an open subset of
E'. For a complete discussion of this topology the reader is referred

to reference [21] and Chapter 7 of reference [22].

2One might hope that a norm could be defined on C so that C would be a
complete linear normed space (a Banach space). A natural attempt to
define a norm might be made as follcws: Let |9|| = o(9,0) * o€ C.
This, howeverL does not define a norm, since thechomogenelty ~ond1t10n,

”am" la| "w" is not always satisfied. Take, for example, ¢(t) =

for Sw <t < -t% and o(t) = (2/t )t + 2 for -t. <t <0, and let a = 1/2
Then |joll, = 1, but |la ¢q } That a norm cannot be defined for
C is shown by Arens [21 cto follow from the fact that the domain of the

functions in C, (t: -o <t <0}, is not compact. The concept of a linear
metric space is a specialization of the concept of a linear topological
cspace. The concept of a linear normed space is a further specialization.
Fortunately, for our purposes it will be of no real consequence thatl

C( (-«,0], EB) is not a Banach space. See also, [18 pp. 49-50 and

pp. 396-397]. :

11



convergence on all compact subsets of (-»,0]; in fact, a sequence

S

6n -.6 in C if and only if for every nonnegative integer N,

max( Iﬁ%ﬂt) -p(t))]: NSt <0 )50 asn oo For a given positive
constant H, we use the notation CH( (-,0], E® ) to.denote the set

(p: 9 € C, sup{ Jlp(t)|l: - <t <0 ) <H ). Aganin, we shall abbreviate

the notation to CH when the meaning is clear.

Let A> - », and let X be a continuous function mapping the interval

(~x,A) into E'. Then, for every t, -o < t < A, we denote by it the

translation to the interval (-«,0)], of the restriction of X to the
interval (-o,t]; that is, it is an element of C, defined by it(a) =

x(t + g) for - < 0 < 0. In other words, the graph of it is the graph

of x on (-w,t] shifted to the interval (-«,0].

If r is a real number, if f is a function mapping C,, into En, and

H
if X(t) denotes the derivative of X at t > r, we consider the following

autonomous functional-differential equation:

x(t) = Hz,), txr (2-1)

Fquation (2-1) is called a functional-differential equation because

each element of the vector ;(t) is determined by the value of a functional
on C,. We say that x(r,p) is a solution of Equation (2-1) with initial
:ondition @ € Cyat t =r if there exists some A > r such that x(r,p)

s u mapping from (-e,A) into E" with it(r,E) in C, for r <t < A,

H
7((r,5) = @, and if X(r,p) satisfies Equation (2-1) for r < t < A.

The concept. of a functional-differential equation is more general
-an that of an ordinary differential equation. Consider any ordinary

. fferential eguation, for exumple x(t) = 2x(t) + xi(t). If xi{t) ic a

12



solution of this equation, the derivative of x at some point t may be
computed if one knows only the value of x at the point t. For a
functional ~diffcerential cquation, the value of the derivative of a
solution at some point t depends upon the values that the function
X assumes over an interval for which the point t is the right-hand
end. Clearly, the concept of a differential-difference equation is
also a special case of a functional-differential equation. From this
point of view it is obvious that an initial condition for a functional-
differential equation and also the state at some time t of a system
which is governed by a functional-differential equation should be
specified by a point in some space of functions.

In a manner similar to that used for ordinary differential equations
and differential-difference equations (see references [23] and (24]),
one may prove the following existence aﬁd uniqueness theorem: If f

is continuous in Cy, then for any ¢ in Cy there is a solution of

‘ Bquation (2-1) with initial condition @ at t = r. If T is locally

Lipschitzian on CH; that is, if for any Hl < H, there exists a constant

L(Hl) such that |[T(g) - F(¥)] < L(Hl)p(é,@) for all @,V in Cy vith

o(@,0) < H, p(¥,0) < Hy, then there is only one solution with initial
condition ¢ at t = r and the solution x(r,p) depends continuously upon
®. Also, I(g) locally Lipschitzian in ¢ implies that the solution can

be extended in C until the boundary of CH is reached. *

A cet M in C is called an invariant set if, for any 5 € M there

exists u function X defined on (-w,o) with X, ¢ M for every t in (-w,w)

t
- - R - -
and X_ @, such that, for every ¢ in (-w,w), if x (o,xo) is the
soluticn of Eguation (2-1) with initial condition io at o, then

13



Xy = X, for t > g.

If V is a continuous functional on Cy» and if x(0,p) is the
unique solution of Equation (2-1) with initial condition ¢ at t = 0,

we define 0(2_1)(5) and V?é~l)(5)by:
V)@ =1, & V(,(0,§) - V($) ),

h=- 0

V(p)@) = Lim V(G (0,8) - ¥(§) ).
h— o

2. Stability Theory for Functicnal-Differential Equations

If F(0) = 3, then the solution X = § of Equation (2-1) is said to
be stable if for every e€ > O there exists a 8 > 0 such that ¢ ¢ Cy and
o(9,0) < & implies that it(o,é) exists for all t > 0, is in Cy» und
p(it(o,é), ) < ¢ for all t >0. 1If, in addition,\there exists a 8 >0
such that p(¢,0) < & implies that X,(0,§) is in Cy for all t >0 and
it(o,é)‘a 0 as t =, then the solution X = 0 is said to be asymp-
totically stable. If the solution x = § is asymptotically stable for

all H> 0 and all & > 0, then the solution x = § is said to

be completely stable. The solution x = 0 is said to be unstable if it
is not stable.
It should be noted that if x is a continuous function from ( -w,e)
to ET then lim Ix(t)|| = 0 if and only if lim p(it,ﬁ) = 0 since con-
T o0 tes00 '
vergence in the compact open topology is equivalent to uniform con-
vergence on all compact subsets of (-®,0], in particular the set {0).

Thus, defining stability, etc., in terms of the compa¢t open topology

yielde the desired properties.
' 1k



We now state three theorems due to J. K. Hale [12] concerning the
stability of equilibrium solutions of functional-differential equations.
As Hale points out, these theorems generalize the results of LaSalle
[25,26] for ordinary differential equations. The proofs are also extensions
of the ones given by LaSalle and are to be found in Hale's paper. The
proofs given by Hale in [12" are actually stated for functional-differential
equaticns on the space ¢( (-r,0], En), where r is a positive real number;
however, as is pointed out in the last section of his paper, the theory
applies as well to functional-differential equations on C( (-e,0], EY).
In some places the wording of these theorems has been changed slightly;
and in Theorem 3 (Theorem 4 of Hale's paper) a trivial change has been
made in condition 1). In all of the following theorems we assume that

the function f in Equation (2-1) is continuous and Lipschitzian on'CH,

for H > 0.

Theorem 1. Let C* = U C_. Let V be a continuous functional on C¥. If
0<y <o

Uz designates the region of C* where V(¢) < g, suppose there exists a non-

negative constant K 3 |[¢(0)]l <X, V(¢) > 0, and v )(6) <0 for all

(2-1
o€ U, If R is the set of all points in U, where \'/(2_1)(5) = 0 and M
is the largest invariant set in R, then every solution of Equation (2-1)

with initial condition in Ul approaches M as t— .

Theorem 2. Suppose ?(6) = 6, and let the continuous functional V be

defined on C* = U C such that V(0) = 0. Let U .denote that region
_0r<e ' £ _

of C* where V(¢) < 4. Assume that there exists K such that [@(0)| <K

for all 5 € Uz' Let u(s) be a function, continuous and increasing on

[0,X). where u(0) = 0. If C; U, if u(|3(0)]) < V(9), end if \?(2_1)(5) <0

for all ¢ € Uz, then the solution x = O of Equation (2-1) is stable.
15
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Theorem 3. Suppose () = § and V {s a bounded continuous functional®

on ¢, and there exists a y and an open set U in C such that the following

"
cenditions are catisfied:
1) v(g)>0ontUn ¢ v{g) = 0 on that part o. the bonndary of

U in ;
CY'

2) & belongs to the closwe of Uni Cyi
3) Vig) <ul p(o)i )onun CT; where u(s) is continuous, non-
negetive and nondecreasing on {O,H), and u{0) = 0;

L) )(6) > 0 on the closure of U\ C. and the set R of

'J'
(2-1
. - -
¢ in the closure of UN C_ such that V(e-l)(m) = O contains no invar-
iant set of Equation (2-1) except ¢ = 6.
Under these .onditions, the solution X = O of Equatisn (2-1) ‘g

unstable and the trajectory of each solutiuvn of Equation (2-1) with

initial condition in U N CT must leave CY in some finite <ime.

lBy_bounded we mean here that tnere exists £ >0 3 V{(9) ¢ £
for all @ - CH'

16




Chapter III

TRANSMISSION LINE FUNCT (ONAL REPRESERTATION

In this chapter we shall develop several pairs of functfonal
equations which deseribe the electrical behavior of certain simple
two-port networks which contain a lossless transmission line. The
two-port networks which we shall be concerned with are constructed
by connecting a resistor, szither in series or in parallel, at each
end of a lossless transmission line. We consider such two-port
networks, rather than uimply treating the transmission line itself
as a two-port bhecause, Iif it is reguired that at least one of the
resistors have a finite value, greater than zero (which shall be
the cage in tne app ication of these results), then the linear
functionals which occur in our resulting equutions will be contin-
uous. That the functionals have this property, in fact, that the

functionals satisfy a Lipschitz condition, will be proved in the

final section of this chayter.

1. The Transmission lLine

We define a lossdess transmission line to be a distributed
electrical two-port network, as skown in Figure 3.1, which is charac-
terized by three parameters: g, the Tength of the transmissien line;
C, the distributel capacitance per unit length; and L, the distributed
inductance per unit length We always assume 2,C,L. > 0. It is con-
venient to Jdefine twc additional parameters which may be used, along
witn L, ' ive an alternate method of characterizing the line. We

mfine
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i(t) —w—n _—i (L)
° + ) :}”"”h"m-*—f_<3+ ¢
VO(t)i b {v‘(t)

Figure 3.1. A typical lossless transmission line.

Zo = V L/c ,
a8 = v c .

Zo is called the characteristic impedance of the transmission line and
a is the reciprocal of the line's phase velocity. We also define Yo‘
the line's characteristic admittance, by ¥ = l/Zo.

If x is a point in the interval [0,2] Qnd t is a point in the
interval (-«,T], for some T > -, then at any time t and at any point
x the transmission line's voltage and current are denoted by v{x,t)
and i(x,t) respectively. Thus, v and 1 are real valued functions

Jdefined on the set MT;

M,r-((x,t):0_<_xgl, o<1 &T ;]
Ilote that vo(t) = v(0,t), io(t) - i(o,t}, vE(t) = v(£,t), and iﬂ(t) =
-i(g,t). We assume that for cach lossless transmission line in our

distributed networks there exist functions rl and f2 such that

vix,t) - fax - t) + £ {ax +t),
1 2

i
z

[&]

i(x,?) L [ f‘l(,’lx - t) hd f/,\/(ax + t) J)

18




for all (x,t) € Mp. From these equations we obtain:

v(0,t) = £, (-t) + £ (t), (3-1)
1 1
Host) = o () - g p(e), (3-2)
v(z,at-t) = £,(¢) + £, (2as-t), (3-3)
W2,ae-t) = 3= £, (8) - 3~ 1,(2at-t). (3-4)
Zo 1 Zo

From Equations (3-3) and (3-4) we find
£,(t) = 2 v(2, as-t) + 2 1(s, as-t) ], (3-5)
and from Equations (3-1) and (3-2) we have

£.(t) = 2 v(0,t) - 2,i(0,t) 1. (3-6)

Substituting Equations {3-5) and (3-6) into Equation {3-4) and
replacing t by 2aZ-t, then substituting f.‘quations (3-5) and (3-6) into
F Equation (3-1) and replacing t by t-af gives

v(o,t) - zoi(o.t) = v(g,t-at) - Zui(z,t-aj)
and

v(g,t) + Zoi(l,t) = vi0,t-al) + Zbi(o,t-az).

Thus, letting t = af and recalling that i(f,t) = -iz(t),

volt) = 21 (t) = v (tr) + 21 (ts),

v, (t) - Z,i,(t) = v (ts) + 2,1 (tr). (3-7)

Equations (3-7) are used as the starting point in the next
section where the functional equetions which govern the behavior of

the various two-ports are derived.

16
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2. The Transmission Line Two-.Forts

In this section Equations (3-7) are used to derive the functional
equations which describe the electrical behavior at the ports of the

three two-port networks shown in Figure 3.2. That is, for exazmple,

° .
vo{ . { Z,:8,8
T =as

(a)

R
[o] ¢ z ,8,£ .

v v [+ v G

o~ —& -0

(v)
. iI
1 s N8 L W}
o +°k + 2 Jyt ~0 4 L
A T = at G‘ £
o - - ~0

(e)

Figure 3.2. Transmission line two-ports

for any t € (-=,T], T > -», we will show, for the network of Figure 3.2a,
how io(t) and ii(t) may be expressed as functionals whose arguments
are the functions ( of g, @ < ¢ € 0), vo(t+a) and vl(t+o). The

resulting functional equations are:

20
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For Figure 5.24:

3 =
io(t) = ﬁ—%mz— vo(t) -2 f—-—g-i—; Z(i‘or“)k vo(t - 2(k+l)s)
o 0 (R, + 2, =

Z o
2 (R, + zoc;(ai +2) Z U’OT‘)R vl{t - {2kellg ),y
k=0

Z, I‘
£,(t)

Z (r ‘)k v, (t - 2(kel)r)

(R+Z) k=0

2 z° Z (rr )k v (t - (2k+l)r)
(R‘e + ZQ)(R0 + zo) = ot 0 *

For Figure 3.2b:

- 1 k
1) = gt T Volt) - (R vy f\;o(ror‘) v (t - 2(kel)z,

. 1 k
" e (Ro * Zo)(cl + yo—j kgo(r"rt) il(t - (2ktd)r,

YT
v (t) = ""'——l 1 (t) +2———L—-——— Z(I"I‘ )k 1,(t - 2(kel)q.
f 4 G, +7Y o g 1
) o (c +y) =

R +¥)(R +zjz(“‘) vo(t - (2kel)q).

k=0
For Figure 3.2c:
1
v (t) » z—=e f (t) +2 Z( (- 2(kel)y
o G.+Y "o
° ° G * Y ) k=0
Y [ ]
o o . i
S VG, + Y Z(FOII) $0t - (2k4l)g ,
k:o
21
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Y r d
vy(t) m g=tem g (1) 4 2 =20 (e )% 1t - 2(kel )
: O, + ¥, ¢ (G‘ . Yo)a E;; o8’ 8
Y L J
k
+2 (G, + yé)?go YY) E: (rr ) 1 (e - (2kel)r). (3-8)
kao

In Equations (3-8) I, and I', are the usual reflection coefficients
at each end of the transmission lines vhen the independent port
variables are set equal to zero; e.g., for Figure 3.2a, Fo =
(R, - 2,)/(R, +2)) and T, = (R, -2 )/(R, +2)) We assume for each
network that both resistors are nonnegative and at least one has a
positive real value (hence |r°r"] <1).

Equations (3-T), of course, apply to the primed variables in
Figure 3.2a. The primed variables, however, are related to the

unprimed variables by the following equations:

’
1O

v

C
o]
o
(o]
-

L N

v“':v - R,i,.

Thus, Equations {3-7) may be written in terms of the unprimed variables

a3

"/O(L) - Roio(t) - Zoic(t) - Vz(t-f) - Rtit(t’_") + Zoi‘(t-t),
) e R le) w2t () o ov (ter) < RE(ter) + z i, (tx),

and hence,
R, -2
. \ l 1 4 o
i, { -_) v ——e, (' ) W ey ‘.t'T) > i (0-1)1
a R +2, o R o+2, R, +2, ¢

d




1‘(1,) -

—
R: + ze

R
1
R, + 2 vc(t"f) + Ro + zo io(t“")‘ (}"'9)

4 = i S

v‘(t) -

Replacing t by t-¢ in Equations (3-9), we have

R, -2
1 ] . (]
L () = oo v (Leg) - v (t-zg) ¢ g2—=2 1 (1-2¢)
o R ¢Z o R +2 s RTYZ s ’
\ 1 1 R\‘ ° z
1t = R, + g, vylts) - R, + 2, volt-2v) + R+, 2 1o(t2e).  (3-20)

Substituting Equations (3-10) into Equations (3-9) gives

1 (t) 2 (t) By - %) (t-2¥)
uw —== ¥ - v L~
0 R +Z ‘o (no + zof(n‘ + zo) o
R, -2 (R, -2 )R -2
1 [ 0] { Q
- 1 - A0y (4} + e 4 (t-2¢)
R, + zZ, H‘ tz, )8 (ao + Zo)(Rz + 407 o ’
z)
L‘(t) = R‘ + Zo vi(t) - ‘(R + z )(R + z ) v (t"’?f)
, 7 (R, -2, )(R -2 )
L o) (¢] Q Q
v e | ] o el (tag) o+ 1 (t-2¢)
R2+ZG[ Ro+zc] (R +z)TR +z°Tz ’

and nence,

i 1
1 {t) = gy v {1) - T, v (t-2¢)
o RC + ZO n RO + zo t Yo

Z

T AR VL, )(n 7o) Vit e TP, dlee2n),
£ Rl * zo Z R‘ *2, 014

. o N

.2 (‘Rg +2 )R +2,) vo(te) + rry 1‘(1:-21). (3-11)

We now note that the second of Equations (3-11) may be obtained

from the first by simp.y excrnanging the o and §{ subscripts on the symbols

{v vy, Rand I

Due to this svymmetry we need now consider only the first

23

i e od




B e P

of these equatiois. If T £ C and ‘, 0 then, forx=0,1,2, ...,

S 1 k . . 1 Ko ke .
(g2 " doleeake) = gy (0¥ vole-2) - g WARKCETEY S

Z
r )kf-l

o %ﬁﬁt Y (rp )% v (-(2ked)e) + (L0 00" 1 (t-2(kel)x);

therefure, for p =1, &, ... ,

P P
Cp )R . S .
Z (r 0 )" 1 (ve2ke) - Dy Z (rr 1% v (te2k)
k=0

P

1 Ky kel

“ R Z I‘Ol”); vo(t-e(kﬂ.h)
k=0

P
Z “‘ol})k v (t=(2kel)r)

k=0

2
Q
ﬁo + zo)lat + zo)

P
N Z (ror‘)""JL 1 (t-2(kel)x).
% =0

But,

i ptl ]
K+l . k
(rr -0 5 * - .
Z I‘Oli) io(t 2( kel )x) Z(IOIE) io(t 2kt );
4o k=1

nerelure,

P

o . 1 K

LS M %) - I z(ror‘) v_(t-2ke)
k=0

4 vA

P
4 K K+l s . o ok erion
"R+ 2 Zlor‘ Vo(t-c.(rﬂl)‘f) d(R e )(R‘ Tz )Z(loli) V‘(t, (el jr)
k=0 ° ° [yt

rRT) + (00, 0P L (Le2(peL)e).

e 24




Algo

P P
Z(ror‘)" Volt-2ke) = v (t) + Z (g )" v (te2(kel)r)
ksc kw0

5
- P P v (ta(paiye),
therefore,

P

1 K+l k, . k+} .

R Zo[vo(t) + Z(I‘o - I‘O) I‘ vo(t-v’(k*l)t)]
kno

-2 % i (rr )k v,(t-(2k+lr)
(Ro + Zo)(Rl + zo) & o L .

1,(t) =

I S ptl . \Ptl
- N (rgrl) vo(t-e(pﬂ.)r) + (rox‘) iu(t-.?(p*l.)f).

Using
2
k+l k k - () k
Ty -r'°=r‘°(r‘o-1)--2R e
[+ [+]
we obtain
2 P
1) =g v (1) -2 22 S n Ry ()
© R +2 ° R +2 Z o4 o' 7" *
Q [+] [+} (] k=0

z P
2 o . )
TR V2R, v Z) k}ﬂ:(rorn) vy(t-(2kel o)

. 1
R°+Zo

(R )P vo(eeapad)e) + (1, )P*L 1 (e-elpen)e).

Now, since 0 € R, € @ and/or 0 < R, < &, and hence iI‘oI“I <1,

we have, if v , i, vy 1, are bounded on (-»,T],

1 . p+l
lim (r.r,) v_(t-2(p+lle) = 0,
LR, 2 o' 4 o

2%




S

lim (rox‘*‘)’”l 1(t-2(ptl)e) = 0,

Pew
and , P -
1im (r.r )" v (te-2{k+llr) = Z(r r )k v {t-2(r+l)t), ete.,
pesm 21 ] o [+ W 1 o
kG X=0

coaverge. Hence, using the symmetry referred to following Equations
(4-11), ve have derived the first two of Equations (3-8). lmmediately
following Fyuations (9-1L) [t was assumed that FD £ 0 and F‘ £ 0.
wWe may, however, compare bBquations (5-11) with the firat two of
kyuations (3-8) and sec that the latter are valid for all
For By ( [x‘ol <1, ]r‘J <1, lror‘] <1 ), provided we define
(FOP‘)O =] ;f Fo = C or F‘ = 0. We shall make this definiticn.

The remaining four of Equstions (3-8) arc easily derived in a

e« similar manner.

%. The Lipschitz Condltiovn

In this section we prove that the functionul equations describing
the clectrical behavior at the ports of the networks considered in
tie last cection satisfy a Lipschite condition provided that the
sompact open topology on C ls metrized with an appropriate metric.

. . n
we consider the mapping £, from C,( (-«,0], " ) Into £, defined

H
ns follows: For L =1, ... , u, let tii) > 0, séi) > Q, T(i) >0,
Y (1 (1 i (1 L NED IS 4
5% e 0, and let ty ) 3 t;_ﬁ + T( ), S(k)” u&_g +5 for k =« 1, .,

Let A be w real nvn diagonal matrix,

0O
ho- L ’
G
143
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vhere tait <1 for i =1, ..., n Let M, M, M, dmote resl n .
< ]

mutricea. Then, v § Cy
- -
HKo)a M$(0) + M, Z Ak é‘u + M, Z Ak 5% , (512}
[ £} k=0
where étk denotes the vector
Co(-tiMy, oo, g (timh )t
and similarly for 6sk. 1f we consider any finite collection of two-

port networks of the type considered in the last section, the system
of functional eyuations describing the electrical behavior at their
ports is of the form specified in Equation (3-12) above.

We first define the metric p with which the compact open topolog:

on C w.l1l be metrized: Let s = max( !ail t:{=1, ..., n ), and
" * (1) (1), ‘
choogse b3 0 €a<b<l. Let t, = 0, tl > mnx{to 185 T3 1, ..,n},
4 [ ] +* ®
and pick T > max( T(i), S(i): i =1, ..., n), Let ‘k = tx-l + 7T
for k = 2, % ... . For { =1, ... , n, define the mtegersl
. s .
R L S RS I N | /s(”] + 1. Clearly, each interval
L ] *
{'tk+l' -tk}. for k n 1.2, ... , contains at least cne of the points
-tii) and at most N; such points (for { = 1, ..., n): and, similarly,

each such interval contains at least one of the points -sﬁi) and at

.. Al ’ \
most Ni such points. 1If Ni = [(tl - tgi>)/ T(i’] + 1, and

» i ' " .
Hi n [(tl - 5é ))/ S{i)] + 1, then the interval [-tl. 0]

containg Nl of the points —tii) and Ni of the points -ski) ’

YWe osse here the following notation: I r is any real

PRI

wanber ten (r, denvtes the grestest Integer k suct 't v €
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for 1 =1, ..., n. Let N = max( "1" Ni", Ni"',ni"": 1=, ..., n};
] »

then, each interval ("tk+l' -t ), for k =0, 1, 2, ..., contains at

least one of the points -tii) and -sii) and - 0t~ N su~h points,

for £ =1, ..., n. Let the compact open togp v on C be metrized

-
with the metric p defined by p(@;i) = X M, Wi .em =
k=0

k - - » » -
cial b, sup{ [P(t) - W) : -4, <t et ) ), ¥ve ¥EC
We now prove two lemmas which will be used in our p‘ocedure for

specifying the Lipschitz constant for f.

Lemma 1. If -tk denotes an arbitrary fixed point in ovne of the
intervals [-t;;l ’ -t;] and if ék denotes the mapping from

Cyl (=03, E' ) to E® defined by &.3) = §(-t)), ¥ § ¢ Cy» then &
satisfies a Lipschitz condition on C
k),

proof: et §, ¥ € Cyo I [B(-t) - ¥(-t, )] <%, then

fal-tg) - ¥t )l s < ple,¥) €L, ole,¥). T0 {ol-1) - ¥t )]

> b° then plg,¥) > m = k.

" with Lipschitz constant Lk =

max{ 1, 2Hb"

But then, b'kp(q":,i) > l#eﬁb'kp(é,ﬁ) >

23 or (since || §(-ty) - W(-t )l s 28), || (-ty) - V-t )]l <

210™® 0($,¥) < L o(3,7). Q.E.D.

Lemma 2. if, for k =0, 1, 2, ..., K, -té denotes an arbitrary fixed
* *

kel )
denotes a mapping of CH( (-=,0], E' ) into E* as described in Lemma 1, then

point in the interval [-t @, denotes a real number, and ék

K
ir L= gio]ckl'Lk, where L, is the Lipschitz constant for each g,

{which is guaranteed to exist, by Lemma 1), then
X
3 G lpt-tg) - Wt S L ol@i¥), v 6, € oy
k=0
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K K
Breof: I oy lpl-t,) - (-t < I ol el - #-r)l <

K

kio faki‘hk o(9,¥) = Le plgs¥), ¥ @uf o Cy- Q.E.D.

It should be noted that the constants Lk and L’!( of Lswmaz 1 and 2
do not depend on the particular point -t); specified in the interval
* »
[-tyyys Yl
We now specify the Lipschitz constant L for the mapping #; that
is, we determine the constant L such that I#() - #¥) < L ol@,¥), v
@, Ve CH: Pick the positive integer J guch that J2a= (a/b)'j <

2—%&; and a'j < &Ng . Let LJ-J. denote the constant gpecified in

Lems 2 for the sequence of mappings | EkJ and constants ak = aan,
k=0, ..., J-1, and let JO denote the Lipschitz constant specified
in Lemma 1 for éo(cﬁ) = ¢(o). Then, let L = ”“1“'% +

Ml + M2+ 2y ).

Theorem. 1If L is specified as above then ¥ o,V € Cyr IE(@) - F(W)) <
L p(q,¥), where f is the mapping from CH( (~,0], E® ) to E® defined
by Equation (3-12).

proof: ¥ g,V ¢ Cy - ©
I2(8)~ W) < M 3(0) - M §(0) ) + | A% - A
M ¥ %, 32; b M, 22; t

I, ZA“qssk -y mskn < iy [1- 19(0) - #(o)]) +
k=0 k=0

LAY Akw’m RN ZA“(&SR TV S M) Ee(6,8) ¢
k=0 k=0
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k - " k - -
Mol EOA G, = ¥ )+ oyl kZA (G, - ¥, )i
=Q

We now show that each of the termc ﬂi:&k(wt - ¥ )H ”2:A (w 8y V )ﬂ
k=0

is le’ 4 than or equal to (L + LJ_l) p(@,*), and then the theorem ig

proved.

uZA(wt R Z - 5, - tu-za oy - ¥, I <

K0

z ( Zlvi 400 <l ) }: ( Zlkp( 410y _g(eltly)
k=0
Z ( }: Shec-eit)) - w-elidy) )

i=1

For each { =1, ... , n, 3a subsequence [-t(l)J, J=0,114,2, ...,

consisting of exactly one point tii) from each interval |- t s -t )

at which ||q'>(-t£i)) ¥( t(i))l] is a maximum for all of the (at. most N)

(1)

points —tk in the interval. Obviously,

PICH L SIS P Z 4, 0) - e Ml o e,

% =0 J=0

@© n il
1S %G, -9 )< ( alngeit)) < s By
kg:o Q‘x ty ' Z 3}—.:0 k.j s

i=l
a n (
J( - A1)y e (1) ]
a“N -ty 7)) - §(-t2*2 )0 ],
Z Z Y o
J=0 i=1
30
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For aseh J =0, 1, 2, ... ; 1 one point, of the n points {-t( ).1:-1,...,11}

in each interval [-t%, , -ti], st vhich [§(-t\*) ) - §(- s“) | 15 &
53 %)

k+l’

maximum. Call it -tJ'. Then, ZW t'(i)). W t(i)‘ﬁ <
' 1-1 5

ali(~t;) - #-t,)| and "°"°°’"2_:0 NG, - ¥ )l s J):admw-zp - §-2
]

J-1 -
Z 1"11::!}&»(-1.3) - #-t )l + 2_ a"mw-tp - ¥t ) < Ly 10(6,¥)
=0 3=J

+ Z aJNnu&(-tJ') - 3(-1’.3)", by Lemma 2. But, since J > J=ud >
Jad

J

ZHNna‘j, a‘jmﬂé(-td') - i(-t‘;)ll <a"Rn-2H < v for an1 J > J. Therefore

(since also nJNn <l), > JnﬂnJ = Iun(b‘j, sup(jlo(t) - ¥(t)|:

4 <t g -t ) ) 2 min (b, sup(adMalp(t) - F(t)[:-t ., <t < -t') )

Jt1 S J+1 s
> min (a"NnIkP(-t ) - i(-t M, sup( a ankp(t) - i(t)ll Jﬂ_ <t g -t;J }
= a anh)(-t )- ?(-t . Thus, ole,¥) = s m 2 £ m,

J=0 J=J
> Z alafp(-t;) - ¥(-t )]l

J=J
Thus ,

o

1Y G, - ¥ e Ty o8 ¢ pl8¥) = (1 g +2) 0le¥):

k=0

The same technique examctly proves that

i go WG, - ¥ s (1 + 106690

3 Q.E.D.
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Chapter IV
STATE EQUATIONS FOR A CLASS
OF NONLINEAR DISTRIBUTED NETWORKS

In this chapter we define the class of nonlinear distributed networks
for which our stability criteria apply. We also show that the behavior
of any network in this class is determined by a system of functional-

differential equations having the form
;(t) = ?(;t)' t>0,

where the state of the system at time t > O is represented by ;t’ a point
in the space CH( (-w,0}, E® ), and the function f is continuous and
locally Lipschitzian. The form of the funciion T is also given, so

that if one selects any network from the given class it will be evident
how %o construct the particular functional-differential equation which
determines its behavior. We first consider the writing of state

equations for lumped networks.

1. Lumped Retworks and State Variables

Much has been written cn the subject of writing state equations for
lumped networks. See, for example, references [27) through [36].
Although both linear and nonlinear networks have been considered, we
restrict our attention, for the moment, to lumped linear networks.

Let the integer n denote the number of independent voltage and current
sources in a given linear network. We may then consider the network

to be u lumped linear n-port, containing no independent sources, with
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independent voltage and current sources connected at each port. For
most much networks it is possibie to designate a certeén ~nllontion of
the n-port's branch voltages and currents ss the "state variables” of
the network. These state variables have the propurty that the voitage
across or the current through any branch of the network has & unigue
representation as a linear combination of the state variables and the
i{ndependent source voltages and currents. Thus, the behavior of the
network is completely determined if the behavior of the state variables
and the independent sources is krown,

Usually it is poasible, and convenient, to select as state variables
the voltages across capacitors and the currents through inductors in the
n-port. We shall not dwell on the matter of when it is possible to
select such a set of state variables to chpracterize a given linear
network since this matter has received much attention in the literature
(27, 28, 29, 30, 31, 32].

When it is possible to characterize & linear network having no
mutually coupled inductors by a set of state variables as described above,

we may write the syatem of linear differential equations
P x(t) = A x(t) + B u(t), t>o0, (4-1)

where: ;(t) denotes the state vector, a vector whose components are the
state variables for the network (the voltages across capacitors and the
currents through inductors}; E(t) denotes the vector whose componhents
are the values cf the independent sources; P denotes a diagonal matrix

in which each diagonal element Py is equal to the value cf the reactive

element (capscitor or inductor) corresponding to the i-th state variable.

KX
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We note that P is a positive definite symmetric matrix. Thua, the
left-hand side of Equations {4-1) is equivalent to a vector whose
components are equal to the values of the currents through capecitive
branches and the voltages across inductive branches in the network.
The right-hand side of Equations (bel) is the expression of these same
currents and voltages in terms of the state variables and independent
sources. Thus, the rows of the matrices A and B are couposed of the
coefficients of the unique linear combinations of the state variables
and the independent sources which are equal to the corresponding
voltages and currents on the left-hand side,

In case mutual inductances are present in the n-port it may still
be possible to choose a set of state variables as specified above and
write Bquations (L4-1); however, P will no longer be a diagonal matrix.
For all physically realizable n-ports the values of the coefficients
of mutual inductance will be such that P will still be positive definite
and symmetric.

In case the network possesses loops which contain only capacitors
we also find that the matrix P may not be diagonal, but may be positive

definite and symmetric. For example, for the network of Figure 4.1

Figure L,1. A network with a capacitive loop.
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we way choose x(t) = (vl(t), va(t) }‘ and vrite
x(t)}
-03 (Cz + 05) 0 .1/32

x{t}.

The left-hand side of this equation is equivalent to the vector (ix(t),iz(t) )t.
Clearly, P is positive definite and symmetric. A similar remark can be
made for networks having cut sets which contain only inductors.

in certain of the cases mentioned above, and sometimes when
dependent sources are present in the network, it is convenient to
choose as state variables linear combinationa of certain branch voltages
and currenta. 1n any event, if some set of state variables may be chosen
and Equations (%-1) written with a nonsingular P matrix then, upon multiply-
ing both sjides by P‘l, we obtain an equivalent set of equations in the
form of Equations (4-1), with the nev P matrix (the identity matrix)
positive definite and symmetric.

In addition to Equations (4-1) we may also write

w(t) = C x(t) + D u(t), (4-2)

where ;(t) is a vector whose elements are the remaining port varisbles
(those not included in u(t)), and the matrices C and D are constructed
in such a manner as to give the appropriate linear combinations of
state variables and independent sources to represent thece port
variables.

If we consider a lumped linear multiport network containing no
independent voltage and current sources, and assume that at each port
one of the port variables (the port voltage and the current into the

port) is specified independently, then it may be possible to write
35
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Equations {4-1) and (4-2) us described above, where ult) is the
vector whose components are the independent port variables and
;(t) is the vector containing the remaining port variables. Taking

the Lapiace tranaform of Bquations {4=1) and {4-2) we easily obtuin
W(s) « [c(sP - A)" L B + D) T(s).

Ats-“’

W(s) = DU(s).

Thus, if we consider the input variables to the multiport to be *he
components of the vector u and the output variables to be the

components of the vector ;, the matrix D 48 the transmission matrix

for the multiport when all of its capacitors are short circuited and all
of its inductors are open circuited. If, for every pair of distinct
ports there exists a zero of transmiseion at s »e, then D i8 a

diagonal matrix.

«. A Cluss of Nonlinear Distributed Networks

Many nonlinear distributed networks may be represented as in
Figu.e 4-2, This network consists of three main parts: One part is a
umped linear multiport which is connected to each of the other parts
only at its ports. The second part consists of the collection of
logsless transmission lines., This part is divided into three groups
sy expluined below. Each end of e¢ach line is connected to one of the
ports L the linear multiport. The remalning ports of the linear multi-
j.rt oure connected to tie third purt of the networx, a nonlinear

H S (AN
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Pigure 4.2, A typical nonlinear distriduted network.

The nonlinear multiport is characterized as follows: We suppose
that there are n, ports for which the voltage is the independent
variable, and na ports for which the current is the independent variable,
and let ;& and IB denote vectors whose components are the values of these
port variables. Then, the remaining port variables are specified by

a nonlinear function U:

Ti-ax Ya
().
v i

] B

We assume that:
(Al) It is possible to specify vectors U and v, u being a vector whose
components consist of onc port variasble from each port of the lumped

linear multiport, including the components of Ya and ;B' and ¥ being a
k1




F T

vector whose components consist of the remaining port varisbles, and a
state vector x such that the resulting linear network may be characterized
by Bquations (4-=1) and {h-2), with P a positive definite aymmetric
matrix, and such that there exists & zeprc of transmission et 8 = w from
each port of the lumped linear multiport to any other port at vhich a
trinsmission line {3 connected, and vice versa,

For a given network, in order that the lumped linesr multiport have
the required transmission zeros as specified in condition (Al) above,
it may be necessary that at certain ports a specific port variable be
sssumed independent. The choice of independent port variables divides
the collection of transmissiofi lines into three groups: One group
containg al)l of the lines which have both ends connected to ports for
which the current in‘% the lumped linear multiport is chosen as the
independent port variable., Another group contains all of the lines which
have one end connected to a port for which the current into the multi-
port is the independent port variable, and the othcr end connected %o
a port for which the port voltage ig the independent variavle. The
third group contuins all of the remaining transmission lines, each of
whose ends is connected to u port at which the port voltage is chosen

as the independent port variable.
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in Equations (h4<1) and (4+2), where Zr and Tt denote n, and "; vestors
(o = "§> whose componcnts are the independent port verisbles at those
ports of the lumped linear multiport to which & trancmission line of the
first group is connected, ete. If % i8 an n-vector theu P and A are

n x n matrices, B is an n x (na + Ry oL ne) matrix, C is an

("a $ngt oY ne) x n matrix, and D i5 an (na + ng * e ne) X

(na togt ..t ne) matrix. We let B and C be partitioned in the

following manner;

- ] - ] = tp iy by g b
B [BI,BG], B [BG.BB], B [BT,B ae.sﬁ.aﬂ.aej,

5!
e
s
CI CO cc
c- [, oy =-Ef, e, x| e-fe]
C 1 194 a (o]
1 B S
C
.
CG
L .

where B, is an o x (q:

Br_ia an n x n’_mutrix, etc. Finally, we let Br’Bb""‘Be be partitioned

+ na) matrix, By is an n X (nr.+ Lot na) matrix,

by columns as

- | Lo ! ‘ ] .
B, = (B, VB e By I, By = (Bg {By {-- 1By 1. etc.
12 n, ) e n
r &
and et CT’ Lb’ » g De partitioned by rows aco
- — e ey
Co C
s ey
&T Cb,
CT 2 femeea N Ca = --T'-- y tt
> C
yn 39 6nb
T
. d L. -




We 5180 assume that the matrix D has the following foru:

pae -

hare:

where DI is an (ncx + na) X (na + nB) matrix, DY is an n, X ne matrix,

etc. Condition (Al) above specifies that DT‘ Dgs ++» Dy be diagonal

matrices.
—dr —_
l O
d
T,
o
D_= . ete.,
r <:::> | |
d
Y
n
L 7

We also assume that:

(A2) Bach of the diagonal elements of D’, Dgs v o2 De is a nonnegative
real number; and for each transmission line, at least one of the two
diagonal elements of the D matrix which correspond to the ports to which
the line is connected to the lumped linear multiport, is a positive real

number.

From Equations (k-1), (4-2), and (4-3), we obtain

1
« B(Cp+ Dy D). (4-4)
Ve Vs'

We assume that:

(AZ) It is possible to solve Equation (4-L) ror the vector {Yt, v

o B)t as

Aplieit funetion of %;; in some neighborhood of CI; = 0. That is,
Lo
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in some neighborhood ¢ x =0, G = (x : xc EV, ||x]] < H), we assume

H
that there exists sor ‘uncticn ¥ such that

Ta _
= '(CIX)' (“-5)
i

We further assume that:

(A4) Equation (4-5) satisfies a Lipschitz condition in G, and 3*(0) = O.

H)
If conditions (Al) through (A4) above are satisfied for a given

nonlinear distributed network then it is a member of the class of networks
for whiclh our stability theory applies. It is felt that most nonlinear
distributed networks that one is likely to encounter will satisfy the
above four conditions. If, however, a given network fails to satisfy
one or more of these conditions, the following techniques might still
be used to render it amenable to the appiication of our theory.

If D is not a block diagonal matrix with diagonal D D

o R
submatrices it may often be consistent with physical reality to
consider the presence of small "stray” reactances at the ports of the
lumped linear multiport. These reactances will have the effect of

giving the necessary zercos of transmission at s = w. The addition of

small stray reactances at those ports where the lumped linear and nonlinear
multiports are connected will always allow condition (A3) to be satisfied;
for, by adding enough strays, the matrix DI may be made to contain all
zeros, and hence ¥% = §. Finally, if the function ¥* does not satisfy

the required Lipschitz condition it might be satisfactory to approximate

3% by some function vhich does--a polynomial, perhaps.

In our theory we consider only undriven nonlinear distributed

networks; that is, the networks are assumed to contain no independent
Ll




vo. ge and current sources. All of our networks have an equilibrium
state ;(t) " 6, and it is the stability of thic equilibrium which we
study. If a network containg independent sources which are conatant for
all time (bias voltages, for example), and if it has an equilibriuam
state other than ), it may still be possible to study the stability of

i

this equilibrium by first finding an "equivalent™ network with a

corresponding equilibrium at x = O. For example, in Figure 4.3 we

have shown sucl. netwnrk; this network has three equilibrium points,

ir‘% = L}

i=f(v)

[N

(v)
i=(E-v)/R

n ol 4

2]

/1o E
(b)

Figure 4.3. A _onlinear distributed network with a bias
voltage.

labeled (a), (b), and (c}. We may study the stability of any of these
equilibria by considering the equivalent network, Figure 4.3a with
E = 0 and nonlinear function f described by the curve of Figure L4.3b
with the origin of the v-i coordinates shifted to the appropriate point
\2ither (a), (b), or (c))

We shall now derive the system of functional-differential eguations

Wnich describeg the vehavior of any network in our class

L2
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5. A Functional-Differential Equation

For any nonlinear distributed network in the class described sbove
we have, from Equations (4-2), for j= 1, 2, ..., ne = B,

t) = C_ x(t) +a
V).i() r'X() ,

i (t),
3 PRE!

v, (t) =¢C, x(t) + 4, i, (t).
Qj §J. CJ. QJ.

Thus, we can represent cur network, as far as the behavior of the
j-th transmission line connecting the v and { ports is concerned, by
the network of Figure 4.hka. Hence, since 0 < dT <wandfor 0<d, <

3 %

we have (using the functional equations for the transmission line two~ports)

]

-i_ (t) -1, (t)
LNy N S
+ —JZS/V V- pya L +7 AVEQ’ +
c x(t) L v. (%) % = Zoyg v, (t) 3 c, x(t)
Ty T, J 8 8,
“ T = 1Y = 1§
D J J ~O0— :
(a)
-lg (t) __o -i,(1 (t)
b A Jd__~ o
SR T e
2. x( J v, (1) Z =12 v_ (t) | € x(t)
53 Q) ‘ l 5J (o} uBn nJ ’ qj k{) qj
L““’"———”—‘ T = tb. =T O—o—
o J
(b)
-1 (t) -iG (t)
‘.\j — A . Ij
———?——o— e O
> 7 z -2z +
-’)c -;(T.) ."E g l ve'(t) o OGQ_ VG.(L) i d@,_ d)*(: ;<.
. d J J Y g Ly
i :F_k___“_J T-T. =T, o ! v

Figur- «.». [Equivalent metworks onnected to typi-al tPansmiosion

IR LA IR 4 3




1 (t) = =n C x(t) + Zp C x(t-2(lt+l,1
Ty LERF! LESP R FRF J

J E: pr c; x(t - (2x41)1 ).
k=0

i (t) = =\ c; X(t) + 2“; Z p; C; X(t - 2(}(4’1.)7; )
kso

+ QVCJ Z of O, Xt - (2k+1)1; ),
k=0

where we have defined

: 1 1
N ™ ' S -
T d_ + 2 ? 4 d, + 2
J LE °r§J d % °r§J
2 r Z r
Orgj ;.j Orgj Tj
Yr 2 ¥g, = 2
- 34 +z 3 (e +z )
4 J re
J
ZO
\ rc
4 v
? = T v 2, AU(d + 2z )’
dY 3 r§

and

J
LA TR S S

Similarly, for j=1, 2, ..., n

5= nn, we have

vg (t) = Cg x(t) + a4 1y (t)
3 J g J

1Y




N ]

L

and

2
i

{t) = cﬂ x(t) + d v%(t).

i
% 3 K

. Thus, we can represent our network, as far as the behavior of the j-th

transmission line connecting the & and 7 ports is concerned by the network

of Figure 4.4b. Hence, since O < dy <w and/or 0 < d'l < ®, we have
J J

5 - K. -
f 1, (t) = A, €. x(t) + 2u o, C, x(t - 2(k+*1)r, )
! 5 658, ® :éo 858 8y

| -

) + 2v ok o X(t - (2k+1)1, ),
% Eo ® M3 %

- K -
v_ (t) = -N_C_x(t) + 2u p. C_ x(t - 2(k+1)x_ )
ﬂj ﬂJ qj qd x'o qj Tl ",j

0

k -
+ 2v p. C, x{t - (2k*1)x_ )
U :éo "% s

L Rea P Mo e g

where we have defined

and
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-4

"o, )t oy )

\Y 511.1 ) d“d’

“p
Py " Py (‘a vy, g0,

Similarly, for =1, 2, ..., n.=n,, we have

1e5(t) - Cejx(t) + dcjv%(t),

and

i, (t) = Cc, x(t) + v, (t).
% ) %',

Thus, we can represent our network, as far as the behavior of the j-th
transmission line connecting the € and @ ports is concerned by the network
of Figure 4.bec. Hence, since 0 < d, <w andfor 0 < dg < = we have

J

Ve (t)--k c, x(t)+2u Z e C¢ x(t-2(k+1)1 )
€ €5 % Jr._o €3 € i

k -
+ 2v p. C. x{t - (2k*1)r_ ),
ej l;) EJ 93 EJ

. - x(t -
Vo (L) Ay Co x(t) + 2ug Z pg Cg X(t 2(k+l)r

.j J J Jyao 9 % .1
[ -]
Z c x(t - (2k+l)1 ).
k=0 é

where we have defined
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Ny

-Y ¢ -Y
OEG, ej ULB.

He, =T % 'Jy BY-L He = d 2
€ 4
J €, S.g J (de + Y )

v J J O
-Y
Ceq
Ye. = Yo, " @Y )(cxj + Y y o
i € °ee'j 9, ,

and

J 3 J Oeej € OEGJ
Thus, if we let Q= [rl,re, e Yo 51, 52, o
and define §” = £“(¢) on R as “ollows:
g':;d f'01'§=)‘J (i =1, 2, ...,nr=n;),
§'=ﬂjf°r§=5j (4=1, ¢ '-w“b’n):
TS 93 for g = < (J=1,2 ..., n_ = ne),
¢ =ij0r§=§‘j (5 =1, 2, o, nc'-=nr),
' = 63 for ¢ = Ny (3=1,2, ..., a, = na),
87 = e‘j for ¢ = 93 (3=1, 2, ..., ng = nc),
we have ir
i
bnt 6 | . -
(B iBg! .. iBy] |- Z [Angch(t) +
€ tel
g
v
T|
"eJ U7




Ly e Tl

-
, K ~ry .
2 Z peugﬂgch(t 2(k+1)1{)
k=0
ettt

.2 Zp’: v BC. (¢ - (2x+1)1‘)].
ka0

Substituting the above equation and Equation (4-%) into Equation (b-1),
we obtain

Fx(t) = Ax(t) + By B(Cx(t)) - 3 Qx(t)

geld
[ ]
+ 22 z p:ﬂgx(t - 20k 1)s)
$e8 k=0
o
v2y Y o - (axeiyg), (4-6)
£Cil k=0
where we have defined, for §ef,
= A B ’ = - . s
U = MGy Mo = BBy Ny =BGy

Multiplying each side of Equation (4-6) by 15"l (which exists since P

is positive definite, by condition (Al)) yields a functional-differential

equation of the desired form which describes the behavior of the network.

L. The Lipschitz Condition

It is easily shown that the right-hand side of the functional-differential

vquation which describes the behavior of any network in our class satisfies

#8




a Lipschitz condition on C”: If we let ;t be a point in CH‘ then by

Lesma 1 of Section 3-3, the mapping T from €, to B defined by ?(;t} =

It(c)) = %x(t), satiafies a Lipschitz condition. Thus, so does the mapping

T, defined by T,(x,) = P IAX(t), since if there exists L such that [}§(0)-y(0)]
< Lo($,y) for every §, ¥ - T, then JF 1450} - ¥ Ap(0)f < A}l fip(0)-10) ]
< ((IP-IAH-L)p(S,;). Also, the mapping ?(;t) % ﬁ*(cé(t)) satisfies a

Lipschitz condition, by condition (AL), and hence so does the mapping

f‘hl (;t) = P ln 13"((.‘1'::0,)). Finally for each §, the mapping T

L of CH into
En defined by

- - . .1 e
rg(xt) = «P le(t)

+ 2”-1"; Zo["exn)k x(t - 2(k+1)v,)
k=

+ 21*°.x1‘€g Z{D{Inlk x(t - (2k+l)1g)
k=0

has the form of Equation {3~12), which has been shown to satisafy a

Lipschitz condition. Thus, a simple application of the triangle inequality

shows that the mapping f = ?A + T‘I + z T

gei

% which is the right-hand
side of our functional-differential equation, satisfies a Lipschitz condition.

L9
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Chapter ¥
STABILITY OF NONLINEAR DISTRIBUTED NETWORKS

It is obvious that x « O is an equilibrium solution of the functional-
differential equation which describes the behavior of any network in the
class of nonlinear distributed networks defined in the previous chapter.

In this chapter we state and prove geveral theorads concerning the
stability and instability of this equilibrium solution. We use the same
notation as in Chapter IV and consider our distributed networka to be
characterized by Equation (4-6), with X, € C,.
1. A Lya v Functional

Before defining our Lyapunov functional, V, we shall prove seversal
useful lemmas.

Lewma 1. If Ais ann X m matrix and if B = AA®, then [B]| = O if
and only if A =« O.

Proof: ("If") Proof of this part is trivial. ("Only if") Since B is
symmetric there exists a ncnaingular matrix P such that P.lBP = A, where
A,is a diagonal matrix whose diagonal elements are the eigenvalues of B.
Since B is positive semidefinite all elements of the main diagonasl are
nonnegative; but since ([Bl| = 0, all elements of the main diagonal are,
in fact, zero. Thus, A = O and hence, B = PM"'1 = 0. If B, represents

1

the element of B in the {-th row and j-th column, and similarly for A,

m
Byy= Z AA e
K1

m
In partgcular, for L =1, ..., n, B11 - 2: Afk and hence, for k=1, .. , m,
kaul

A, = 0. Thus, A= 0. QE.D,
50
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Lemema . I1f A, B, and ¢ are any real numberg such that A > 0 and
le] €1, and % and y are arbitrary n-vectors, then the following {neguelity
hoids:

kK, == K== Bk, - -
7By s = ARl (yoy s S ol Cx X3, for k = 0, 1, 2, ...

*,

Proof: By the Schwarz inequaliity,

e bttt

I<;D;>l < ";”‘“;“v A ;) ;‘ 'n-

[

But for any x, y, (|x]| - u;“)e > 0 and hence,
%I+ 131° = 2§

Theref'ore,

2 <y | < IKF - I3

and hence, _
- N . AR TN
Loy = Cxy% ) v ¥y >

, K - . gk = - K, = -
=+ 2T xSRI v |0l <y,
R A S AN THLR S AP N I AR Sl
K = - kK ==. . k,=- =
had JETLOR Y - l"" Py, = ]"1 <X,:</
=3 AR CBR, AT - j...[R(A'i,A;?, < ;ui“(g’i,g}‘,
s it QT - AT RO L E LR
Koo = koo~ - Wk =
BT R, Y = Ale|" vy, -~ ;\—{L[K\A,A
“bl -
Lerma 2 TP A, By omnl oo oare aly rend o namiors coonotoat A2 O ann
N Y 1 Y oana ; QU UL trary e ot , Wl ! ,
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tor k = 0, 1, 2,

Proof: With onily a few sign changes, the proof is identical to that

of Lemma 2.

We now deline a Lyapunov functional V on ¢* = U L. PFor each feid
O <o
let &g and b denote fixed nonnegative real numbers, the values cof which

will be chosen later. For H > 0, deline the functional V for vvery g
in CH( (-=,0], En ) by

-2K1

3
V@ = 53%0) FH(O) + ) e f log|® f 7 )(0)do
geR k- .-2(k+1)1g
0 -(2k+1)1
o | f&?‘(w(o) do Z|p| %°(o) ®(0) do] (5-1)
o=, o=~ (2(k+l)l-l)1

Along a trajectory of our system we have

o t 2k1

- 1-t, o
VT ERG) +§: WL inl* [ 30 R o

o=t- 9(1«+1)1g

t t-(ekn)rg
+ g[ /x (0 X(O) dog Z'pg‘k l—[;t(o ;(O) dd]
o=t-1 g k=0 o*t-(.?(kfu*'l)‘lg

The derivative of this furctional along a irajectory of the system has

the value

d /7 -t = k

T Vix) = (n) P ox(t) Z agz | o] (;t(t-’akxg) ;(L-;?k-rg) -
(X3 k=0
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-t - o foe. -
v {‘°{1!‘Zj:‘} Aii~,fn=.;“;3 . v!lz LR 0.8

- x5t - rg) ;("’t'\‘ + ng"”( (- (Qkfl)xg);(t-(Qk*l)tg)
k=0

-?‘(t - (2(k+l)+l)1§) x(t - (2(k+1) + 1)1g)1}}

wher2 P x(t) may be replaced by the right hand side of Equation (ke-6).

Before making this substitution, however, we rewrite this equation as
v )= 3t Ba(e) ¢ Y & REL) 3
30 V(xt) = x{t) Px(t) + L 8 X (t) x(t)

teld

(-]
3 ‘
Yl [ Z LY xt(t-Z}ng) x(t - 2k1y)
£ e k=1

- Z lpglk xH(¢ - 2(k+1)1€) x(t - 2(k+1)1§)]
k=0

' Z P xH(1) Xe) - Z b x(t - Tg) x(t - %)
tefd £

+ z, bg [ Zloglkﬂ ';t(t - (2k+l)1g);(t - (2k+1)1§)
R k=0

- Z‘%lx Xt - (2k+1)1§)§(t-(9k¢1)1‘)]
k=1 ]

= XYop X(v) + Z agit(t);(t) . Z by () X(t)
£ed Era

o
+Z aé(lo(l - 1) z ‘pglk ;t(t.-;?(k'*lhﬁ )§(1~2(k+l)1§)
kel k=0

' Z vg (logl -‘->Z logl k ?c‘(v(-”k*:ir,_ PRt (ke1) ).
g!:& 1’.".'{.."
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Ae-hunbil S A

...
LhiuEy

L ou(x,) = TUE) AR(e) + XH(0) BIMER(E)) - X)) QR(e)
tell

70 Y g Ix0 XY b

Eeld Eell
+Z Z [29: xE(t) M, ;(t-a(k*l)-:g)
£eQ k=0

-5 (1 1oyl ) I FRM - 2(ken)eg) Xt - 2(k+1)1§;]

+- Z Z[Ep;‘ ) N, X(t - (2k+l)1§)
kel k=0

-bg(l "lpgl ) 'pgl k ;t'(t - (2“"1)‘; )x(t - (2k+l)1§)],

or,

L V(R,) = KHOAR(L) + BH(L) BI(C () - XL Y Q)
Eef

+ X41) Z agln;(t) + it(t)z b Ly x(t)
| X329 teld

o0

+ Z Z {ep‘g@v!‘ %), x(t - 2(k+l)1g)>
g eld k=0

'ﬁg(l‘lod )|o§|k<;(t - 2(“‘1)1;), x(t - 2(*‘*1)1;))]

@
. Z Z[E‘;:’-/N: x(1), Rt - (2el)gg) )
£ el k=0

-bg(l-lg\gl )|;ﬂ,’| T wl - (2xo1)1§), x(t - (;>k+1)1§)>].

Sk

':

himn



In cas. M, - O for rome 40 Q) 1ot o pick 8, = O; and in case K = 0

L ¢

for some £¢4, iet us pi-k bg = 0. Otherwise, we shall require .g >0

and bg » 0. That this is an appropriste choice of “g and bg for these
cages can be seen by -omparing Bquation (4-o) «itnw Lur Lyapuuov functional
V in Equation (»-1). If M, = O then the terms involving x(t - a(k*l)rg)
are not present in Equation (4-6). Similarly, if Ng = 0, the terms
involving x(t - (2k*1)1£) are not present in Equation (4-6). Thus, for

such values of ¢ we have no need for the terms

L -2K1g
a leglk [5t'(«1) §(0) do,
k=0 o=-2(k+ 1),
0 ® -(2k+1)1£
b [ f&t(O) 3(0) do + Z h:glkq [ ¥ (0)g(0) dO} )
o== 1y k=0 o~_-(2(k~~1)-+1)1g

in our Lyapunov functional. We also notcg, by Lemma 1, that “g = 0 if and

only if ”"E“@t” = 0; and b, ~ 0 if and only if NN = 0. To avoid awkward

notation we shall use the following crnventions: the symbuls

5w T

£ u e

Il

denote summat.cns over only those ELR for wnich 8 # 0 and bg {0,

respectively.  Thus,
Lv(x,) = P ATl « (e B 8*(C x(t,}
dt t TN T [ ’

-.— . . Tt _|, . -1 \ -
C‘p,"( PRI (t)z agInxA ;oo \!,Z thnX(t) +
& R -
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N S -
Z z [r’p!‘(Htl(l.), x(t - 2()«1)&))
te8 k=0
-“a!{i* spli}ipt;“(}(n - E‘(k*l}tg), v - ';‘(R*l)'rg)}]

L
+ Z {292(?6:;(?.), x(t - (ekq)xg');s
$€ B k=0

-bg(l 'lpg| )'pg'k<;(t - (2x+1)zg), x(t - (2x+x)1g)>] .

But then, using Lemma 2, we have

S V(R S XM(e) AX(2) ¢ XH(0) By BR(C X(1))

<) thi(z) . ;t(t)z aIX(t) + Et(t)z b 1,%(")
Ee M KR Eci

¢ @ X ) _ ‘t’ i \
+ Z Z mlngl (ng(t}, My x(t)>

g€ k=0 -

1 '3 - -
* Z Z bph—lpgls ‘ogl <H§tx(t): N;’x(t/> .

b k=0
w
Since . K
: Y iegl® = 101 - o),
"0
w¢ have




1
x(?)Llax + (1-10 n,,)x(t,

gg“

“ ' 1
¢ x (L) {v, 1 +*“~—-———"——Rﬂ}x(t)
:L: S YTNPYR

PIEETNI T ORINEEY T OWT mRMerTeiapiie et

Thus, 4 v(; V<o
t L~

for all r, C CH if

‘-;tAI - }"‘aru’(cli) » Xt }: qgi) >3t (Z L

113 ey
] 1
o —— i+ {b 1 *"“——-—-——--——-Hll))x,
NUERTATE il g§ BT nylie o)

for all x « Gy= x:x ¢ B", Iz} <H ). We note, nuwever, that

-t R 1 t 1 t, -
x(gg (agln i !Dg“E,H!H;]* Z b In' ——— NNV )T X

¢ o2 N
teu b (1= [o))

+ ———-.__ + S S S t <X
,}: g + — Y Iy 2: t, NS R

4 bg(i-}vﬁl)z
elce

9__"-\.‘
T Vix Q
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‘-;‘A;‘ - X ¢ Ry c@)/n:n?
4 i

EEED O == ]
[T 8%“-!‘)5”' ’
»z:tb'-_mhﬁ-:MN%L

3 , e £e
e a |)}'(l'lpe|)

for all x C G}{' X # 0. 1h order to obtain conditions for ensuring thai

gz V(;t) < 0 that are in generul us weak as possible for this method, we
shall now choose the cnnstant: “& -~ 0 and bg > O such that

(n, + ! ~ MMl
Eoa (- e ) "

and

(b + =t N1

]
- bg(l - o l)
are minimized. The tunction u(s) = s + k/s, k > 0, has a minimum for

s 0 at s =R thep-tnre, it is «lear that we should choose

I, M5
S Sue PR for g ¢ 8, u 40

anid
Y AILH oY
v uH' n; i
E - Sor 3 2
g T !ze,n,bg#O
Thio, withothic cholc Yoy oaud v we may write
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]

R

3 -
Lowr) s XMl Z“t ) =TTy Gn
VI
‘ '\/nn! Nl .
+ .
Z }'*’J}““ vy, W
be ' tt
¢ xh(L) B 3*(c (1)),
P —
Defining ’71 O
A
Y.,
A= ’
O koﬂ
- e

we note that

o . o . - b
e R A e ARERILY
F e tCu £ u < n
FC -
.0
<
= By By By ) oA S B, AC
1 ¢ n. .
a :
e
o
- -
}
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: T T N} o t
MM . CeR° = . 3 B,
Mo HB Sy T ity Bl
and,
2 | A, 4 Jo 2 ¢
5 &%« B c,,ct, ¢ ¢ B8
: iy = B OBy = vic T BBy

Thereforre,

¢ gt e [t
2 Tl 2 TR
? (el ' 13"
S mt lHH
f' ) Z Tr}-h—ﬂ ! Z -
3 !Cn ¢ gcu
fwot « fovsi
7 DN b 6 1%1) I
. gea b
;: (jyd eyl o dv, 1ol 1D JiB bl
1 , = ): n-m) R Y
\ xR
(B lie o v iotie, 1 ls i
- 2 T To ) Lo
&8 )

since it is easily shown® that uu,n"n []alug.

l . . . .
Let A be a column vector. Since, for any square metrix M, the ecigenvaluces

)
of' M ure the squares of the elpenvalues of M, a:d vince Cor ponitive geml~

definite M, [IM]| = muimm rlpu\vu.ur of M, J|A A I ./n(_A A")"” ,/ﬁ(A AV YA

/uA(A[A)AEn Let o !AII = A Ai t.hen IIa A || f.TfA AL Alla ACY
(rlc;rl; n > 0). Thus, HA A u < HA A H‘° [Ia A Noea, i AtH § 0. Bu
it A A Y = 0 then trace A A" -0 (nlnge the trace cqunls the am of the
capenvaliues of AA ); but, trace A A" 3 A ag. Hene, A A'H:'O >oa e
T, A AN = 85 or, A AN JAS . QUE.D.
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i we now define, Cor b 0w,

nng:: 4
E‘. =
t,

and
By = [r”:sh: :r;"
thien

ir IR 4§ o
T

if HB’__{E a

‘“‘:“f)

ui ”C’ HE

z Iugl'llcgﬂ‘ilﬁgﬂ
G- ey 1)

tCu

|

I UL L
- (1 “70;”

LAY

Z ALY

= To 1)

b

and simtlarly,

3

2 ) 2
by {Ic:g i HB,, I

t
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Uegllegd + vl Dl

f ( ad,
Y EECEREAL or tf
and
W' e
" O
V.
7>
¥ = .. ’ (5‘3’)
O
6
e -
we have

LV XML (A - By A ey + By YED s (tr Y)I IR(L)
¢ X4(t) BoIn(C E(L)). (5-1)"

We may ulso define a functional V on C* by

w -2kt
- - - . E_
V(E) = £ 340 3(0) -y (ag S loglkjvt(o) %(0) do
gef k=0 o=-2(k+1)1§
f 0 ® -(21'(*1)1g 1
+ bgl [‘J—Jt(o)‘_v(a) do + Z[pglml‘[at(c) 9(0) do‘
o=-1g k=0 o=-(2(x+l)+1)1§ (5-5)

Equation {5-5) 1s identical to Equation (5-1) except thrt the {irst plus

sign is changed to a minus sign. Proceeding in exs:tly the came manner

us above, with the use of Lemma 2 instead of Lemma 2, one casily obtains:

d Ty =t . , e t -
dtV(xL,_x(t)[A BpAC,- By YE, (.,r‘i/)In.iA(t,‘

+ X5 B (e X(t), (h-i.)

‘tror -lenctes the trace of the matrix ¥,
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One may easily show that tor any H > O the functions V of Equacions (%-1)
and {5-5) are continuous and bounded on Cys this is done in Appendix c.
It is also obvious that ” of Equation (5-1) satisfies V(@) >0 for
uil @ € C*,

We now state and prove the basic stability and i{nstability theorems

for nonlinear distributed networks.

2. Stability and Instability Theorems

The following theorems apply to any network in the class of nonlinear
distributed networks defined in the previous chapter. That is, we assume
that conditions (Al) through (A4) of Section 4-2 are satisfied by every

network for which these theorems are to be used,

Theorem 1. If

2+, (a, *+ b, |0, |)
1 {0 M Ll 2
L= (3P| + Z +b .
GIPl 2 e hend) o
LER

kK (28/7 )12, wnere A_ is th 1"est ei lue of the matrix P

: P ’ re A, is the smal’est eigenvalue o e patrix P,

— t - -

and if x [A - BnA Cu* En‘i‘ Eg+ (tr Y)Inﬁ-* xt’Bxﬁ'LClx) < 0 for
a1l X in s neightorhood of the origin G = [x : X € E°, IIx) <X),
then the solution x = O of Equation (4-6) is stable. Furthermore, if
-t t - -
XA - By ACy* Eg¥ Ep+ (br ¥)I1 Jx + X'B; P*(Cx) <0 for all
Xt Gyes x ¢ 0, then the solution x = O ls asymptotically stable and

every solution of Equation (4-6) with initial condition §o in C

H approaches

zero as t-——=om,

Froof . Let the continuous functicnal V be defined on C* by Equation (5-1).

Clearly, V(0O) = 0. For the piven 2, let l& denote Lhat region of C®

03




T T T T

vhere V(@) < 8. B¢ U = ¥(@) ~ £= 3x, [0} < 53%(0)P §(0)'< V(@) < ¢
= Jfo(o)) < (EI/KP)V?»;:. Let u(s) be defined on {0,K) by u{s) = %\Pse,
Ciearly, u(s) is continuous and increasing for 0 < s < K, and u{0) = O,

From Appendix C we find that @ € cH=n—v(6) < ¢, and hence Gy < U,. Clearly,

u{ffe(0)]}) = %&PRE(O)HQ < v(9), for all @ € U,, as observed above. According
to Equation (5-4), the conditlion that ;tlA - Bu A Cu + Eu ¥ E; + {tr ‘f)ln];
-, - oy ] - —
+x BIS*(C[x) <0 for all x € Gy implies that V(u-6)<¢) <0 for all @ € U,.
Hence, by Theorem 2 of Section 2-2 the solution x = O of Equation (4-6)

is stable.

The condition that x°

(A-BgAC,+ Eg¥ By + (tr¥31 Jx + x'Bp 9%(Cpx)
<0 for all x C GK’ X ¥ 5, implies that M, the largest inv=riant set in

R (the set of all pointsg in U, where {,(L—G)(s) = Q), contains only the

point 5 = 6.2 Thus by Theorem 1 of Section 2-2, every solution of Equation
(b-6) with initial condition §0 in U, (in particular, all x_€ C,;) approaches

zero as t-o, The solution x = O is therefore asymptotically stable. Q.E.D.

-t " t - . —t =
Theorem 2. If x [A - ByACy- Eq¥ Ep - (tr \Y)In]x + xBy 8*(CIX) >0
for all x ¥ O in some neighborhood of the origin, GT = {x: x¢ E°,
Ixll < y < HJ], then the solution x = O of Equation (4-6) is unstable.
Proof. Let the bounded continuous functional V be defined on CH by

Equation (5-5). Let UT denote that region of Cy where g) ?’(O) Fo(0) >
1

See pp. 110-111 of reference [371].

“This is seen as follows: Clearly {0) is an invariant set in K. Now

if € R then §(0) = 0 (since g¢ U, §(0) yO = G(h_ﬁ)(a) < 0). Suppose

¢ ¢« M, then, according to the definition of an invariunt set, 3 o function
X, defined on (-w,®), with ;t “ M#¥ tin (- and ;0 = . But then,

for all t <0, X, &€ MC R~ §t<o) - 0. That is, x(t) = O for ~m < t < O.

Hence, @ = O.
6l




r',. s e

o -2k1, 0

ne }:;%.*‘ja%a ol do» btU (o) ¥lo) do
¢ k=0 c>=-2()m)xg o=-1

o ‘(2“”‘)2

Y lol™? [ 3o ao} ;

k=0 o=-(2(k+l)*l)1§

thut is, Ur denotes that region of C, where v(®) > 0. Now, since [z :

Y El, z >0) is open in El, and since V is a continuous mapping of Cy
1nto El, Ur_is open in Cy, Thus, 3 an open set U in C such that

Vi®) >0 on U’_ =N C,_.l Clearly, that part of the boundary of U,

oU, which is in Cw,consists of the collection of all those points 5 in

CY for which V(E) = 0. It is also clear that O belongs to the closure

of U _=1UN C, since 0« C.., and V{0) = 020 ¢ aUY. Let us define the
function u(s) mapping the interval [0,H) into B! by uis) = %kpsa, where

kP is the largest eigenvalue of the mstrix P. Clearly, u{s) is continuous
and increasing for 0 < s <H and, u(0) = 0. Furthermore, u(“&KO)“) e

DT > 2 90)p 9(0).  Hence, V() < u(|@(0)]]) on Upy=uncy

According to Equation (5-€), the condition that X [A - By A Cy - By Y E; .
{" ad ™ -t * > . - v o 3 L4 ot Y . p !
vr ¥) In]x + % BI h] (Cix) Owxc< GY’ x # 0, implies that Vzh_o)(¢) >0

on the closure of UT = un Cr’ and that the set of 5 in the closure of 1

—

.
4k that be_6)(5) = 0 containe no invariant set of Equation (4~€) except

5 = 0. Thus, by Therrem 3 ¢! Section 2+2, the solution x = 0 of Equation

{L-+} {s unstable. . E. D.

Leveral corollaric: to *is: wbove theorems may also be stated. One

na ol a triviagl proot Qo

"l existence of the cpen o U fo.lows from Theorem

i, page 51, of
reCepence (22,
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Corollary 1 (Complete Stubility) It conditions (A3) and (Ab) of Section

]
' 4=2 hold for all H > 0 und, if X'[A - By AC, + Eg ¥ Ej+ (tr )1 1%
+ ;tBlu‘(Cii) <0 for all x o E', X ¢ 0, then every sclution of Equation
\4-6) with bounded initial comdition ;Q € C approaches zero #g t—e
and the system is asymptotical:., stable in the large {completely stable),
Proof. Let x_ be some bounded initial condition in €. Then, 3H >0

such that “;o(t)" < H for all t ¢ (~=»,0); that is X ¢ We may use

e
this value of H in Theorem 1. Q.E.D.

Before stating the remaining corollaries we define the conceft of
a critical poiat of a mapping { from £ to El, and state a well-known
theorem and two lemmas.
| If £ is a differentiable mapping from E? to El and if for ;o L En,
Eif/axi (;0) = Cfor i=1, ..., n, then ;o is said to be a critical point
of f A theorem which is available in many references (38 p. 62, 39
p. OL) is the following:
Theurem. If f Is a twice continuously differentiatle function mapping

a nviphborhood N @ E° of ;0 into El, and if ;0 €N is a critical point

of I then, if the quadratic form

is ponitive defipite, ! hus a strict relative minimum at IO; that is,
there oxists an open oot 0 N containing ;o @ich that =+ . G, X # ;n =
R > o .
T{x) )
Tt hypotheses of Theorems | and 2 of this section involve conditions
. : NS . Wi -t - - - .
v Junctions Uoof the Torm Uik T ox Qx ¢ xtB‘IU*(CIx), where @ is an
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i
nx n matrix, be nonnegatlive or nonpositive in some open set OK contaln-
ing X=0. We may use the above theorem to give condi{tions which may
be casier to verify. We first prove two simple lemmas:

lemma 1. Let f£{x)

XQx I‘BIGS-(GII). 1r

'—'g"azr (@)
dxi X

denotes the matrix whose i-jth element is

2

-5;—-&—-(0), then 3__5__ O)} = q+ BIE"(E)C? st

(8,5 “(G)cy 1",

where g ’(6) denotes the Jacobian matrix of the mapping %%, evaluated

at 5
Proct
-t -
of  _ 9x_ =, ot o, ox ax’ P
ox;'é'x'J'Q"*" anj diji!(Cx)'fxBﬁ"(C )C.LB—
aisa,
2, oot =t .= -t -
ot = dx 9% ox éx ax . A
—21— (0) = S q & *'-—Q"-* P'a(O)c + - BT 0) e, 58
ox; Ox 3'; Ox; oy de. j X, aAi 1 1 3%
= x5 ML)
Q * qy * (BT “”%’gi + (8,8 (O)c:l}iJ
t’ ‘, -
- Qij - QU + ! ,.:35 (o)cI]i + 3 8* (o)c iy
Hence,
(321' - . - t | F-TUPEEN 4
%, %, (O)f = @+ 3,070, « @« (B o) Q.E.D.
¢+ A-B Cot E ¥YE +» (tr¥)l




e g T

W e

Lemma 2. The matrix M ¢ Mt is positive definite {f and only if M is
positive definite,
Proof.  ("If") Proef of thiz part is trivial.
("Only if") Let X°(M + M*)X >0 . Then, xMx *+ x M= 20 > 2x"Mx > 0 =
XMz > 0. Q.E.D.
lentnas 1 and 2 prove that if f(;) = Itq; + ;Lﬁiﬁ“(cx;) then the
matrix aer -
Sxi dxj(o)
is positive definite if and only if the matrix Q + B 9%/(0)C; is positive

definite. We now s*tate corcllaries of Theorems 1 and 2:

Corollary 2 (Asymptotic Stability). 1If, for all x ln some open set

containing the origin, Gy = (x : xc E |[x] <K), the function ;tBIB*(CI;)
mapping GK into El has continuous second partial derjvatives, and if the
matrix -A + BnA Cn - Eu 4 E; - {tr ‘i’)In - Bzﬁ"(a)CI, where B"(a) denotes
the Jacoblian matrix of the mapping 3% evaluated at the origin, is positive
definite, then the solution x = O of Equation (L-6) is asymptotically
Statle.

Preof. Letting £(X) = -x"[A - By A €
we see that. r(6) = 0. The hypotheses of this corollary imply that the

t - -t -
+ EU ¥ En + (tr W)In]x - X Bla'(CIx).

guadratic form

n n
5r = .
YL wow O

i=1  J=1
‘5 positive definite. Clearly, (see first line of proof of Lemma 1) ét‘/oxi -

‘or L= L, ..., n, and thus, X = 0 is a critical point of ., Herce, by

©ne ouucve theorem, there exisess an open set GK, = GK’ ontaining = = 0,
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such that X € Gy x4 0.0 >0m-r(x) < 0. Thus, by Theorem 1,

she solution x = O of Equati-n (beF) is arymptoticnily atable. Q.E.D.

Corollary 3 {Instability}. 1If, for all X in some open set contathing

the origin, G, = (x : %« B, f%f < v), the function ?‘EIB'(cli) mapplng
GY nto El has cobblinuedd feoond partial derivatives, and i€ the matrix
A By ACy - By ¥ E& - (ur Y)ln + B S"(6)CI, where ##%(0) denotes the
Jacobian matrix of the mappin: ¥* evaluated at the origin, is poritive
definite, then the solution x = O of Equation (4=6) is unstable.

Prouf. The preoo!l proceeds in the same manner as that of Corcllary 3.
Q.E.D.

We now give several examples of the application of the above results.

i, Example 1
For our first example we consider the distributed network of Figure

: which was examined from the viewpoint of linear network theory in
Chapter I. The network is redrawn in Figure 9.1 to show explicitly
that it is a member of the class of networks having the form of Figure 4.2,
Hete that we have replaced the resistor r which was characterized by
*hie equation i = £v by s lamped memoryless nenlincar clement charactes .. od
oy the equation i = £(v). We ascume that the tur-tien f satisfies a
Ligzschitz condition {n some reighborhood o¢f v = &, and tha: (0} = 0.
Tras, the resistor r o! Chapler 1 {8 but a special case of the type of
viement we shall consider. ¥ this network Equations {ke1) and {4-2)

onmes

€9

|k..




i

i - i
L‘ v ;v C_L&*‘ 7{
ud 1 .}
or .IT‘ io.
§ = f(v) .
1
‘—-—; 1
R E? vquL

Figure 5.1. Netwo

[clkl(z) a [O]xl(t) + {1 1

Va (t) 1 0

Ve (¢ =1 1 xl(n) + 10
1

LWL('_) o] 0

Thas, P = [C], A= (0], By = [-1], Bg= [1 O], By = (1], Bn

¢, - {thyc,al1 0)Y ¢ = [1i c,

: o &,

L

Y

rk for Example 1.

ial(t)\

0] ial(t) ’

vnlm
0 0 1al(t)]
0 0 i, {¢)
&
o i/R v (t)
"

1

1

v, o= [:'¥]. Also, BIE"(C:;) - -1‘(xl), Q= fbl,nll, and

T0

zoil:[

¥ «a}

= [O]l

- [ojp Dl L [0]) Db = {O])




oﬂl - xhl(xl (1] = “5]]' Q“l - qu (0} (o] = (o0},
sz - uLlh} (1] a [.ubil. ""i = u!11 (o} (0] = (¢,
"”: . vblm {o] = [0], N"l = v,:x o) 1]« o),
where,
1 o1
S T e R A
1 o
) ﬂz(n-zo)/(nfzo) L (n-zl
8, " % (o+zo)“’ z R+ 2

R - Zc) . R-2

L
61 61 fy R+ ZD

The functional~differential equation which governs the behavior of this
network is:

h(8) = +r(x(t) - & x (1) eZ [ (R'z”< (ke1)0)
t) = ~f(x (t)) - ~— %,(t) + X (t - 2(k+ .
X o 1OR+Z T

This ls Equation (4-6) for cur particular example. We now find:

}‘51 0 1
B.AC = [1 0] s AN o= 1/Z,
LR o []o ® ©
n.
1
s B (v o],
.l IR = 2
P = i - a O
#bl zO (R . 2‘,.,) - I‘q - ‘:.:[— ’ qu Iy
aled Lnerefore
E i a"u iy

[p}

I

r
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Hence,
' . (R ) - 8fr -0 |
-~ v : 9 \-.): - . S .
Ao B AC o B Y EL e (0ry . { Z r‘.—ﬂ*&‘g- T i

Thus, by Theorem 1 of Section -, the solution X, = i oarymptotically

stabie il there exists K > O such *hat

, {(Rez) - 3Rz | J |
xl‘ z t(R *2) - |R- 4| ‘x! + 5(!1)) > 0, when ’xl‘ < X,
o o )

In a similar manner, we may apply Theorem 2 of Secticn =2 to obtain:

The origin is unstable if there exisvs ¥ > O such that

C[(Rez) e |R- oz ‘

(e fa e .o . ,

G Tm T R % 7 () >0 shen e[ <o
o) [o] [#]

These criteria may be specifi. ) gruphically as in Figure 5.2. 1f,

in some nejghborhood of the arigin, <he function ¢ lic: within the open

Flgape sio2. 5w L l°v  + © r g for Examp -




region iabeled stabie in  igure 5.2 (ma curve @ does), then ‘he
equilibrium solution Ay s 0 is asymptotically stable. 10, in some
neisnborhosd of the origin, f lies within the guen region labeled urstable
{~urve @, for exampie}, the solutlon X, = 0 ls unstable. If the
function f lied within the remaining region, ‘he golution xz = O may or
may not be stable. Also, according te Corollary 1 of Section b-2, {f
for all X1 f(xl) lies within the open region labeled stable, then the
solution X, . 0 {5 completely stable. It was mentioned in Chapter I that
results of this type would be obtained.

There are two cases to consider in determining the stabillity and

instability regions of Figure 5.2. If R 2 Zo’ then the straight lines

tl and £2 are determined by the equations

In vase R £ 2, then

Glx)) = (g - 5

’
o 1 H
1
£0x) = (- 2)x ;
e\l 7 :

As mentioned {n Chapter !, we note that as L —~R the lines <, and £

!
both approach the line i(xl) = (-l/R)xl. This results {n stability

asiid {nstabil .ty regfons whi~h approach those shouwn in Figure 1.3a. One
wiild expect to obtaln suh reg.ons for the lumped networx of Figure S,
taving no trancmission .irne. OF course, when Zu » H <he newwork of

e, :

Floure 5.2 {8 equivalen® to 5.7h a lumped network.
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4. Example 2

In this exemple we consider a network which contalns two memoryleus
nonlinear elepénté. The network, shown in Plgere 5.3, consicts of two
lumped networks connected together by a lossless transmission line. The
lumped networks are identical except that the nonlinear elements are
characterized by (in general) different functions fl and f,, and the
values of Cl and Caineed not be equal. We ecsume that fl and f2 satisfy

Lipschitz conditions in some neighborhoud of the origin, and thaﬁ rl(o) =

rQ(o) = 0. For this network Equations (b-1l) and (4-2) become:

-
L
Ch

()

Figure 5.3, Networs tror Zxample 2.
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¥

i<xl(") !
i
¢, 0 {. =1/R O =1 0 I/R O i
L7 - %(t) + fa (1)) ;
l 0 ¢, 0 -1/R 0-1 0 1i/R
k Ve (t)
i 1
]
: v, {t}
. °
- - - -
vy (t) 1 0 0o o0 0 o iq (t)
1 1
vae(t) 0 1 ) 0 0 0 0 102(t)
‘ = x(t) + 11 3
1€1(t) -1/R © 0 0 ™ ° vel(t)
i 1.1
191(1:) ) -l/R_J ¢ o 0 g vol(t)

- t
where, x = (xl,xz) . Thus,

c, o0 -1/ 0 <1 o 1/R 0
: Pos Ao i » By = ’ .
0 c, o -1/R 0 -1 0 1/R
1/R ¢ 1 0 -1/R ©
Bel ) ! 301 i ’ ¢ = » CgT ’
0 1/R 0 1 0 -1/R

fl(xi)
- = } 1
( y Ro= €y 9} I, and {letting G = 1/R, & = =4 =)

&

0 1

15




R bat ol it St S

Ty

T T =

G ERERT TR mesTRTm e oy

§
(6 1{-c o] -GEA.G 0| olto ¢} fo o
l = =
ch = Lcl B ! Q01 xol ’
0 o o e 0 -caue
- b . L L 1
- - .He - r - - -
¢ |[-¢ o) -6, 0 o jlo -Gl 0 0
1
M =u = » =u = ’
€ € Q Q
1 1, o of 1! ltc 0 -Geuo
S ko wnd - l..
Fc [o -G] 0 -Geve o |{-¢c o] 0 0
N = v. = 1 N =y =
€ 9 o, 9, 2 ’
LO 0 0 G -G v 0
- - - L- - s ° =
1
where,
1 1
A=
€, 8+ Yo ’ °1 g + ‘x'o ’
(Y _-g)/(Y_+e) (Yo-e)/(‘!o*-g)
he. == ¥, 2 d Po. = " % 2
1 (g+ ) 1 (g+Y )
Q
-Y
v =¥V = <
€ N (g + Yo)(s + Yo)
s =p. = (Yo-s)\YO-S)
£ 01 ZYc+g 5 ( Yo+g)
We now find
1 _G°
G © (g+Yo) 0 ¢ 0 vy
By ACp = . = 2|
0 G 0 (gw)) C -G 0 -




o " "p 2
Y -¢g A
Y-‘-ﬁ—lg—.o«\!o—-—i--—‘a. . 6
¢ (g+YQ) (E*Y ’
¥ = ¥ -
& 9 L - (Y- /(1 )"

‘.’OGQ |y°-g| + (Yo-rg_\ }
* 1 ] z 2
1180 N (v 4g)° - (1 -6)

2
Y « g
i Y6 (1Y -gl+ (Y _te) %_ lY -g| + _fg‘

(¥ +a) Y g Yeee 4

and therefore,

Hence,

t 2 .
A'Buhcu*'EuyEn +(t.r‘!)In==A+G-A+5!’

[ .
@ A G?(fYD-g;{ # 1°+g)

—— e =
g+Y° L g ‘{o+g

2 3 . f( [y -el + !o+g)

(o} -G + +
_ g+’£° Y°+g ]
e 2g+3Y
-G 4+ < o 0
g+Yo 2g
( iryYy >
o G GE 2g+3Yo P o=8>
g+Y 2g
2
216
63 (gﬂ’o’ ©
\ , 1IfY <@g .
. 2 °=
0 G + g+Y

17




Thus, by Theorem 1 of Section 5-2, the solution % =~ O
18 asymptotically atable if there exists some K > O such that:

When Yo ?_ &

285!‘
([a-;%— ’]x +f(x 1} >0, for lx <k, 3=1,2 .

VMRYOSG’

X {[G-g(gﬂ, }]x +f(x )).o, for lx |, §=1,2 .

Similarly,
A .B.AC -E . TE - (tr¥)l =A+G2A~5Y
L b a 1 i n
o2 l‘f~gl+Yo+g
'G+5+Y " -g“ Y +g 0
i 2 2711y -gl + Y +g
o 'G"GY ‘%.9_('0!". [+) )
g+ g e
o, |28 0
, g+Y 2
ifYy >g
2 |[2g-3Y , ze. :
0 _G+—L.(—g—._2 °
- e+Y g
< o
2
-
-3 5] 0 )
\ 2 ’11Y°Sg°
0 R g g
L 1T 2 ewY

Thus, by Theorem 2 of Seetion -2, the solution X = O is unstable if

thers exigts same ¥ > £ suh thaw:
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When YOZQ,

23-)!
xdiio--‘%— )}x +f(x))<o rcrlxkr,;-x,z.
fmén 2055,

xJ[[G + = (-8-;.{—)] x, ¢+ f (xJ)} <0, for ‘x3l<r, J=1,2 .

As in the first example, the above criteria may be specified graphic-
ally. We may draw a figure, identical to Figure 5.2, and require the

curves of both fl and f2 to lie within the open region labeled stable

to ensure complete stability of the soluiion x = 0. Similarly, if

in some neighborhood of the origin the curves of both fl and f2 lie

within the region labeled unstable then the solution X = O is un-
stable, The lines ll and 12 are now determined by the following
gquations:

If Y 2 g then

02 2g+3Y
t)(xy) = - [ - &+, ("'E;"Q) X5
2 2g-3Y
S Q
‘2("3) = - (G - AR )ij .
If Y < g, then
2
- .
El(xj) = - [G - s (8+Y°)]xd ,
2
ty(x)) = - 6+ 3 ()l

¥We note that as r — 0 the lumped networks tend to become uncoupled

from the transmission line, and hence from each other, Also,
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T O=p go», and each of the adove lines approaches the line
l(xd) - Gxa. Such a result is satisfying since vhen r = O
our network becomes two simple networks of a type already considared

for which, “:J) > - Ox, = complete stadility and, r(xa) < - Gx, =

J 3

instability.

If, in this example, the two nonlinear #lements were not
independent of one another, it might be more convenient to use
Corollaries 2 and 3 of Section 9-2 to determine asymptotic
stability or instability of the solution x = 8. Suppose the
nonlinear multiport of Figure 9.%b is characterized by the equa-

) o)
. = u( v ) ’
‘ay %

vhere § (3) = O, and g satisfics a ILipschitz condition in some

tion

neighborhood of the crigin. Since DI- 0 we have {!* =93. It
would, in general, be rather awkward to try to obtain grnphicti
stability criteria as before., If, however, for all X in some
open set containing the origin, G = {(%:% € EY, X} < K}, the
function i"BI a(cl. x) has con“inucus second partial derivatives
and, 1 § *(d) denotes the Jarctian matrix of the mapping
evaluated at the origin. then, according to Corcllaries 2 and 3

of S.ction 5-2: If the matrix

. i2 3 a® (;Y;_rti + Y°+g, o
g#YO L o Y(;#g
o 80 GE 3 GE IYO'Bl + YQ‘*‘
G'gﬂ'o‘f' £ Y 8

1+ *(8)




io pueitive deflnite, e weluiion 7 = O is ssymptotically stable. If

the matrix

-G+

2 _ (1Y -g[ + Y ¢g} o

o, Y -6

0 _G.Eq;___ __“’Y'leYQ)

Y +g

is positive definite, the solution % = § 43 unstable, Such criteris as
these, even for a much larger network, should not be too difficult to

verify, provided that adequate computing facilities are available,

In this example we consider a large network consisting of an
arbitrary (finite) number of voltage controlled nonlinear resistors,
having capacitance in parsailel, connected together in an arbitrary
marncr by losaless transmission lines having lumped resistance at each
end, The elements of the networn are shown in Figure 5.4, We agsume
tha* all transmission lines in the entire distributed network have
the fame characteristic impedance ZO. The parameters a and £, however,

may bve different for different lines. We let n dencte the number of

Figure %... (a) lypl ‘al 4umpcd net.-zr (b)Y Tyial
R AR l.-‘.'(lng
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lumped networks in our large diailributed network, and usc the subseript
3 §=1, «.., n, to denote each particular lumped network. We denote
by the pogitive integer kJ the nuwnber of interconnecting lines which
are comnected to the j-th lumped network., In Figure 9.5 we show &

typical lumped network and the lines coanected to it.

) \
R r (l) 2
J (2) [+]
NN
( g . (2)\ * z
° (k ) e
et o -
J a2
("L 0 . R r (k )\
¢
iv" CJ:::%*J

Figure %.5. A rypical subnetwork for Example 3.

The Kirchoff's voltage and curren. law equations for this subnetwork

are:
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1 3 ]
(Cj]xa(t) . [-kJ/R]xJ(t) e lap/m .

’ vdkt) ‘

iglf(t)

»

-1/R

k)
15 )

/1

1 7]

xj(t) +

e |

vgl)(t)

(k)
vy )

For this example, the lunped linesyr multiport of Figure 4,2 con-

8ists of the collection of all lumped linear subnetworks of the

type shown in Figure 5.5,

[ﬂ . O

.
.

1O

n

83

-kl/R
ie) = o/ HOR
O “ap
.1 }1/R...1/R
-1'(::> I 1/R...1/8
O .l O i

O

-1/R

Thus, for the entire nétwork we have:

iy,




sm e

e et L IR

- - - |
1
|
1 (:::) 1
oK *
.' l
R T T T RS
. ' ‘ptr
. O ’
v = | R(t) » [
-1/8 | :
) |
. O
-1/R |
- |
O O
-1/R :

where
- t
X = (xl, Xop weey X},

{x (.}

1)

o 1
u o= (11,12,...,1n, vg ’,.‘., Vi T Ve e vy T,
and
(k) (k. }
- 1 1 1 a3
W= (Vg eens Yy 1§ {..., 4L 1§ ),..., 2 “ .

Fquations (5-7’ are .ot necessarily in the da:
{»~-1) and (&-2).
may not be in the proper ordcor as defined in Chapter U7
pate this matter: Since each transmission line in =y

g oeonnested to & port of b lumpec Linear multip/ys v
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voliage has been chofien & the jndependent variable, the vectors u
and ¥ of Bquations (L-1) and (h.2) must, sccording to Chapter IV,

be of the form

i Ya

a a ; » ; - I -
[ 4 €
Yo Ie

It appears, therefore, that we need only relabel the port variables to
give a¥ and ¥° the proper form, Things are not this simple, however,
since this relabdbeling cannct always be & caplished, We see that

the voltage variables in the vector a* occur in groups such that all
voltage veriables associated with any lumped subnetwork (e.g., the

J-th subnetwork of Figure 5.95) appear in adjucent locations in the

=
~vector u . Hence, if these variables could be reiabeled &3 required

then at most one subnetwork would have same of its independent port

voltage variables contained in both of the vectors Gc and v Con-

°'
sider now the following counterexample! suppose there arc four
lumped subnetworks and six interconnec.ing lines., [et the inter-
cofinections be made such that each subnetwork i3 connected to one end

of three different lines, each of which is connected to each of the

other three subnetworks, as indicsated in Figure 5.6, If at most one

Figure * .6, ‘lertworz Uorocoounterexampie,
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subnetwork has some of {%s independent port voltages in both of the
vectors G‘ and ie, then &he port vYoltages astocisted with at least
tvo other subnetworks are all members of either Ge or GO‘ However,
since the port voltages associated with each end of &ny line must be
labeled, one with an ¢ subscrict, and the other wiin 8 ¢ subscelpy,
it is clear that if any two subnetworks are considered, all scix or
their port voltage variables cannot be relabeled with the ¢ sube
seript. Similarly, they camnot ell be relabeled with the @ subseript.
Arriving at this contridiction proves that the proper relabeling
cannot bte accomplished ior this network.

In opder to put Equations (5-7) in the form of Fquations
(4-1) and (k-2) one must, in general, rearrange the port voltage
variables in the vector ﬁ*, and simiimrly rearrange the elements of
Sl If, for each line in the distributed network, one end is chosen
arbitrarily and the corresponding port variables relateled wit®: an
€ subscript, and if at all other ports %o which & transmission line
is connected the port variesbles are r¢ :ibeled with a ¢ subscript,
then the vector u may be put in the required form by simply rearrang-
ing several pairs of its elements. Performing the same operation on
the “ector W will put it in the required form, let U dencte a
matrix which performs this rearrangoment operation on the vectors
3" ard W, Ther .

. - - "
u=Ua , and W=l . (5-8)

Voo shall now briefly invesiigat tne nature of the matrix U,
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| If one siarts with the identity matrix and interchanges the
i-th ard the j-th columns, the resulting matrix U“, when premulti-
plying any vector, will give the crigiral vector with the i-th and
J-th elements lnterchanged. In the same miuiner, we may construct
a ratrix U which performs the operation of 1nte£chmging aseveral
pairs of elaments, by interchanging the corresponding columns of the
idintity matrix, It is thus clear that U is nonsingulsr and, more-
ovur, is its own inverse, since UUx = IX for all X. We also note
that if A ig a diagonsl matrix, then UAU = A,

If in Equation (5-7) we define

c, O -kl/n O

A= -kB/R' s

O".C O ek /R
-1 /R ... /R
-1 O' /R ... 1/R o

o}
]
Q

B =[BY'p")- !
et O i O .
-1y ‘1/R ... 1I/R
o9 O
q |za-——-*- S B el e hett
* cI . | * 1 *(ﬁ';
cC = = : O s D = = '
Cq -1/R o ® b
=1/ : R
: ' -
i/a, Cro
l. ' ..
O [o}
[ N ' "
. i
-1/R i L1,
L - L I (R l"i




§ -

A

and if in Bquation (5-8)

then, since u = Uu and w

= Uw, Equations (5-7) become

i

¢ U

Pi(t) = Ax{t) + B“Uﬁ(t)

uw(

t)

= c*i(z} + D*Uﬁ(a) ,

# *
and hence (noting DU =D ) ,

P (

w(t

These equaticns are in the form of Equations (4-1) and (4-2) if we

define
B =
C =
Now, letting G = 1/R and
Mg
B
Ve
e

t)

) =

i

= Ax(t) +

B Ua(t)

uc"z(t) + DUa(e) .

-Y

(g+Yo)2
(Yo-r,)2

(y og\a

, for all £ ¢ @




T TN

s

Alno, }}nllg = llcgn = 0 for all $¢Q and, hence

l...1
E = lanol O
O ‘ool

Thus
By AGy =By Uy AUy Gy =2y A Gy
-
1...1 R ] F~1{n
PR N
1 54O Ol
O e _O N R
i R B
-1/R
o™
A -1/x | -
F‘-x(R —
1...1 11 . O
R R -N/R
B O M/
O "1..1 '*)R.
I R R .
O
! M|
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p— ) a - - -
e O " O
= ) -r@ae = “Ayaz k? »
el O
! O f“KnM} | i kn-

where N\ = (g«r'fo)-j'

Similarly, lmce

(r Y gl )
~z * G+ ¥ + G « G
2
° (g+1,)’ ° (g+1,)
- 2 3
1 - (Y -8)/(Y 8)
l‘i -gl + Y 48
( ) , for all deg,
- -
K
o € (Mt ) | O
By U Y ie ] 2‘ s, &nd
*k
L n
. l m‘.
2 |if-gl +Y +g O
G_ o o 2N :
(tr ’)In ® kg Y +g ) £, ?
i |

where N P denotes ti. total nurber of lines in ¢hw entire distridbuted

retowrk, Therefor:.




M 2 O
- B kd = 13
A BﬂA C“ +E ¥ En + (tr ‘}')I’,l A+ G

2
Q.
- R
r~ -
O
2 (Y -gf + Y 42
G oo S
+ Ly e ) k2+2N‘
O ‘k +2N
. ‘e—
B 2 2 =
k,G (k,+2N,)G Y -gl + Y +e
<k G + + T 2 :
17 Y '8 Y té
2 2
K G (k_+2N,)G° | ]Y -g| + Y +g
X G+ o, n; £ QY n o
| n e+, ] o'8 ]

For =1, ove, n, let

2 2
k6" (k, + 2N))C “Yo-g[ + Y +g
P, = =k .G + o + .
S M5 2 Lg I Ye
Then, if YOZ £,
& Y 2y
= -k . = N, —2 . -

TR e R Ee) * 7 gleey ) (5-9)

If Y s_'f" »

2 2
i 3| g .
Py [G K {wo)]* oot (330)

As r = note that r— », and in Equations (5-9) and (5-10),

v, = -k,G = -k./R. Causing r to become small has, of course, the

< rTest of tending to uncouple the lumped circuits from one another.

. &lo. have, 91




7 ey g g 1 o we—

e - 3

A-nnAc P‘n”u -(tr?)I

2

a2  (k +2N,)0° gr -g} nrn}
e Sl L
X0+ - ( O

Q

.

2 2
O - kG (x_+28 )0" (Y -l + ¥ +e
“"n g Y e

E’Yo

e
FQ!'J b l’ veey 0, let

k0°  (k, + 2N )0° Y -g| + Y +g
- -k a + 41 - J ‘ __0_ Q

Then, if !o > &
[ 2 ( Yon %Y
q, = k|G - _Q_E’Yo 1 - 5|l - Ny W . (5-11)

IrY <6,

G2
qJ = -k (S*Y ‘N‘ 8"’!0 [ (5‘12)

In Equations (5-11) and (5-12) it is also true that as r =0,

QJ N -kJ/R.
Since
¢ f,(x))
L TP S R .
B, ¥ (cx) =B, ¢ (€, x) = - : R
£ (x )
n n

... application of Theorem: i and 2 of Section 5-2 yield the following
stability criteria: The soclution x =0 18 asymptotically stable if

there exists some K > 0 such that xJ[-prJ + f’(xj)] >0, for
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liI <X, j=1, +ev, n, whure Py is given bty Equation (5-9) for

Y 2 ¢ and by Equation (1-10) for Y <@g The solution x =0 fo
unstable if there existz somc y > O such that KJ{‘quJ 2 tj(xd)) < 0,
for }x‘jf <y, d=1, ..., n, where a, is g.ven by Equation (%-11)

for Y_2> g, and by Equation (5-12) for Y < e Asin the other
examples we may specify these criteria graphically. For j =1, ..., n,

we may draw, as in Figure 5.7,

Figure 5.7. Stablility eriteria for Example 3.

regions in the x ,fj(xj) plane. If £ 1lies in the ocpen region

J J
labeled stable for all X, # © in some neighborhood of the origin,

the solution X = O is asymptotically stable. If for all Xy y o,

fj(xd) lies in the open region labeled stable, then the solution
x = 0 i5 completely stable, Similarly, if f

J
region labeled unstable for all X, # 0 in some neighborhood of

lies in the open

the origin, the soluticn x = 0 is unstable.
We have noted that as r ~0Q, each of the pJ, qd approach

ukJ/R. This is exa:tly what we would hope to cbtain since when
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r = 0, the n lunped networks are uncoupled and they are completely
stable if tJ(xJ) > -kJG. With our theory we have eatablished
criteris which ensure complete cstability (and {natebitity) even

when the lumped networks are coupled. Note that the criteria
are independent of a and £ for every line, and are also indepen-

dent ol ﬂ’! th\le of CJ fOl" J & l. vaay N
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Chapter V1

CONCLUSIONS

A stability theory for nonlinear distributed networks hag been
presented. In the development of this theory thres mejor steps werw

taken. First, it was shown that the electrical behavior st the gports

of certain two.-port networks containing lossless trarsmission lines
may be degeribed by a system of functional equations. Next, s ¢lass
of nonlinear distridbuted networks wus defined and itvvns shown, using
state variable techniques, that the behavior of any network in this
f ‘ class may be characterized by a system of functionnl-differentisl
equations. Finally, a Lyapunov functional was presented and the
stability theory for functiomal-differential equations was used %
obtain several theorems and corollaries which specify sufficient
conditions to ensure that the eqpilibriuﬁ state of a given network
in the above class is stable, asymptotically stable, completely
stable, or unstable. ' ' ’

It has been shown that the gstability criteria that this theory
may specify for any particular distributed network are indeperident of
the length of the transmission lines and also independent of the phuge
velocity ( = 1/a) of the lines. Generally, the critcrin are also
independent of the values of the reactive elements contained in the
network.

The stability criteria may not always be the best that one
might hope to cbtain. For example, in the paper by Brayton and

Miranker [10}, which is, at this time, the only other comparable
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thoory known to the author, o 5 Libility eriterion fur the notwork
of Fxample 1, Chapter ¥, ig given,
They ottain: I .
AR (6-1)

then the solution x,. v 0 is completely stable. By application of

Coroliary 1 @ this example, we obtuint If 7 3 R and

f I‘IH - Z 1. . (b«-é)
% ,
or if z_ SR and
5B 2 | o (6-3)
: Zb ] T : :

then the solution x, - 0 ie completely stable. It ig ensily shown

that it the ratio s/_‘za is less than mpproximstiely O.648 then

1/R . 2/zo.> - n/(zg + I{"Eh and herice the ~yiterion of Equation (6.1}

ts less -restri,c,f,mé (in terms of adniesible functions f) than the

criterion of Equation {€.2). In cane the nf}.ig‘_ﬁ/zu iy greater

' — o o - T
than approximately .54 then g#zo - 2/26 > - R/(z; * RY. nnd hence

‘the criterion of Equation (6-1) fs less restrictive thun the

criterion of EqQuation (6»})._, If, howe,Ver,'
0.648 < R/Z, < 1.k,
ther fhe criteria of Equnuiohu i) end (Bfﬁ} are lesn restrictive
than the criterion of Equation (1), For example, i 2, 10a
un# B o~ 74, then our criteric mply couplefe stabt<lity (£ £ >
3.0%; Brayton and Mirsnker’ . criterion lmplies omploto gtability
TS < 0.0b97.
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Seversl .r.as . f tuture yesearch nlong the iines of this work
sight prove frual+ful. Pirst of all, Lt =ouls be gigaificant to extend

tha clkes of cictiricutes noewvorks which may e Jdesorited by functional-

Giffercntinl eguations {and hence, to whith our stability theory might

apply) beyon: the class whish we have defined. One such extension

~&ight procee. nlong the lines of removing the restoiction in condition

(AL} converninyg ihe zercs of trangmission at 3 = » of the matrix D.
ff this coulld be one, then notworks contalning transmission linec
terminated at one end by caly lumped memoryless nonlinear elements

ould be studivd., We ould study, for example, the network of

CFigure 6.1, ne stabilily of the equilibrium stote v = O for this

netWork  cannot be stuldlcd by our theory.

: i - | ’ Z F > Jﬂ
TR ot %R =
"+ e i .._...__]

Flgure ..., Anotihor nonlinear distributed network.

Another ool extenslion ¢f our work mignt be to consider
Getweorks contrinln: tipes of digtridbuted ¢lements whicl sre more
coaeral o than Lucgle CLTG trunamisslon lines. A theory for networks
wentalnlng RS Line o, for cxaample, should be qulite wgeful.

The L oee s T ek of Equation (- -l) 1o probably not the

L une wr Dbt eing thint lenin o oqouseful stability theory.
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0f course, the conception of [yispunov functionals is . of an art
than a cclence. If, however, oac is clever emough to finu .ther
Lyapunov functionals, it shouid be rather routine 4o develop new,
and perhnpe betpgr, stability .riteria for the class of distributed
netvcrks which we heve defined.

Networks containing ohly lumped aemoryless eletents and t ang-
mission lires (1.e., no reactancesn) can'certain;y alsm.have stable
and unstable equilidbria. A stability theory for such networks should
be a valuable contribution.

Finally, having defined certain twoe-ports by functional equations,
one is lead to conjecture about the perhaps academic problem of devel-
oping a theory of analysis of networks containing what might be calléd
"functional elements"”. A functional one-port might be described by
an equation of the type

1(t) = r(vt>l

where i{t) denotes the value of the current through the element at.
the time i, and v, is a function (the voltage across the elemerit)

on some time interval for which t is the right-hand end. Perhaps
the theory of dynamical systems would be the proper setting for such
a problem. Choosing the proper state space, and defining the order
o* .omplexity for such networrxs doesc not, at this time, seem to be

4 *rivial problem.
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LKPPENDIX A

In this appendix we study some of the aspects of the problem of

locating the zeros of the function

N L (R za)e“ - (R - 2)e™®
Y(s) = [+ sC + 5= '8 e
o {{R + ZO)E‘ + (R - Zo}e ®

The equation Y(s) = O is the characteristic equation of the digtributed
network considered as an example in Chapter I. It is clear that

Y(s) = O 1f and only if

(Zo + sCrZQ)[(R + zo)eQ'B + {R - Zo)] = -r(R + ZbJea's +r(R - 2,),
or
[(r + zo)(a + zb) + sCrzo(R + Zo)}e31° = [{(R - za)(r - ZQ) - sCrzb(R - 2.1

let us define z = 2¢s, and let

Crzo(B + zo)

O = r———

B=(r+2)E+2),
Crzb(R -2,)
Y @ = )
2t

5= (R - zo)(r - zo}.

It follows that Y(s) = O if and only if s = /7., where ! is & root of

the equation
(az 4 s)ez = 2+ 8. {ﬁt“‘l)
Y
The location cf the roots of Egquation (A-1) has been studied exren-

sively by E.M. Wright [,,6;. We shall adopt some of his techniques
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here. We first transform Equation (A-1) into a simpler equation by
replacing 2z by ¢ - lnja/y|. Kote that a/r =« (R + zo)/(R - zo) =
-1/T, vhere I' 14 the reflection coefficient at the right-hand end of
the transmission line in Figure 1.2. In cass a/r >0 (t.e., ' <O,
which is the case for the example of Chapter I) we obtain

(2 -A+B)e wz -a-B, (A-2)
vhere

A.-!ZQ_.;_QZI + lala/r| --c?-xf;+ln|-l/r‘|,
B-M 2t .

2 " cz,

Suppose r = -1.78, R = 1.42, C = 1, Z, =219, 7 = x/6. It then fsllows
that Inja/y| = 1.55, A = 2.14, and B = 0.48. If we define the function
cl(B) by cl(B) = 1n(B +1+ V;ﬁ + 2B ) + Vaﬁ + 2B , then cl(o.ua) -
2.0%. According to Wright [5), if B> 0 and A > cl'(B) then Equation
{A-2) has exactly two real roots. Furthermore, all of the roots of
Equa*ion (A-2) have real parts which are less than or equal to the
value of the larger of these t{wo real roots. 1I% is clear that this
stetement also applies to the zeros of Y(s) for the ahove parameter
values. '

We shall now show that the two real zeros of Y(s) lie in the
lers half of the s-plane for the parameter values given above. This
will then prove that ¥(s) has a0 2eros with positi’e real parts. We

first rewrite ¥(e) as

¥(s) = 3




Then, if we define yl(s) =-Z- sC and ye(a) = .T_[-ET.-—],
[ e + t\

1t follows that Y{(s) - O if and only 1if yl(s) = yg(s). On the real
axis in the s-plane we have % ye(a) = %—- [(o.br‘:‘hrs + I‘)e«mzﬂ' -

0

2¢8

(e:}rs _ I‘)21e2‘m] / (e'a’fs + l‘)2 - M‘eges -
Zo(e B o)

(8) < 0 for all real s. Since we also have y,‘,(-) -

y
[(35-5) 1, and yy(w) = 3=, the function y,(s)
" AL+ TR 2 2,’ 2

behaves as shown in Figure A.l, for real s. The point 8 = ¢ is the

solution of the equation e~¥® + T = 0. The important thing to

- 8

Fiyure A.l. The function:s ;fl(:;) and yg(s) for real s, wvhen I' € 0.
nute here is thut y‘:(.s) iz n strictly monotonic decreasing function
dind 5-;-5 yz(s) is strictly monotonic increasing for s> g; hence, the
straight line y, - l/r - . intersects this curve in, at most,
w3 points. Tri. sgrees with Wright's results. In our case there
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are two intersections and they occur at spproximately s = <0.815 and
s = 0O.242. That ig, Y{s) has exactly owo resl zeros and they are
both negative. 'Bence, ve have shown that for the parumeter values:
r«1.78, R=1.42,C =1, z, = 2.19, and t = x/6, the zeros of Y{s)
all have aegative real parts.

The main reason that Figure A.1 has been introduced is that it
can provide a certain amount of ingight into the stability problem for
the linear distributed network of Figure 1.2. We shall not conaider
this topic in great depth, however the following remarks seem to be
appropriate. 'Firat, we saw in Chapter I that an unstable network
was made stable by simply increasing the value of the capacitor C.

In Figure A.l ve gee that varying the value of C simply causes the
slope of the straight line representing yl(s) to vary. Hence, vhen
1/20 < -1/r € 1/R, ve can always make C small enough that ¥Y(s) will
have two positive real zeros. Conversely, as we increase C ve cause
the real zeros to vanish and then reappear in the left half plane,
Similarly, we can cause positive real zeros to exist for any value
of C >0, l/Zb < - 1l/r €< 1/%, by simply causing the point g to move
close enough to tihe g = O axis. This corresponds to an increase in
the value of 7 (¢ = al), vhich in turn is caused easily enough by
increasing either the value of a (a = \fiZEZ?) or L. We can also
force the real seros to occur in the left half of the s-plane by
using a chort enough transmission line (amall 1) <~ by making a
small encugh.

Let us now consider the location of the resl zeros of Y(s) when

- 1/r > 1/R (the lumped network of Figure 1.l is unstable if and only
102
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if r and R have values such that this inequality is satisfied, since
-1/r>1/R&EDg < -G). IfI' <O, it is obvious, from Pigure A.l,
that Y{s) will always have one positive real zero when - 1/r > 1/R.
If T >0, then %; ya(s) > 0 for all real s, and hence y(s) behaves
as shown in Figure A.2. Again, we see that ¥(s) will always have

s positive real zero when - 1/r > 1/R. Hence, if the lumped network
of Figure 1.1 is unstable, then so is the distridbuted network of
Figure 1.2.

-1/r Ye(s )

LT N _——
/R

' -~ 8
_...4 -l/zo \3’1(5}

Figure A.2. The functions yl(s) and y2(s) for real s, wvhen I' > 0.
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APFPERDIX B

In this appendix we shall prove that the linear gpace Z 5
c{ {-=,0], lp } with the compact open topology is metrizable with
metric p defined aa followa: Let (t*] be a sequence of real numbers
with 0 = to <t1 < ... £ "k < t’k+l < ... and such that igumtk = o,

For a fixed real number b, 0 < b < 1, and for every ¢, ¥ ¢ C, let

ole,¥) = k;:' m,, vhere m = min{ b*, sup( (%) - ()| ¢
0

k
-tkﬂst < -t ) ); Since O smksb for all k, and since 0 € b <1,
it is clear that £ m, alvays converges and hence pl@,¥) is well
ka0

defined. We first verify that p is, indeed, a metric on C; that is
v ¢, & ¥EC, p satisfies the three properties:

1) 0(6:;) 20, P(é)i) =0 if and only if 5 = ;;

2) p(é;i) = D(‘Jé);

3) 9(6:‘) < D(‘a:i) + D(io;)'
Properties 1) and 2) are, of course, obvious. To prove property 3)

we need the lemma:

lemmg: If A, B, C, D are nonnegative real numbers and if A B +C,

then min{ A,D ) < min{ B,D ) + min{ C,D ).

proof: If DL Band DLC,
min{ A, D) €D D+ D=min| B,D) +min{ C,D ).
IfD<Band D> C, '
min{ A,D ) §D&ED+ 7 =mia{ F,D } +min{ C,D ).
If D>Band Dg

min{ A,D ) € Dg ¥+ U+ mizy B,D) +min{ v,D ) .
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If D> Baund D>,
min{ A,D J <A< B +¢ _min{ B,D} +min{ C,D} .
liaving exhausted s«ll pousibilities;, the iemmm iz proved. g-E.D.
Now, for any k, if ¢ is an arbitrary point in the interval ['tkkl' 'th]
then
lipe) - (ol = lpla) - X(a) + X(o) - ¥()]| < Jolo) - X(o)¥
+ IiCo) - ¥#(o)ll < supl folt) - X(e)ff: -t ,, st -t )+
sup( fIx(t) - ¥(t)ff : -t <t S -t ) .
But, since g is an arbitrary point in ['t’k+1 , -tk], we therefore have
supl [p(t) - ¥(t)] : -t <t g -t ) <sup( [p(t) - X(¢):
by S S -t ) rosupl k() - w(e): -t St S -ty )
By the above lemma, we then have
min( bk, sup{ flp(t) - W)} : Y Stst )]s min( b", sup( Hglt)
SX(e) s by, St -t ) ) +min{ b5, sup( () - #(t)f: v, St
- < -t } )y for nll k. Thuz, p(@,¥) € o{,X) + p(X,¥).  QE.D.
Let sc denote the compact open topology for C. The definition
f 3, 15 glven In the firit footnote of Chapter II. Then (¢, Sc)
denotes the topological space consisting of C with the compact open
topology. If p is the metric on C, defined above ( for any fixed
b, 0 <b<1l), let m  tenote the metric topology on C. 'Then (C, q,p)

usenotes the topuioglesl spuce consisting of ¢ with the metric topology

o I @ €C, .t Stgu) o , denote the open u-sphere about @
e, S(é,u) L powib oL D, .&&ui) < )
Toeorem. The tupuauglon. pove (C, §) §s metrizuble with the metric

iefined above
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proof: Let #® denote the buse for 3, comsisting of finite inter-
secilons of members of o {(see first footnote of Chapter 1I). zgt-%
denote the baee for u;p congisting of all opan u-spheres in {(C, q,p)
We prove that (c,&e) - (C,u;p) by showing that {f @ i5 & point in
an element B, of @, then there iz an element Bp of ﬁp containing
the point ¢ and contained {n B, and conversely.
Let B, be a member otﬂc. Thus, B, « 181 A(Ki, Ul)’ where

A(K‘,UL) is the set of all § € C vwhich map X,, a compact subset of

(-»,0], into Ui’ an open subset of Bn. Let q'a € Bc‘ We will show

that there exists an open u-sphere about ¢, S(¢,u), which is contained

in B,. For i = 1, ..., m, K, is compact in (-=,0]; therefore 3 an

integer k' > 1 such that -tk, <t for every t ¢ KL' Also, 6[1(1] is
compact ia z". For every ¥ € 6[1(1) 3 by, 0« by < bk., such that
iy - il < B, = ¥ e U - The family of ay/e neighborhoods

{ be/z(i) : ¥ € §[K;] ) is an open cover of olK, | and, since §(K,)

is wompact, 3 & finite subcover ( Ny /E(yl)’ o0 By /e(yz) )
yl ¥
£
of ¢(K,;}. DNote that “ay (9J) cU for §=1, ... , 4 letd =
J

tt’ul't( 53_1/2, v g by
»*
e {0y vvuy k 1)

/2 }. Then, If ¥ € S(9, bi) we nhave that, for
¥ 4 »
k - -
: min{ b , sup( llg(t) - CSTRRIINNE S SR
"ol
] k. .. . .
< }d min{ ©" , sup( [lpit) - wit)h: -t ., St €t ))&

ke

w*-1 p*-l
ok - _— -

Z min{ b, sup{ [lg(t) - ¥{t)}|. St ) ) 2 m, €

P =0
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m = olp,%) < b, Therifore, ¥ t ¢ K, min bk Jelt) - #(e) ) <
k=0

L J
5. But s < LN fp(e) - ¥till <o, vt Ky« Taus, J¥(t) - 9313

= f¥e) - ge) »@le) - F g MHE) - ol v fole) - 3y <8 48 /2
R ; J
$5, /248, /2 on, =) e By {§)cu. Fov, let .
J J J yJ
min bl‘ ey 6m )i then, 5(@,u) is the required u-sphere, since
it ¥ € 8(Q,u) and If t ¢ K, for any { ¢ {1, ... , m} then ¥(t) € u,,

that is ¥ maps K, into U, thus ¥ e B,.

i
Let Bp be a member of B‘a. Thus, Bp = s(é',p') for some q'p' €C

and some u’ > 0., Let ¢ B . Since 8(@",u") is open in (C,qp), 3

u >0 such that Bleg,u) = 5(¢ ,u’); therefore, it is sufficient to

-}
shov that 3 & set of the form N A(K,, U,) vhich contains ¢ and is
i"—'l -
contained in S{gp,u}. In case u > z bk, wve may simply let
k=0

m
121 A(Ky, Ug) = A(K, U)), vhere K) = {t: -1 St S0 ), U = .
A(Kl’U.L) = C and hence contains ¢. Also, if § ¢ A(Kl, U, ) then

- @« K - -
p(9,¥) kz b7 < uy hence b S(@am), = A(K, Up) @ S(@au). If
=0
© K » k"
u < Z b, then let the integer k » 1 be chosen guch that ¥ ¢
k=0

u{l-b)/2. Consider the closeu interval {-t,») Ol. Since o is

continuous on [ -t . # , O], ¥ L ¢ [-tk., 0] 3 5L > 0 such that {f

K
-teSt gOand |t - t] g8 then [IF(t7) - S(e)f < -5 . Let
- bk
. (t) denote the .pui b, neighborhood of t. Clearly, N c
5L - bt
crlattetl g ). T family N& (L) t . :-L\y., 0! ) is an
. :
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open cover of {-t.x., 0] and sincs [ty 0} is compact, 3 a finite

subcover | .a (tl), X “a {tl) } of {'tl.' G}o For i1 = 1; ceey By
tl "n

let K, = { ¢ lz-z | <8, K t € (-t,s 0} ). Note that each K, 18

s compact subsst of (-u,O}, in fact; each x is n compact subset of

[-t #, O), and clearly u K, = [t o 0}, Also, if t ¢ K then
4 | 3 i

1=l

ﬁ(t)-é(ti)ﬂ<;:—;. For 4 = 1, [ §: ¥ e £,

Loo, Wy let lJ1
iy - e M < ;h‘-; ), and let A(K,, U ) denote the set of sl ¥e¢C
1 3
]
mapping X, into U,. Then, N A(K,, U, ) is the required set:
1 1 AP U

- n n
Clearly @ € n A(Ki’ Ui); and, ir i € l‘\ A(Ki' Ui) then

fl$(t) - We)lj €2 ( ) for o1l t in [t e 0], and hence p(@,¥) =

- Y
Ino s s s, + 3 supl lelt) - el -ty Sts-t)s

k=0 Kak® K=0
o™t k* aup( [p(t) - ¥(t)j: -t, et g0 ) <
g
- k 1)
z k"2 zu+/a-—-—+/25/2+/2-
k“k,mk * ( e s T-v" ¥ s "

u, or p(@,¥) <u. Thus, ¥ ¢ 3($.u), and hence n A(Ki’ u,)
{s}

c 8(pm).  Q.E.D.
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APPENDIX C

In this appendix we shall prove that the functionals V defined
in Equations (5-1) and (%-5) are continucus on C, for any H> C.
heores, Por any ¥> O, (£ V {8 defined on CH ty sither Bgquation
(5-1) or Equation (5-5), then V is uniformly continuous on Cype
Proof: let & > O be pgiven, let g -ry +ng+ ... 4 ng, Choose

the positive integer Nl 8o large that

2"21
1——-“ ) SR A ,
% l-lpg“ lp;» < iy ¥ten and k2N .

Choose the positive integer Na 80 large that

~
2H" 1
ksl €
bt l‘l"gi) IDgI <rn'; 2 b2 and kzﬂa .

Let.R-mx(Nl, N2). Let T = max {'g : t €g) and let

ety li-lpg ™) 1
K, = Z '7‘11_%%)— (ay + byley]) + b;"‘tJ

ted

and choose & > O such that @, ¥ € Cyr p(® ¥)< b

= sup( I®(c) - ¥(a), : - (2N+1)T < 0 < O) < min {g}%(—n- , m?-li;ﬁ) .
This is possible since convergence in the compact open topology cn

‘.0, 0] {s equivalent tc uniform convergsnce on every compact subse:

5f (-m, 0}, For every ¥, ¥ ¢ Cyy with o(®, )< 5,
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[V(g) - 7)) = (3 6°0) B30) - L ¥%(0) P¥(0)

- -em o]
+ 1\__,{.§ th!k jt&’ (o‘m(c)"a + bg[fét(c)éfa)dc
tep Keo o=-2{k+l )¢ ¢ ga-ty
-2(kel)s, ,
z lpe|k+l[ 1;(c!)cp (¢)do | )
-(2(k+l)+l)1
leg’k f‘ (o)\‘li(c\dc + bg[jv‘ N o)do
d--2(k+l)1§ a=-t,
-(2k+l)t
Z| kﬂ [T't(aﬁ(a)du ] )I
k=0 -(2(k+l)+l)1 |
L ?k‘tl
<3 18%0) P 4t0) - ¥%0) P W) + Z( Z!o * [[a(o)é(0) -
u~-2{k+l)1
O
¥io)¥(o) | aa + v, [[$%a)5(0) - T(6)¥(o)] ao
ca—tg
-(2k+l)1 |
oy Z ]og kﬂf (0)3(0) - 51\’0)‘?(0)}&0)
e —-{2(}{*1)*1)1&
<3 18%0) P §(0) - ¢%0) 2 §(0) + $%0) P ¥(0) - #¥(0) P ¥(0)]
-2k1'
Z[ Z logl f JICP(G)I’ - )1 fao
£eq o=-c{k+l )1
o 2 ~,
jfl B I - o) 1o
cs ‘1’
@ -(2k+1 -,

:Ef N[ R  a

o=-(2{r+. :x 1.
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< %Ké(o). P(§l0) - ¥0) | + -1-|< PY(¢0) - §0) ), Wo)D |

~Zht

N-=1
) [.g 5 oy t* (o) - ¥o)ldo
k=0

teg o= 2(k+l)t
N-1 -(2k+l)1§
+ b f 2i-hg(o) - Hodjas + v, Z| [ enlgto) - m)naa]
0=-Tg o=-(2(k+l)+1,)1£
—th
+ ¥ [ Z lo; | [l L)I? - WP [ao
teg a=-2(k+1 )%,
® (2k+.1.)1§
oy Y Iy [ - oI e |
k=N =-(2(1w1)+1)1g
< 2 B I7ll- [50) - ¥(o)ll + % Ie%) Ip(0) - ¥(o)|I- I¥Co)]

N-1

. N-1
k € k+l €
*z_g [ g:o leg| (kKN)E' *b:‘rq"‘:*bgg"’;l (F@’a‘t]

+ Z [ Z'p‘ (H 21.' + b Z ng k+l (H2)2- ]
teq

k=N k=N
<3 IRl gEhep ¢ 1P e W
(1 - o, I _— c L - o, [N c ]
) [aa( T Toy] AR E R *bt"’t'(mﬁﬁ')(’f@’ e
«qQ
2H2'r cHT -
*Z[";h-lpgl) él §(l-|p| ngNl]

lye use here tie equal vy | Ilt};(a)ll2 - W(O)HE_! lip(a) - ¥(o )"o
vhich follows immediately frim the inequalities | Jglo)|| - ||§(u)|| | <
lipla) - ¥lo)ll and | fipladll « ivle)l] | < 2n.
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That is ¢, ¥ € CH’ plg 3 < ow Vig) - V(w)] < e

Thus, V is uniformly cortiauous on CH- Q-E.D.

Theorem. For any H > 0. if V is defined on Cy by either Equation (5-1)
or Equation (5-5), the:r there =xists a real number f such that

|Vig)|< & for every g « Cy-

g, (2, + b, lp, )
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