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SKIN FRICTION AND HEAT TRANSFER CHARACTERISTICS OF THE
COMPRESSIBLE LAMINAR BOUNDARY LAYER WITH INJECTION
OF A LIGHT, MEDIUM, AND HEAVY GAS

by
L. M, Albacete and W. J. Glowacki

ABSTRACT: The effects of the injectiom of a light, medium, and
heavy gas on the skin friction and heat transfer characteristics
of the laminar boundary layer flow over a flat plate have been
investigated. This was done by a numerical sclution of the
governing differential equations for injection rate parameters of
0, -0.1, -0.2; Mach numbers from 0 to 3; and wall-to-stream tem-
perature ratios of 0.25, 0.50, and 1,00. The results show that
the selection of discrete injection systems must represent a
favorable compromise between conflicting factors (such as small
molecular weight and large molecular diameters) which influence
the amount of reduction in skin friction and heat transfer.
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Skin Friction and Heat Transfer Characteristics of the Compressible
Laminar Boundary Layer with Injection of a Light, Medium, and Heavy
Gas

This is the first part of a three-fold investigation into the
effects cf foreign gas injection on the laminar boundary layer
heat transfer and stability characteristics. In this report the
bourdary layer equations are solved numerically and profiles are
obtained showing the effects of light, medium, and heavy gas
injection. 1In addition, the effects of the injection on the skin
friction and heat transfer characteristics of these profiles are
examined.

The authors wish to express their gratitude to Dr. John O. Powers
for his advice and encouragenent.
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LIST OF SYMBOLS

skin fricticn coefficient
specific heat at ccastant pressure

binary diffusion coefficient
variables defined in equation (80)

molecular diameter or collision cross-section of

species 1
degrees of degeneracy in vibration

total internal energy of one mole of a perfect gas

(c.f., Eq. (44))
Eucken correction factor for polyatomic gases

(c.f., Eq. (42))

vibrational energy
function defined in equation (23)
dimensionless stream function
function defined in equation (24)
function defined in equation (33)
enthalpy of one mole of a perfect gas

(c.f., Eq. (45))

enthalpy
coefficient of thermal comsductivity

Lewis number
thermal diffusion coefficient

molecular weight
number of molecules per unit volume

pressure
Prandtl numbex
total partition function
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gas constant

Reynolds number based on main stream conditions
stagnation enthalpy (c.f., Egq. (25))
temperature

vibrational temperature

velocity along surface

volume

velocity normal to surface

mass fraction of injected gas
distance parallel to surface
variable defined by equation (3Q)

distance normal to surface

thermal factor

ratio of specific heats

vibrational constant {(c.f., Eq. (50))

transformed y-variable (c.f., Eg. (13))
coefficient of dynamic viscosity

coefficient of kinematic viscosity

transformed independent variable (c.f., Eq. (22))
density

stream function

reduced collision integral

Schmidt number

vibrational freguency
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INTRODUCTION

This report describes the skin friction and heat transfer
investigations which were part of a study of the effects of foreign
gas injection on the heat transfer and stability characteristics of
the laminar boundary layer flow over a flat plate. Specifically,
the effect of moiecular properties of the injected gas on the skin
friction and heat transfer is considered here. The stability
characteristics of some of the resulting ooundary layer proiiles
appear in reference (1). In addition, an outline of a numerical
method used for a direct numerical solution of the complete system
of disturbance equations for the boundary layer stability analysis
is given in reference {(2).

The effects of injection on the skin friction and heat transfer
are of interest in the area of high speed vehicle design, where
injection of a foreign gas through the porous wall of the body is
recognized as an effective way 0?2 alleviating surface heat transfer.
The present investization is based on the a2nalysis of Sten (ref. (3))
w)o derived a similzcity form of the mass transfer boundary layer
equations by assuming that the injection velocity varied inversely
with the square root of the distarnce from the leading edge of a flat
plate. In his report, Shen did not inciude any numerical results.

However, Korobkin, in reference (4), did give some results
showing that the laminar boundary layer beat transfer characteristics
can be appreciably altered depending or the molecular properties of
the injected gas. Specifically, his analysis demonstrated that
small molecular weight and large molecular diameter of the injected
gas are desirable properties for the reduction of skin friction and
heat transfer. Furthermore, a large specific heat per unit mass
further reduces the heat transfer. In addition, it was shown that
whereas it had been indicated that the smaller the molecular weight
of a gas, the greater its effectiveness in an injection system,
there exists the possibility that the coabination of large =molecular
diameter andé a large molar specific heat associated with polyatoaic
gases may in fact be more significant in reducing skin frictioa and
heit transfer than the low molecular weight of a monatomic gas like
helium. (The criterion for the effectiveness of a given gas is
normally established as the relative reduction in heat transfer for
a given mass-injection rate of the gas.)

In the present investigation, a numerical program for the
solution of the governing equations has been used to examine the
effects of helium, air, and carbon-tetrachloride injection on the
skin friction and heat transfer characteristics of the laminar
boundary layer flow over a flat plate. The program includes the
effects of equilibrium vibrational excitation, that is, the specific

1
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heat is assumed to vary with temperature. HResults have been obtained
for Mach nuambers from 0 to 3; wzll-to-stream temperature ratios cof
0.25, 0.50, and 1.00; and injection rates of 0, -0.1, and -0.2. The
ranges for the temperature ratio and Mach oumber are realistic in
terns of a flat plate at Mach numbers up to 3, and for the forward
portion of a biunted re-entry body. As far as tne injection rate

is concerned, for a flat plate; separation begins at a value of

this parameter near -0.6 according to our definition. For very
slender bodies (including transverse curvature effects) this value
may be as high as -0.5 before separation takes place. For an
ablation problem, for example, a slightly blunted cone flying at
Mach 15 at 100,000 feet, one might expect values of the injection
rate on the order of -0.4 to -0.6. Dissociation, iocnization and
thermal diffusion effects have been neglected. (A study of the
latter appears in reference (57.)

ANALYSIS

1. Basic Equations and Boundary Conditions

We consider the steady two-dimensional flow of a pure gas forced
into the stream through pores of the flat nlate. The boundary layer
equations describing the fliow of the bimary =mixture are as follows:

Continuity: -%; {pu) +-%§ {pv) = O 1)
Homentum= in

3u du 3 [ 32u\
the x pPU — + PV - 13 H {2)
direction: ox e AN 7
Yomentum in 3p
the y W - 0 3)
direction: y
Conservation - - -
of matter of P“‘S; + pv.§; --§§ {pﬂigg + aw(1-=)~2§§zé}(4)
foreign gas:

. 2

3h 3h 3u ) 3T , [ 3w

Energy: gty i) kG rels
3
a1y Kr b = By

+ aw(i-w)

3y A @ T RT

State: p = pRT = constant {6)

[}
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Iin these equations, u, v, p, T, h, u, and k represeat the velocity
compcnents along and normal to the plate, density, temperature,
enthalpy, viscosity coefficient, and coefficient of theramsal coan-
ductivity, respectively. In addition, w is the mass concentration
of the foreign gas, defimed by:

=.D
¥ T am 1*1 n @
183 T Jpfs

where:

B, = molecular weight of species "i™
n; = number of =olecules of species "1 per unit volu=e
1 = 1 for the injected gas

i = 2 for the main strea= gas

Moreover, in equztions {(1)-(6), the binary diffusion coefficient is
given by #, the ther=al diffusion coefficient by kT, and the thermal
factor by o, where:

i, - ew{l-w) (8)

The gas constant R is for the =mixture per unit amass.

Egquations {(1)-(6) are subject to the following bcundary conditions:

u({x,0) = G 2
u(x,=) = u, 10}
T(x,=) = T, (11)
wix,=) =0 12

v(z,0) and T{(x,0) prescribed

It sheuld be pointed cut that the te=perature of the injected
£iuid is assuzed identical to the te=mperzture of the plate surface.
Ko consideration is giver to the source of fiuvid nor how it attains
plate surface tesperature.

2. Transforz=ations

As Shen (ref. (3)) has shown, the above equations and toundary
conditions will lead to similar solutions for an injection rzte

varying as 1//x when the following transfor=ations are introduced:

3
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_ (2)y 13)
EV&
Ue
and the stream function:
Y = (palepex)? £(0) (14)
Under these transformations then:
Y _1 af
Y Jy T2 Pelle Ty (15)
_ =3Y _ 1 Tpoue 1 ([ 2f
PV 3% 2[ x (“B?l‘f> (16)
1 - -
pu %i + pv %; = - T PoloX 1 f %ﬁ (17)
and for any quantity A(n) we have:
d 3.1 -14d d
3 [ad] = 7 reut & a0 F (18)

Next we introduce nondimensionalized variables (indicated by
barred symbols) by dividing all flow variables by their corresponding
stream value, except for w, which is obtained by dividing by the wall
value wy. (Note that w in itself is already dimensionless. The
introduction of w is for the convenience of certain special cases.)

Using then equations (15)-(18), in terms of the dimensionless
variables, equations (1)-(6) are reduced to the following ordinary
equations obtained by Shen:

%{Bﬁ%ﬁ-ﬁ-}+12—§§ - 0 (19)
gg {35 gg} + £ gg --gg [BﬁF] (20)
SR8 - e
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where:
g new indepeﬁdent variable = In pd " an 22
= pan = 'ﬁ‘ ( )
[o}
- d
F = [—-—1]—,+a-(l-www)a—{-tni‘ (23)
1 f1 = dT dk
G = C - = 4
-1 .2 r pd¥ de
1 + M
[1+ X2 ), (24)
C
W, P P -
W s TaR+ Y1 - 27 dw
+—T L T ][af + aw(l-w w) LnT]}
) 1Y
2
S = h + %-uz = stagnation enthalpy (25)

uC
Pr = "EB = Pprandtl number of local mixture

=3}
"

%B = Schmidt number of local mixture

Y = Cp/Cv

In deriving equation (24), Shen assumed Cp to be concentration-
dependent [Cp(w)] but independent of temperature. In order to
include temperature dependence in Cp, the following equation for G
is used in the present report instead of (24):

R O E B ICREAE It

where Le = Pr/w = Lewis number. This formula reduces to (24) when
a =0 and Cp is assumed independent of temperature.

Now, under the previous transformations, the boundary conditions
(9)-(12) become:

(1) §§ -2 (i1) a— -0

g-oa g-o
(27)

(iii1) £(0) = -2pv ! /Re_
=

th
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(1) w() =1 (i1) W(=) =0 (28)

(i) S() = §w = constant (ii) S(=) =1 (29)
where Reyx is the Reynolds number based on x and the main stream
conditions, = uwX/Ve.

The equations describing the problem, solved numerically in the
present investigation, are equations (19)-(21), with boundary
conditions (27)-(29).

3. Expressions for Transport Properties

A. Binary Diffusion Coefficient

From reference (6), the expression for the binary diffusion
coefficient in practical units is:

[T3(m + m.)/2 m.m.]é
8.. = 262.8 x 10°° i J id

(30)
ij 2 (3,1)*
pdij Qr—e
where:
.. = diffusion coefficientfcmz/sec

13

1
dij ~-2-(di + dj),angstroms.(the symbol d; stands for

molecular diameter or collision cross-section
of species 1)

p = pressure, atm,
T = temperature, °K
Q(l’l)* = '"reduced'" collision integral = 1 for rigid sphere

model as used in the rresent investigation

B. Coeffi-ient of Viscosity

For a pure gas of species i, reference (6) gives:

7 /3T
(31)
d;z*n(z,z)*

my = 266.93 x 10~




m“ ) ,!‘ﬂ i :.:uE’ ‘,m*wﬁ"'? =

NOLTR 66-215

(for a rigid sphere model Q(Z’z)* = 1)
where:
py = viscosity of species i, g/cm - sec
m = molecular weight of species i
d., = collision diameter, angstroms
T = temperature, °K

And for a binary mixture of gases, we have:

T3 (T
po=- 2 ) + _J By (32)
1+ Gyy (ni) 1+ Gyy (EJ‘)
where:
d.+d \2 m.\%
1 i i
S5 T & —za;l) (x +§J‘.) (33)
for Tl - Tz.
Nondimensionalizing (31) we have:
— 2
1 Ho dl JmZT0 af mE T
2
- By /m T dy
By = 5= = —3° = /3 (35)
o dy /?n",i‘:

where the subscripts 1 and 2 indicate injected gas and main stream
gas respectively.

Finally, nondimensionalizing (32) we have:

(36)
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C. Thermal Conductivity

For a monatomic gas of species i, the Chapman-Enskog
Theory yields:

k, = =2 R.p. (37)

where:
ky = thermal conductivity, cal/cm-sec-°K
py = viscosity given by equation (31)

Ri = gas constant for species i

Substitution of (31) into (37) yields:

k., = 1.9889 x 1072 1 21 (33)
i * m, d.2
i i
Nondimensionalizing (38) we have:
2
k d
- 1 2
- -2 4 (39)
o 1 1
- kz
k2 = -k_; = ‘/%- (40]
For a mixture of monatomic gases, reference (6) has:
E K
E - %‘ = 5 . T 2 n (41)
® 1 + (1.065) 612—2 1 + (1.065) G2L¥£
ny By

The above formulas can be extended to polyatomic gases, as
indicated by Dorrance in reference (6). The correction factor Eu
(the Eucken correction factor) is:

2 C

’ r P
Eu = 1 -L" + 3 L Ri
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where:
k'’ = corrected thermal conductivity for polyatomic gases

K = thermal conductivity calculated from monatomic
considerations

, psi(S/Z)R1
L' - —

R - Rimi = universal gas constant

L’ can be evaluated using the Chapman-Enskog theory for
monatomic molecules. As indicated in reference (6), a good value
is L’ = 0.885. Using this value, the correction factor becomes:

Fu = k’/k = ©¢.115 + 0.354 cp/ni 42)

Furthermore, the Chapman--Enskog expansion for the thermal conductivity
of a mixture of monatomic gases can be modified making use of the
Eucken factor to yield an expression for the thermal conductivity of
polyatomic gases. The equation is (for a binary mixture):

I4 T
kK = kl + 52
n n
1 + 1.065 612 2 1 +1.065 GzL_l
n n
1 2
- kl Eul . kz Euz
n n
1+ 1.065 G5 2 i1+ 1.065 621—1
By By
Nondimensionalizing, we obtain:
_ K. Eu, k_, Eu
E = k/k, = —— 2% — + 2 Z - (43)
1 + 1.065 G12 2 1 + 1.065 GZI—i
i | 2o

where k3 and Ko are given by (39) and (40), respectively, and Eu by
(42). 1In addition, Gij is given by (33) for T1 - T2.
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4. Enthalpy and Specific Heat

The total internal energy, E, of one mole of a perfect gas,
including translational as well as internal degrees of freedon,

may be expressed by the following equation as indicated by Herzberg
in reference (7):

o 2 d
Ei - Ei + RiT aT-(LnQi) {44)

where the subscript i indicates that we are talking about a given
gas of ith species. In this equation, Q is the total partition

function, E© the energy at absolute zero temperature, T the absolute
temperature, and I the gas coanstant.

Now, the enthalpy, H, of one mole of a perfect gas is the sum

of the total iaternal emexgy, E, and the external energy pv = RT,
such that:

o 2 d

Bi - Ei + RiT + RiT aT (LnQi) (45)

Finally, the specific heat at constant pressure is given by:

dH. -
i da ,.2d
Cpy = ar - Ry + Ry gr (¥ ar (LnQ)j (46)

Now, Q can always be written as the product of the translational
and internal partition function QTRi and QiNT Therefore, since Q
occurs in (45) and (46) only as £nQ, then the enthalpy and specific heat
are the sums of a "translational” and an "internal" term. 1In
particular, for:

3/2 3,.
Uy = 1.879 x 1020 v ' ° T’

(where V is the volume considered, m the chemical atomic or molecular
weight, T the temperature...for details see Herzberg, reference (7)),
we can write:

o 5
Ch. = 2 4+¢ (48)
Pi 2 PINT.
i
10

\
4o
oo, v
‘
-
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where:
2 d

Hewe, = RT ar (£0Qyp)

d 4nQyperq
— T | (49)

H
-

d 2
C = R T
pINTi idr [

Moreover, QINT can be written as the product of a number of
factors 1f certalin approx.mations are made. In particular, if the
interaction of vibration and rotation is neglected, both liyyy and
CPINT can be written as the sums of a rotational and vibrational

term such that:

H = H + H (50)
INTi ROTi VIBl
C = C + C (51)
PINT, PRor, PyiB,
i i i
where:
H = R. T2 9 (1o, (52)
ROTi i dT ROT
- x &[22 1 ]
Coror Ry ar LT a1 (4"%eor ] (53)
i
2 d
Hvis, Ry T gr UnQypp) (54)
d 2 d .
“ovin Ry gr [T qr (nygp) ] (55
. t
A. Monatomic Molecules: Helium
For monatomic molecules, in which only the translational
degrees of freedom exist, we have from (43):
5 ~
C = 3 Ri (50)

Py

11
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and from (47), for Eg = 0 we have: 1

ﬂi =

N} en

Ri T = Cpi T (57)

For helium R; = 0.4967 cal/gm-°K such that Cp = 1.24

i
ile
cal/gm-°K. These 2re the values used in the present investigation.

B. Diatomic Molecules

(1) Vibrational Excitation Neglected

The effects of translation offer nothing new, being
the same for diatomic as well as for monatomic gases (as well as
for polyatomic).

The equations for Qp for molecules without free or 1
hindered internal rotations are given by Herzberg in reference (7).
From the equation for ths case of diatomic (and linea:r polyatomic)
molecules we have, after substituting in (52) and (53):

Therefore, neglecting the vibrational contribution we ‘
have, for diatomic molecules: ]

For air, then, considered as a "mythical diatomic
molecule" we have R; = 0.0685 cal/gn~-°K and thus Cp = 0.24
iaIR
cal/gm-°K. These are the values used in the present investigation.

{2) Vibrational Excitation Included

For diatomic molecules with vibrational excitation
included, the Hjyp term in equation (47) contains the contribution
due to rotation, Ri T as before, plus now a vibrational term coming

12
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from Qyig which we shall denote as Ey. This "vibrational energy" can
be written as (see reference (8)):

9v
i

E - R (690)
v i™g T
i e vi/ A |

where:

8 = Planck's constant x vibration fregquency
v Boltzmann's constant

= characteristic vibrational temperature for given
gas

T = vibrational temperature (for egquilibrium Tv = T)
Hence, the expressicn for the enthalpy is, assuming equilibrium:

B, = 5 R T+E_(T) (61)

o] =2

and the specific heat at constant pressure is:

& M = -Ir ‘(T 6:
< ) 5 Ry +E° (T) (62)

7
pi {1 -e-Ri-!-C

3

p .
1lyis

where the prime denotes differentiation with respect to T . 1In
particular, from equation (60),

6_ /2T
Vi

E)S (M = R, {

v i (63)

sinh svi/2T

In the present investigation, as in reference (9), air is treated as
a "mythical diatomic" gas with R; = 0.06851 cal/gm-"K and 8, = 3076°K.

C. Polyatomic Molecules

In this case, the effects of translation offer nothing new,
being the same as for the monatomic and diatomic gases. For linear
molecules, the treatment of rotation given for diatomic gases is
applicable. For nonlinear molecules, such as CCLy and CHy, the

effect of rotation adds (3/2)RjT to the enthalpy, such that:

Hy - 3pr-c

ROT 2 T (64)

Pror

13
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There are, on the other hand, several wmodes of vibration,
some of these important at low temperatures, others at high tempera-
tures. In addition, there are degeneracies in these modes so that
one has less "fundamental' modes available.

However, using the "harmonic-oscillator"” approximation (see
reference (7)), Qyig is a product of terms due to different normal
vibrations. The resulting expression for lHyig then turns out to be:

Hi = Bv {65)
YIB n n
where n;indicates the summation over 211 fundamentals of the molecule
and:
3
Vi
Bvy T % timor (66)
i
e -1
where:
2.858 .
a - s
v K, “a 6D
n i
w, = Zfrequency of vibration in cm
dn = degrees of degeneracy in vibration corresponding
to w
n

That is to say, for these polyatomic molecules, the vibra-
tional energy term E, (T) encountered in the discussion of diatomic
molecules now consists of a summation of "vibrational energy terms”
corresponding to the different fundamental frequencies of vibration,
multiplied by the degrees of degeneracy in each.

For example, methane has four fundamental frequencies of
vibration, i.e., n = 1, 2, 3, 4. Therefore:

H - E (T) ~E_, +E_ +E_ +E
VIBCH4 v vy Vo Va3 vy
2.858

R, 1 + term for n=2
]
- RCH {dl {2 323 1 + term for n=3 j

’ expiRCH T 1" . + term for n=4

4

Lo

sy
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In particular, from reference (7):

s, = 2914.2 cat wy, = 1526 ot
a, = 1 4, = 2
wg = 3032.3 ca) w, = 1306.2 ca}
4y = 3 a, = 3

ch4 = 0.1242 cal/cn-°K

(molecular weight of 634 = 16)

The specific heat at constant pressure is given by:

8 /2T
c T = B () =R ;7 d {o® )2
. ’ v il %% S G
*vi a s

{68)

which is, except for the summation sign and the factor dp,. the saze
as (62) and (63) for diatomic molecules. That is, the vibrationzl
contribution ¢o the wpecific heat can also be represented as the sum
of smaller "gpecific heats”™ corresponding %o the fundamental =odes
of vibration multiplied by the degrees of degeneracy in each.

Finally, the total enthalpy for these polyatesmic gases is

then:
Hy = 5/2 RqT +  3/2 B4T + Y E
(translaiion) {(xotation) T n
{vibration,
or giveu by (66))
A
Bi - 4R;T + L E; {69}
n n

The specific neat at constant pressure is:

C?_ = 5/2 Ry + 3/2 Ry + Cp {T) .
i iVIB {70)
+ & 3
translation) {rotation) (vibration,

given by (58))
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If we denote by C, the contributions to the specific
¥ o

heat which arc independent of temperaturc and thus constant for a

riven gas, i.e., translation and rotation, then we have the more

coavenient cxpressions:

H, = C_ T+ L, (T) (71)
1 YR M
C. = C + B0 (T) (72)
Pj Ppep VY
shich apply to all ga<es (with the values of Cp and Ev (T) being
T+t

different for each, of course).

Suppose all the vibrational moaes of a given gas are excited,
say CC 4 (as in reference (4)). Then for each vibrational degree of

freedom th- contribution to Cﬁ is Rj. Therefore, fo— the 4.7
YVIB
vibrational degrees of freedom in CCE,4 (HCCL4 =  .3129 cal/gm-°K)

we have: Cp = 4.7 (.0129) = .0604 cal/gm-°X. The total specific
vVIiB
heat at constant pressurc is tren:

C = 4R

4 Pyip
(translation + rotation)

= (516 + .0604

= .1120 cal/gm-°K

The specific heat at constant pressure of the mixture is
either concentracion~dependent alone (vibrational excitation
neglected), or both concentration and teuperaturc-dependent {(vibra-~
tional excitaticen included). In any case,

C = wC (73)
»

p + (1-w) Cp

1 2

where C) and Cq are either Cn or C + C, depending on
Py ) Prin Pryp Pyin

whether vinrational excitation is neglected or included.
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Nondimensionalizing (73), we have:

w C + (1-w) C
P1 P2

C. = (74)
p pr

where in the present investigation we ihave ccnsidered

Cc = (C )2 T

(75)
Pe PryR

o
always. The same reasoning applies for the enthalpy of the mixture:
H = w Hl + (1-w) Hz

w Hl + (1-w) H2

- (76)
(o]
pT+Rb

where H, and Hz elther neglect or include vibrational excitation.

5. Energy Transfer Across Interface

As indicated by Korobkin in reference (4), the "energy flux
across the interface" (i.e., the energy which will increase the
body temperature) can be expressed as:

-E), = [k g-';-' - hlpv]w (78)

Usin{ the transformations outlined previously, this can be
written iu the dimensionless form:

_ _ _ c
B, = K, 5, %g - T,|£00) |pr, C% (79)

That is, the surface heat transfer is seen to be divided into
contributions coming from a "temperature gradient" term and a
"concentration tern.’

Now, it is desired to reduce (4§)w. Evidently, this can be done
wy:

a. Decreasing k_. This may be accomplished, for]?xample, by

injecting a large moYecular diameter gas, since Ew ~ =5 .
d
1

17
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b. Increasing Tw. This will increase the magnitude of the
negative term.

(Cp/mole)
C Increasing Cpl. Since Cpl - (molcoular weighf)] ’

this may be accomplished by either having an injectant of small
molecular weight, or one with a high specific hcat per mole (say,
as a result of vibrational excitation).

Evidently, the relative efficiency of any of these actions
depends on the importance of the term in which the affected
parameter appears. For example, if the injection is going to be
small (small £(0)) then perhaps the heat reduction efforts should
be concentrated on the first term of (79), i.e., on reducing Ew,
whereas if the injection is going to be considerable, the second
term might be more important.

In addition, all of the factors, (a), (b), (c), do not necessarily
go together. And so one might have a large molecular diameter gas
but with a high molecular weight (an effect whicih may in turn be
corrected by a high specific heat per unit mass), and so on.

in sum, the ideal situation is to have a favorable combination
of all these factors. Reflecting this fact, we will see in the
present report that at some wall-to-free stream temperature ratios,
the light gas (helium in our case) is the most effective coolant,
whereas at other temperature ratios, the heavier gas is more advan-
tageous.

6. Numerical Solution of the Equations

Equations {19)-(21), subject to the boundary conditions (27)-(29),
have been solved on an IBM 7090 computer using the program known as
FNOL 2 described in reference (10). This program is a subroutine
which employs the Runge-Kutta and Adams-ilouiton fourth order tech-
niques for the integration of a system of ordinary differential
equations (up to 30).

Mathematically, the problem consists in solving three ordinary
differential equations for the three functions £(£), s(£), and
w(3). These equations are linked. In order to use FNOL 2 , these
three equations are reduced to a system of seven first order ordinary
differential equations, given by:

p, = M1 . £,  where Y; = o (80a)

1 ag o 1 de
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aY
2 . 1 - 49f 30b
o, = Y = Y1 where Y2 qE ( )
[}
%3 80c)
D3 - I - Y2 where Y3 - f {80c¢c
dY - - as -
[ w
d¥g @ -
D5 - I - %E Y4 whera Y5 - W (80e)

-- (ds
Dg = T = - f r3 where Y. = pu ar + G) (80%)

wm

D, = I - 3 where Y7 - (80g)

Equations (80a), (30b), and (80c) come from (19); equations (80d),
and (80e) come from (20); and equations (30f) and (80g) from (21).

Now, the following boundary condxtions must be glven for solution
of these equations: £(0); £‘(0), £7(0), S(0), s’(0), W(0), w'(0)
where the prime denotes dszerentlatlon with respect to £. Unfor-
tunately, not all of these conditions are actually given., 1In
particula.r, we are missing £7(0), s‘(0) and w’'(0). But we do have
£/(=), sS(»), and W(*). Therefore, a scheme must be devised to
obtain the missing boundary conditiors which will result in given
conditions at § = », Once they ar:c .btained, the differential
equations may be solved numerically using FNOL2.

The procedure to obtain the required boundary conditions used in
the present investigation is based on the one employed in ref-
erence (11). Stated abstractly, we have three functions (f,g,h) of
three variables (x,y,z) and we wish to find the point at which they
are zero. In particular, if

f(x,y,2z) = f£'(® -2
g(x,y,z) = -S.(.) -1
h(x,y,z) = Ww(=)

where x = £7(0), y = S ‘(0) and z = w(O), we ask for what values of
x, vy and z are f=g=h=0 (i.e., £'(®) = 2, S/(®) = 1, W(») = 0).

19
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Such a problem can be solved using the Newton-Raphson iteration
method. The iteration equations are, in matrix notation:

3f af af\ %
3x 3y oz
X X og 3g d PR &
) =Gy -| =w= | () (81)
z n+l n 3h 3h dh h'n
\ oX 9y oz

This iteration would then be accomplished as follows:

(a) Assume first trial values of £f"(0), s’(0) and wW(0). (These
are X5, Yo, Zo, respectively.) Integrate the differential equations
(80) using FNOL 2 obtaining values of £'(s), s(»), w{(=). These
are f5, go, hg, respectively.

(b) Three more complete integrations are made, each differing
from that of (a) by a small perturbation of one of the initial
conditions £7(0), s’(0), w(0), i.e., (x,y,2z). In each case, values
of £’(=), s(») and w(w») are obtained.

(c) From the results of (a) and (b) approximate values of

of .
5%’ etc. are computed in an obvious manner.

(d) The matrix of partial derivatives is inverted and new
values of x, y, z are computed from (31).

(e) The process stops when £, g, h are as close to zero as
specified (depending on the.accurggy desired). The last x, y, 2
are the missing values of £ (0), s (0) and w(0) which meet the
known boundary conditions at infinity, and the integration with
these values is the solution to (80) with the appropriate boundary
conditions.

Additional details are given in reference (9). The interval of
integration used in the present investigation was A5 = 0.1 for the
case of no vibrational excitation, and 4% = 0,01 with vibrational
effects included.

i
iy

[0

RESULTS AND DISCUSSION

As explained in the Introduction, the main purpose of this
part of our investigation was to obtain boundary layer pr-~files
for evaluation of their stability characteristics by the .ethod
described in reference (1). In addition, once the profiles were
obtained, the effect of foreign gas injection on their skin friction
and heat transfer characteristics was examined.
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Figure (1) presents the effects of iajection or the skin fricticn
coefficient at a representative Mach number (0.70) and wall-to-
stream temperature ratio (0.50). The expression for ijhex is
obtained from:

c/Re, = T 7 [Re,

X

which becomes, after the transformations have been applied:

2. -
- 1 -=d%f} 2
Cy/Re Lz T, (82)

We see in the figure that helium, the lightest gas, gives the
sharpest reduction in the skin friction coefficient as the injection
is increased. This is due to_the effect of molecular weight of the
injected gas on the quantity pp. In figure {(2) the injectiomn rate
is held constant at the same ach number, and the wall-to-stream
temperature ratio is varied. Again helium appears most favorable.
Finally, in figure (3) the Maclh number is varied and the imjection
rate and temperature ratio are held constant with similar results.
So we see that for these ranges of lach number, temperature ratio,
and injection rate the effect of injection on the skim frictionm is
directly related to molecular weight.

The heat transfer results are not as straightforward as in the
case of skin friction. Consider figure (4) which shows the effects
of wall-to-stream temperature ratio on the ratio of Stanton number
with injection to Stanton number with no injection. The figure
migk* best be understood by looking at equation (79). We see that
at temperature ratios greater than .36, helium, the lightest gas,
appears as the most effective coolant. This is because the value
of Ty is high enough to make important the second term in (79).
Therefore, the reduction in heat transfer achieved by injecting a
small molecular weight gas (which further increases this term) is
further enhanced by the large value of Ty. However, at lower values
of Ty, this term is no longer important, and effort should be con-
centrated in decreasing the first term. This may be accomplished
by injecting a gas with large molecular diameter, and thus decreasing
Ey. The figure indeed shows thatat lower temperature ratios, the
heavier gases are more effective than helium in reducing heat
transfer.

In figure (5), the results are plotted versus ilach number for
various temperature ratios and an injection rate of-0.1. In addition
to confirming again the preceding analysis, the figure shows that
the results for a given Ty do not vary much with Mach number (except
Tw = 0.50 for helium injection). 1In fact, a correlation has been
suggested by Gross and others (ref. (12)) to collapse all the data at
different Mach numberis and temperature ratios into one curve. This is
done by plotting the Stanton number ratio versus one half the injection

21
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rate parameter divided by the square root of tie Chapman-Hubdesin
constant evaluzted at a reference temperatur2 (C#). This is pre-
sented in figure (6). The figure shows that the correlation worked
for the Mach number range considered (Mach nuabers of 0 to 3) but
failed as far as the temperature ratio was concerned. Again the
results predicted by equationr (79) appear: whereas at a iemperature
ratio of 0.5, helum is the =most effective coolant; wher the tempera-
ture ratio is as low as 0.25, the heavier gases are nore advasntageous.

We have seen then that there are conditions whean it is =ore
favorable to use a heavy injected gas instead of having a light gas
injection system. This is even more so when ope considers the
effect of injection ¢n the stabilily characteristics of the boundary
layer as in reference (1). Here it is shown that “he heavy gas
can actually cause the boundary layer to be more stsble, whereas
2 light gas is destabilizing,

CONCLUSION

The main purpose of the ianvestigatioa was %to cbtaln boundary
layer profiles showing the effects of a light, =zediuz, and heavy
gas injection. The =method of solution of tle governing egquations
has been described. The stability characteristics of the resultirng
profiles appear in reference (1). In addition, the effects of
injection on the skin friction and heat transfer characteristics
of these profiles have been obtained. The results have shown that
the reduction of skin friction and heat transfer depends in general
on factors wihich are not mecessarily complizentary. For exasmple,
sometimes a large molecular diameter is advantageous, other times a
small molecular weight is better, and so on. Furthersore, we have
seen that the valuz of the wall-to-streas temperature ratio will
also affect the choice of injectant. In short, the selection of
discete injectlion systens must represent a favorable comprorise.
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