PARAMETRIC REPRESENTATIONS OF NON-STEADY ONE-DIMENSIONAL FLOWS: A CORRECTION

by

J. H. Glese

PROPERTY OF U.S. ARMY
STEINTZ BRANCH
BRL, APG, MD. 21005.

January 1967

Distribution of this document is unlimited.
Destroy this report when it is no longer needed.
Do not return it to the originator.

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.
PARAMETRIC REPRESENTATIONS OF NON-STeady ONE-DIMENSIONAL FLOWS: A CORRECTION

J. H. Giese

Computing Laboratory

RDT&E Project No. 1P014501A14B

ABERDEEN PROVING GROUND, MARYLAND
INTENTIONALLY LEFT BLANK.
PARAMETRIC REPRESENTATIONS OF NON-STEADY ONE-DIMENSIONAL FLOWS: A CORRECTION

ABSTRACT

BRL Report No. 1316 contains a serious logical error. This invalidates that Report's assertions about the ease with which examples of 1-dimensional flows can be constructed. The present Report (i) expurgates BRL Report No. 1316; (ii) describes the error; (iii) corrects it; and (iv) salvages a family of examples of 1-dimensional flows.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>3</td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td>7</td>
</tr>
<tr>
<td>2. THE FALLACY IN [1].</td>
<td>9</td>
</tr>
<tr>
<td>3. ON THE DETERMINATION OF H(α, β)</td>
<td>11</td>
</tr>
<tr>
<td>4. FLOWS ASSOCIATED WITH $\xi = K(p) + L(\psi)$</td>
<td>17</td>
</tr>
<tr>
<td>5. SEPARABLE SOLUTIONS</td>
<td>20</td>
</tr>
<tr>
<td>6. BOTH X^+, y^+ AND X^-, y^- ARE FUNCTIONALLY DEPENDENT</td>
<td>25</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>27</td>
</tr>
<tr>
<td>DISTRIBUTION LIST</td>
<td>29</td>
</tr>
</tbody>
</table>
INTENTIONALLY LEFT BLANK.
1. INTRODUCTION

Our recently published report [1]* contains a fundamental logical error which invalidates our assertions about the ease with which certain parametric representations of non-steady one-dimensional flows could be constructed. Of course, this grievously restricts the prospects for application of such representations.

In this note we shall (i) expurgate [1]; (ii) describe our error; (iii) correct it; and (iv) develop a family of correct examples of our parametric representations.

The following changes are required in [1]:
Section 1: Delete the last three paragraphs.
Section 4: Delete all material starting with the paragraph that contains equation (4.9) and continuing to the end of Case 1.
Section 5: Delete the last paragraph.
Sections 6 to 8: Proposals to apply the method suggested in Section 4 are absurd and should be deleted.

The nature of our error can be summarized as follows. One dimensional flows can be characterized by means of solutions of a family of Monge-Ampère equations that involve a single non-constant coefficient, determined by the equation of state and by the form of the distribution of entropy among the various particle paths. By means of this coefficient we can subdivide the set of one-dimensional flows into mutually exclusive subsets. If we consider any two flows of the same subset we can identify the values of times, geometrical coordinates, and flow functions that correspond to identical values of the pressure, \(p \), and of a Lagrangian variable, \(\psi \). The

*References in brackets may be found on page 27.
mapping of one up-plane onto another, defined in this way, preserves area. A well-known representation of the general area-preserving in terms of two parameters, \(\alpha \) and \(\beta \), involves an arbitrary function \(H(\alpha, \beta) \). In attempting to apply this result to the comparison of two flows in the same subset, we determined a necessary condition that relates \(H(\alpha, \beta) \) to a function \(z(p, \psi) \) such that \(\alpha = \frac{z}{p} \) and \(\beta = \frac{z}{\psi} \). We assumed, erroneously, that \(H(\alpha, \beta) \) remains arbitrary in our application. A necessary and sufficient condition, which will be developed in this note, restricts the permissible function \(H(\alpha, \beta) \) to be any solutions of a certain quasi-linear, second order, hyperbolic partial differential equation.

It is not easy to guess solutions for the equation that defines \(H \). Nevertheless, our representation retains a little value as a source of novelties, since for an important class of equations of state, which includes that of the perfect gases, we have been able to determine a family of separated-variable solutions of a suitably transformed version of the equation for \(H \).
2. THE FALLACY IN [1]

We shall require the following extract from the valid and relevant parts of [1].

M. H. Martin [2] has developed the following formulation for the equations of all one-dimensional flows, except for an easily discussed special class. Let us define a Lagrangian variable, ψ, by

$$d\psi = \rho dx - \rho u \, dt \quad (2.1)$$

Then the specific entropy must be of the form

$$s = s(\psi) \quad (2.2)$$

and by the equation of state we can express the density in the form

$$\rho = \rho(p, s(\psi)) \quad (2.3)$$

Assume that p and ψ are functionally independent, and let $\xi(p, \psi)$ be any solution of

$$\xi_{pp} \xi_{\psi\psi} - \xi_{p\psi}^2 = - A^2(p, \psi) \quad (2.4)$$

where

$$A^2(p, \psi) = - \frac{1}{\rho} \neq 0 \quad (2.5)$$

Then the description of a one-dimensional flow is completed by

$$t = \xi_p \quad , \quad u = \xi_{\psi} \quad (2.6)$$

$$dx = \xi_{\psi} \, d\xi_p + \frac{1}{\rho} d\psi \quad (2.7)$$

where t denotes time, u particle velocity and x an Eulerian coordinate.
Now let us suppose $\xi(p, \psi)$ and $\xi^*(p, \psi)$ are two different solutions of (2.4) that correspond to the same $A(p, \psi)$. The mapping of the u^*, t^*-plane onto the ut-plane, defined by identifying points with identical values of p and ψ preserves area. Hence we must have

$$
\xi_p = \alpha + H_{\beta}, \quad \xi_\psi = \beta - H_{\alpha}, \quad (2.8)
$$

$$
\xi^* _p = \alpha - H_{\beta}, \quad \xi^*_\psi = \beta + H_{\alpha}, \quad (2.9)
$$

for some function $H(\alpha, \beta)$ of some parameters α and β. Since we are actually interested in t^* and u^*, rather than ξ^* for its own sake, it would suffice to determine an acceptable H, or even just H_{α} and H_{β}. If we set

$$
2\pi(p, \psi) = \xi + \xi^*, \quad 2w(p, \psi) = \xi - \xi^*, \quad (2.10)
$$

then by (2.8) to (2.10)

$$
\alpha = z_p, \quad \beta = z_\psi, \quad (2.11)
$$

$$
H_{\alpha} = -w_\psi, \quad H_{\beta} = w_p, \quad (2.12)
$$

If we eliminate w from (2.12) we obtain

$$
\left(\frac{\partial}{\partial p} \frac{\partial}{\partial z_p} + \frac{\partial}{\partial \psi} \frac{\partial}{\partial z_\psi} \right) H(z_p, z_\psi) = 0. \quad (2.13)
$$

Up to this point in [1] all of our reasoning has been legitimate.

In [1] we assumed that H was arbitrary. This is incorrect since, as we shall show in the following section, $H(\alpha, \beta)$ must satisfy the quasi-linear partial differential equation (3.16).
3. ON THE DETERMINATION OF $H(\alpha, \beta)$.

Let us continue to assume that $\xi(p, \psi)$ is a known solution of (2.4) for a given $A(p, \psi) \neq 0$. Recall that by (2.6), (2.8), and (2.11) we have

$$\xi_p(p, \psi) = t = \alpha + H_\beta, \quad \xi_\psi(p, \psi) = u = \beta - H_\alpha,$$

(3.1)

and

$$\alpha = z_p(p, \psi), \quad \beta = z_\psi(p, \psi),$$

(3.2)

for some $H(\alpha, \beta)$ and $z(p, \psi)$. Since ξ_p and ξ_ψ are functionally independent by (2.4), (3.1) implicitly defines

$$p = p(t, u), \quad \psi = \psi(t, u).$$

(3.3)

Since the functions (3.3) are the inverses of the functions (3.1), we must have

$$\left(\begin{array}{cc} \xi_{pp} & \xi_{p\psi} \\ \xi_{p\psi} & \xi_{\psi\psi} \end{array}\right)^{-1} = \left(\begin{array}{cc} p_t & p_u \\ \psi_t & \psi_u \end{array}\right).$$

Thus

$$p_t/\xi_{p\psi} = -\psi_t/\xi_{p\psi} = -p_u/\xi_{p\psi} = \psi_u/\xi_{p\psi}.$$

(3.4)

By (3.1) and (3.3) we can express p and ψ as functions of α and β. Since we have assumed that p and ψ are independent, then α and β must also be independent. Now let us make the Legendre transformation defined by (3.2) and

$$Z(\alpha, \beta) = pz_p + \psi z_\psi - z = \alpha p + \beta \psi - z.$$

(3.5)
Then we must have

\[p = Z_\alpha , \quad \psi = Z_\beta , \] \hspace{1cm} (3.6)

and now by (3.5) and (3.6)

\[z(p, \psi) = \alpha Z_\alpha + \beta Z_\beta - Z = \alpha p + \beta \psi - Z . \] \hspace{1cm} (3.7)

Furthermore, by a well-known property of Legendre transformations

\[\frac{z_{pp}}{Z_\beta} = - \frac{z_{p\psi}}{Z_{\alpha \beta}} = \frac{z_{\psi \psi}}{Z_{\alpha \alpha}} . \] \hspace{1cm} (3.8)

By (3.1) and (3.6) we have

\[\xi_p(Z_\alpha, Z_\beta) = \alpha + H_\beta , \] \hspace{1cm} (3.9)

\[\xi_\psi(Z_\alpha, Z_\beta) = \beta - H_\alpha . \]

For a known \(\xi(p, \psi) \) let the pair \(H(\alpha, \beta), Z(\alpha, \beta) \) be any solution of the system (3.9). Define \(p \) and \(\psi \) by (3.6) and \(z(p, \psi) \) by (3.7). Then (3.2) follows from the Legendre transformation (3.6) and (3.7). Finally, (3.9) and (3.6) imply (3.1). Thus (3.1) and (3.2) are equivalent to (3.6) and (3.9).

If we eliminate \(H \) from (3.9) we obtain

\[(\xi_p - \alpha)_{\alpha} + (\xi_\psi - \beta)_{\beta} = 0 , \] \hspace{1cm} (3.10)

which is equivalent to

\[\xi_{pp} Z_{\alpha \alpha} + 2 \xi_{p\psi} Z_{\alpha \beta} + \xi_{\psi \psi} Z_{\beta \beta} = 2 , \] \hspace{1cm} (3.11)
where the arguments of ξ_{pp}, $\xi_{p\psi}$, and $\xi_{\psi\psi}$ have been replaced by the expressions (3.6). In general, (3.11) is a non-linear partial differential equation for $Z(\alpha, \beta)$. By (2.4) it is of hyperbolic type.

If we let $Z(\alpha, \beta)$ be any solution of (3.11) such that Z_α and Z_β are independent, and if we define p and ψ by (3.6), then (3.11) is equivalent to (3.10). This, in turn, implies (3.9) for some $H(\alpha, \beta)$. A possible $H(\alpha, \beta)$ could be defined by

$$H(\alpha, \beta) = \int \left[(\xi_p - \alpha) d\beta - (\xi_\psi - \beta) d\alpha \right] .$$

(3.12)

If we know a solution $Z(\alpha, \beta)$, we need not actually determine $H(\alpha, \beta)$.

For, by (2.8), (2.9), and (2.11)

$$\xi^*(p, \psi) = 2z(p, \psi) - \xi(p, \psi) .$$

(3.13)

To determine $\xi^*(p, \psi)$, it would suffice to find $z(p, \psi)$. But the latter can be defined by (3.7).

Instead of eliminating H from (3.9), let us solve for Z_α and Z_β to obtain

$$Z_\alpha = p(\alpha + H_\beta, \beta - H_\alpha) ,$$

$$Z_\beta = \psi(\alpha + H_\beta, \beta - H_\alpha) ,$$

(3.14)

in terms of the inverse functions p and ψ defined by (3.3). If we eliminate Z from (3.14) we obtain

$$\frac{\partial p}{\partial \beta} - \frac{\beta \psi}{\beta \alpha} = 0 ,$$

(3.15)
or in expanded form

\[p_t H_{\beta\beta} + p_u (1 - H_{\alpha\beta}) - \psi_t (1 + H_{\alpha\beta}) + \psi_u H_{\alpha\alpha} = 0. \]

By (3.4) this becomes

\[\xi_{pp} H_{\alpha\alpha} + 2 \xi_{p\psi} H_{\alpha\beta} + \xi_{\psi\psi} H_{\beta\beta} = 0 \]

(3.16)

If we replace the arguments of \(\xi_{pp}, \xi_{p\psi}, \) and \(\xi_{\psi\psi} \) by the right members of (3.14), (3.16) becomes a quasi-linear partial differential equation for \(H(\alpha, \beta) \). All steps from (3.14) to (3.16) are reversible. Hence, for any solution \(H \) of (3.16) there exists a \(Z(\alpha, \beta) \) which satisfies (3.14).

The problem of constructing a new solution \(\xi^*(p, \psi) \) of (2.4) from a previously determined solution \(\xi(p, \psi) \) has been transformed into that of solving the quasi-linear equation (3.16). For most equations of state (3.16) will still be non-linear. Thus nothing has been gained unless we can at least guess some solutions \(H(\alpha, \beta) \). This will be done in Sections 4 and 5 for an important special class of flows.

In our discussion up to this point we have assumed \(\xi(p, \psi) \) is known. As a by-product we have discovered the parametric representation (3.1), (3.6) for \(t, u, p, \psi \) in terms of suitable functions \(H(\alpha, \beta) \) and \(Z(\alpha, \beta) \). Prior knowledge of \(\xi(p, \psi) \) is not really essential for this parametric representation, since we can determine a system of partial differential equations for \(H \) and \(Z \) that does not depend on \(\xi \). First, note that by (2.4) we must have...
By (3.1) and (3.6) this is equivalent to
\[H_{\alpha \alpha} H_{\beta \beta} - H_{\alpha \beta}^2 + 1 = - A^2(Z_{\alpha \beta} Z_{\beta \beta} - Z_{\alpha \beta}^2) \]
(3.17)

On the other hand, if we eliminate \(\xi \) from (3.1), we obtain
\[(\alpha + H_{\beta}) \psi - (\beta - H_{\alpha}) p = 0. \]

In expanded form this becomes
\[(1 + H_{\alpha \beta}) \alpha \psi + H_{\beta \beta} \psi + H_{\alpha \alpha} \alpha p - (1 - H_{\alpha \beta}) \beta p = 0, \]
whence by (3.2) and (3.8)
\[Z_{\beta \beta} H_{\alpha \alpha} - 2Z_{\alpha \beta} H_{\alpha \beta} + Z_{\alpha \alpha} H_{\beta \beta} = 0. \]
(3.18)

Thus, in the present case the pair \(H, Z \) must be a solution of the system (3.17), (3.18).

To complete our parametric representation note that by (2.7), (3.1), and (3.6).
\[x_\alpha = (\beta - H_{\alpha}) (1 + H_{\alpha \beta}) + \rho^{-1} Z_{\alpha \beta}, \]
\[x_\beta = (\beta - H_{\alpha}) H_{\beta \beta} + \rho^{-1} Z_{\beta \beta}. \]
(3.19)

It might be worth mentioning that for \(H = \) constant (3.18) is certainly satisfied. By (3.1) we have
\[\alpha = t = \xi_p , \quad \beta = u = \xi_\psi . \] (3.20)

Now (3.2) yields

\[\xi = z \] (3.21)

and (3.6) becomes

\[Z(t, u) = pt + \beta u - \xi . \] (3.22)

Then (3.17) reduces, as one would expect, to the equation that would be obtained from (2.4) under the Legendre transformation (3.20), (3.22).
4. FLOWS ASSOCIATED WITH $\xi = K(p) + L(\psi)$

Equation (2.4) will have the solution

$$\xi = K(p) + L(\psi)$$

(4.1)

if

$$-A^2(p, \psi) = K''(p) L''(\psi),$$

(4.2)

where primes denote differentiation with respect to the appropriate argument, and by (2.5)

$$K''(p) L''(\psi) \neq 0.$$
(4.3)

By (2.5) this choice of A^2 corresponds to

$$\rho = 1/[K'(p)L''(\psi) + M(\psi)],$$

(4.4)

where $M(\psi)$ is an arbitrary function of ψ. If

$$\psi = \psi(s)$$

(4.5)

is the inverse of the function $s(\psi)$ mentioned in (2.2), then (4.4) and (4.5) define an equation of state. The equation of state of a perfect gas,

$$\frac{\rho}{\rho_0} = e^{-s/c_p} [\frac{p}{p_0}]^{1/\gamma},$$

is in the class defined by (4.4) for $M = 0$.

By (4.1) equation (3.16) assumes the form

$$K''(p) H_{\alpha\alpha} + L''(\psi) H_{\beta\beta} = 0,$$

(4.6)

where by (2.8)

$$K'(p) = \alpha + H_\beta, \quad L'(\psi) = \beta - H_\alpha.$$
(4.7)
By (4.3) equations (4.7) uniquely define

\[p = p(\alpha + H\beta) , \quad \psi = \psi(\beta - H\alpha) . \] (4.8)

Since (4.6) is non-linear we cannot hope to find the general solution for arbitrary choices of \(K'' \) and \(L'' \). However, we can develop some particular solutions, as follows.

First, it will be convenient to make one of the transformations

\[X^\pm = \alpha \pm H\beta , \quad Y^\pm = \beta \pm H\alpha , \] (4.9)

\[Z^\pm = 2(\alpha \beta \mp H) - P^\pm Q^\pm , \] (4.10)

\[P^\pm = \beta \mp H\alpha , \quad Q^\pm = \alpha \mp H\beta . \] (4.11)

Then

\[\xi^p = K'(p) = X , \quad \xi^\psi = L'(\psi) = P , \quad \xi^* = Q , \quad \xi^{*\psi} = Y \] (4.12+)

for + superscripts, and

\[\xi^p = K'(p) = Q , \quad \xi^\psi = L'(\psi) = Y , \quad \xi^* = X , \quad \xi^{*\psi} = P \] (4.12−)

for − superscripts.

In the sequel we shall assume that one of the pairs \(X^+, Y^+ \) or \(X^-, Y^- \) is functionally independent. The exceptional case in which both pairs are functionally dependent will be discussed in Section 6.

For convenience we shall omit the superscripts hereafter.

It can easily be verified that \(dZ = PdX + QdY \), so that

\[p = Z_X , \quad Q = Z_Y \]
and then
\[dP = Z_{XX} dX + Z_{XY} dY , \]
\[dQ = Z_{XY} dX + Z_{YY} dY . \]
(4.13)

From (4.9) to (4.12) we obtain

\[1 \pm H_{\alpha\beta} - (1 \pm H_{\alpha\beta}) Z_{XY} = \pm Z_{XX} H_{\beta\alpha} = \pm Z_{YY} H_{\alpha\alpha} \]

Eliminate \(H_{\alpha\alpha} \) and \(H_{\beta\beta} \) from the latter of these equations and (4.6) to find either

\[K''(p(X))Z_{XX} + L''(\psi(P))Z_{YY} = 0 \]
(4.14+)

for \(\pm \) superscripts, or

\[K''(p(Q))Z_{XX} + L''(\psi(Y))Z_{YY} = 0 \]
(4.14-)

for \(- \) superscripts.
5. SEPARABLE SOLUTIONS

Now let us try to find solutions of (4.14-) of the form

$$Z(X, Y) = k(X) \ell(Y).$$ \hfill (5.1)

As we shall eventually discover, this will impose a strong, but acceptable, restriction on the permissible functional forms for $K(p)$.

By (5.1)

$$P = k'(X)\ell(Y), \quad Q = k(X)\ell'(Y).$$ \hfill (5.2)

By (4.7) and (4.9) for ℓ- superscripts

$$K'(p) = Q, \quad L'(\psi) = Y,$$ \hfill (5.3)

whence

$$p = p(Q), \quad \psi = \psi(Y).$$ \hfill (5.4)

Now (4.14-) yields

$$K''(p(Q))k''(X)\ell(Y) + L''(\psi(Y))k(X)\ell''(Y) = 0.$$ \hfill (5.5)

Next, we may assume Q and X are independent. For, if they were not, then by (4.12-) and (2.6) ξ_p and ξ^*_p would be dependent. Since $t^* = \xi^*_p$ must not be constant, we would have $\xi^*_p = G(\xi_p)$ for some non-constant function G. Hence

$$\xi^*_p = G'(\xi_p) \xi_p \psi = 0$$

by (4.1). Hence $\xi^* = K^*(p) + L^*(\psi)$. Since solutions of this form have been considered in [1], this requires no further discussion.

Incidentally, if Q and X are independent, then by (5.2) $k \ell' \neq 0$, and hence $k \ell \neq 0$, in general. Then we can rewrite (5.5) as
\[K''(p(Q)) \frac{k''(X)}{k'(X)} + \frac{L''(\psi(Y)) \ell''(Y)}{\ell'(Y)} = 0. \] \hspace{1cm} (5.6)

Differentiate the left-hand member of \((5,6)\) with respect to \(X\), and use \((5,2)\) to find

\[\frac{K''(p)p'(Q)Q}{K''(p)} = - \frac{k(X)}{k'(X)} \left[\log \frac{k''(X)}{k'(X)} \right]' = c_1. \] \hspace{1cm} (5.7)

By \((5,3)\)

\[K''(p)p'(Q) = 1, \quad L''(\psi)\psi'(Y) = 1. \] \hspace{1cm} (5.8)

Thus \((5,3)\) and the outer members of \((5,7)\) yield

\[\frac{K''(p)}{K''(p)} = c_1 \frac{K''(p)}{K'(p)}, \]

whence

\[K''(p) = c_2 K', 1(p). \] \hspace{1cm} (5.9)

CASE 1: If \(c_1 = 1\), then \((5.9)\) implies

\[K(p) = c_3 e^{c_2 p} + c_4, \] \hspace{1cm} (5.10)

whence

\[K''(p) = c_2^2 c_3 e^{c_2 p} = c_2 K'(p) = c_2 Q, \] \hspace{1cm} (5.11)

and then

\[p = \frac{1}{c_2} \log \frac{Q}{c_2 c_3}. \] \hspace{1cm} (5.12)

Now \((5.5)\) yields

\[\frac{L''(\psi) \ell''(Y)}{\ell'(Y) \ell'(Y)} = - c_2 k''(X) = c_5. \] \hspace{1cm} (5.13)

Then by \((5,8)\) and \((5,13)\) \(k\) and \(\ell\) must satisfy
\[k(X) = -\frac{c_5}{2c_2} X^2 + c_6 X + c_7, \]
\[\ell''(Y) = c_5 \psi'(Y) \ell(Y) \ell'(Y), \]
where \(\psi(Y) \) is defined by (5.3).

Note that although the choice of \(K(p) \) is restricted by (5.10), the choice of \(L(\psi) \) is arbitrary. Any solution of (5.15) with \(\ell'' \neq 0 \) can be multiplied by any polynomial (5.14) with \(c_5 \neq 0 \) to form a product solution \(Z \) of (4.14-). Then (4.12-) will enable us to construct a \(\xi^* \) that differs from \(\xi \) in the following important respect. By (4.1)

\[\xi_p \psi = 0 . \] (5.16)

On the other hand, by (4.12-) and (5.2)

\[\xi^*_\psi = p = k'(X) \ell(L'(\psi)). \]

By (5.2) and (5.3)

\[K'(p) = Q = k(X) \ell'(L'(\psi)). \]

Since by (5.8) \(K'' \neq 0 \), then by (5.14) with \(c_5 \neq 0 \) this actually suffices to define a function \(X(p, \psi) \) such that \(X_p \neq 0 \). But then

\[\xi^*_\psi_p = k'' \ell(L'(\psi)) X_p \neq 0 \]

in contrast with (5.16). Thus \(\xi^* \) is not a completely trivial modification of \(\xi \).
CASE 2: Now suppose \(c_1 \neq 1 \). By (5.9)

\[
K(p) = \frac{1}{c_2(2-c_1)} \left[(1-c_1)c_2(p+c_3) \right] \frac{2-c_1}{1-c_1} + c_4 ,
\]

(5.17)

\[
Q = K'(p) = -\frac{1}{(1-c_1)c_2(p+c_3)} \frac{1}{1-c_1} .
\]

(5.18)

\[
K''(p) = c_2 \frac{c_1}{Q} .
\]

(5.19)

Now (5.2), (5.5), and (5.19) yield

\[
\frac{L''(\psi)k''(Y)}{\lambda(Y)\ell' \cdot 1(Y)} = -c_2 k^{c_1-1} (X)k''(X) = c_5 .
\]

(5.20)

Then by (5.8) and (5.20) we obtain

\[
k''(X) = -c_2^{-1} c_5 k^{1-c_1}(X) ,
\]

(5.21)

\[
\ell''(Y) = c_5 \psi' (Y) \ell(Y) \ell' \cdot 1(Y) .
\]

(5.22)

Equation (5.21) can be solved by quadratures, of course.

Again, the choice of \(K(p) \) is restricted, this time by (5.17), but \(L(\psi) \) is still arbitrary. The restriction on the form of \(K(p) \) is not too serious, if we note that for \(c_3 = 0, c_1 = \gamma + 1, M(\psi) = 0 \), and arbitrary \(L(\psi) \), (5.18) and (4.4) lead to the equation of state for a perfect gas.

By the argument presented at the end of Case 1, \(\xi_{\psi p}^* \neq 0 \) again.
All of the discussion in this section has dealt with (4.14−). A similar analysis of separable solutions could be developed for (4.14+). All that we really require are the analogs of equations (5.10), (5.14), and (5.15), or of (5.17), (5.21), and (5.22). These can easily be written by interchanging X and Y; k and \ell; K and L; and p and ψ. Now, of course, it becomes possible to choose K(p) arbitrarily, but then L(ψ) is restricted. This situation seems to have less physical interest than the one we have just discussed at length.
6. BOTH X^+, Y^+ AND X^-, Y^- ARE FUNCTIONALLY DEPENDENT

If both X^+, Y^+ and X^-, Y^- are functionally dependent, then in accordance with (4.9)

$$\beta(\alpha \pm H_\beta, \beta \pm H_\alpha)/\beta(\alpha, \beta) = 0.$$

Thus

$$(1 \pm H_{\alpha\beta})^2 - H_{\alpha\alpha} H_{\beta\beta} = 0.$$

These equations are equivalent to

$$H_{\alpha\beta} = 0,$$ \hspace{1cm} (6.1)

$$H_{\alpha\alpha} H_{\beta\beta} = 1.$$ \hspace{1cm} (6.2)

By (6.1)

$$H(\alpha, \beta) = f(\alpha) + g(\beta),$$ \hspace{1cm} (6.3)

for some $f(\alpha)$ and $g(\beta)$. By (6.2) $f''(\alpha)g''(\beta) = 1$, whence

$$f'' = c_1, \hspace{1cm} g'' = 1/c_1.$$

Thus

$$f(\alpha) = \frac{1}{2} c_1 \alpha^2 + c_2 \alpha + c_3,$$ \hspace{1cm} (6.4)

$$g(\beta) = \frac{1}{2c_1} \beta^2 + c_4 \beta + c_5.$$ \hspace{1cm} (6.5)

By (2.11) we can rewrite (2.8) in the form

$$(\xi - z)_p = H_\beta = g'(\beta) = \frac{1}{c_1} (z + c_1 c_4 \psi)_\psi,$$

$$(\xi - z)_\psi = -H_\alpha = -f'(\alpha) = -c_1 (z + \frac{c_2}{c_1} p)_p.$$

25
Hence
\[\xi - z + i(z + \frac{c_2}{c_1} p + c_1 c_4 \psi) = f(\zeta) \]
(6.6)

where \(f(\zeta) \) is an analytic function of the complex variable
\[\zeta = p + i c_1 \psi . \]
(6.7)

Thus
\[\xi_{pp} + c_1^{-2} \xi_{\psi \psi} = 0 . \]

If we demand that \(\xi \) be of the form (4.1), then
\[K''(p) = -c_1^{-2} L''(\psi) = c_6 . \]
Then by (4.1) and (2.4) to (2.7)
\[t = \xi_p = c_6 p + c_7 , \]
\[u = \xi_\psi = -c_1^2 c_6 \psi + c_8 , \]
\[A^2 = c_1^2 c_6^2 , \]
\[1/\rho = -c_1^2 c_6^2 p + M(\psi) , \]
\[x = -c_1^2 c_6^2 p \psi + c_6 c_10 p + \int M(\psi) d\psi . \]

This corresponds to a class of flows with straight particle paths on which the velocity is constant (though it varies from path to path).

J. H. GIESE
REFERENCES

<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
</table>
| 20 | Commander
Defense Documentation Center
ATTN: TIPCR
Cameron Station
Alexandria, Virginia 22314 |
| 1 | Director of Defense Research and Engineering (OSD)
Washington, D.C. 20301 |
| 1 | Director
Advanced Research Projects Agency
ATTN: CDR G. Dickey
Department of Defense
Washington, D.C. 20301 |
| 1 | Commanding General
U.S. Army Materiel Command
ATTN: AMCRD-TE
Washington, D.C. 20315 |
| 2 | Commanding Officer
U.S. Army Engineer Research and Development Laboratories
ATTN: STINFO Div
SMEFB-MG
Fort Belvoir, Virginia 22060 |
| 1 | Commanding Officer
U.S. Army Picatinny Arsenal
ATTN: SMUPA-VE
Dover, New Jersey 07801 |
| 1 | Commanding Officer
U.S. Army Engineer Waterways Experiment Agency
ATTN: Dr. A. Sakurai
Vicksburg, Mississippi 39180 |
| 1 | Director
U.S. Army Research Office
ATTN: CRDPES, Dr. I. Hershner
3045 Columbia Pike
Arlington, Virginia 22204 |
| 3 | Commander
U.S. Naval Air Systems Command Headquarters
ATTN: AIR-604
Washington, D.C. 20360 |
| 1 | Commanding Officer & Director
David W. Taylor Model Basin
Washington, D.C. 20007 |
| 1 | Commander
U.S. Naval Missile Center
Point Mugu, California 93041 |
| 3 | Commander
U.S. Naval Ordnance Laboratory
ATTN: Dr. J. Enig (1 cy)
Silver Spring, Maryland 20910 |
| 1 | Commander
U.S. Naval Weapons Laboratory
Dahlgren, Virginia 22448 |
| 2 | AFATL (ATWR, Mr. Dittrich, Mr. Howard)
Eglin AFB
Florida 32542 |
| 1 | AFCRL
L. G. Hanscom Fld
Bedford, Massachusetts 01731 |
| 1 | AFWL (WLL)
Kirtland AFB
New Mexico 87117 |
| 1 | Director
National Bureau of Standards
ATTN: Dr. W. H. Pell
U.S. Department of Commerce
Washington, D.C. 20234 |
| 1 | Headquarters
U.S. Atomic Energy Commission
ATTN: Div of Tech Info
Washington, D.C. 20545 |
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
<th>Number of Copies</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Director</td>
<td>Lawrence Radiation Laboratory</td>
<td>2 Director</td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td></td>
<td>University of California</td>
<td></td>
<td>Lewis Research Center</td>
</tr>
<tr>
<td></td>
<td>ATTN: Dr. W. Noh</td>
<td>1 Director</td>
<td>Battelle Memorial Institute</td>
</tr>
<tr>
<td></td>
<td>Mr. M. Wilkins</td>
<td></td>
<td>505 King Street</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 808</td>
<td>1 Director</td>
<td>Columbus, Ohio 43201</td>
</tr>
<tr>
<td></td>
<td>Livermore, California 94551</td>
<td></td>
<td>1200 Firestone Parkway</td>
</tr>
<tr>
<td>1 Director</td>
<td>Los Alamos Scientific Laboratory</td>
<td>1 Director</td>
<td>AVCO Corporation</td>
</tr>
<tr>
<td></td>
<td>University of California</td>
<td></td>
<td>Research and Advanced Development Division</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 1663</td>
<td></td>
<td>201 Lowell Street</td>
</tr>
<tr>
<td></td>
<td>Los Alamos, New Mexico 87544</td>
<td></td>
<td>Wilmington, Massachusetts 01887</td>
</tr>
<tr>
<td>1 Director</td>
<td>NASA Scientific and Technical Information Facility</td>
<td>2 Director</td>
<td>Firestone Tire and Rubber Company</td>
</tr>
<tr>
<td></td>
<td>ATTN: SAK/DL</td>
<td></td>
<td>ATTN: Lib</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 33</td>
<td>2 Director</td>
<td>1200 Firestone Parkway</td>
</tr>
<tr>
<td></td>
<td>College Park, Maryland 20740</td>
<td></td>
<td>Akron, Ohio 44317</td>
</tr>
<tr>
<td>2 Director</td>
<td>National Aeronautics and Space Administration</td>
<td>2 General Dynamics Corporation</td>
<td>General Atomic Division</td>
</tr>
<tr>
<td></td>
<td>Ames Research Center</td>
<td></td>
<td>ATTN: Mr. M. Scharff</td>
</tr>
<tr>
<td></td>
<td>ATTN: Mr. J. Summers</td>
<td>2 Director</td>
<td>Dr. J. Walsh</td>
</tr>
<tr>
<td></td>
<td>MS 223-1</td>
<td></td>
<td>P.O. Box 1111</td>
</tr>
<tr>
<td></td>
<td>Lib Br, MS 202-3</td>
<td>1 Director</td>
<td>San Diego, California 92112</td>
</tr>
<tr>
<td></td>
<td>Moffett Field, California 94035</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Director</td>
<td>National Aeronautics and Space Administration</td>
<td>1 General Electric Company</td>
<td>Missle and Space Division</td>
</tr>
<tr>
<td></td>
<td>Goddard Space Flight Center</td>
<td></td>
<td>ATTN: Mr. Howard Semon</td>
</tr>
<tr>
<td></td>
<td>ATTN: Code 252, Tech Lib</td>
<td>1 General Electric Company</td>
<td>P.O. Box 8555</td>
</tr>
<tr>
<td></td>
<td>Greenbelt, Maryland 20771</td>
<td></td>
<td>Philadelphia, Pennsylvania 19101</td>
</tr>
<tr>
<td>1 Director</td>
<td>National Aeronautics and Space Administration</td>
<td>2 General Motors Corporation</td>
<td>Defense Research Laboratories</td>
</tr>
<tr>
<td></td>
<td>Langley Research Center</td>
<td>2 Director</td>
<td>ATTN: Mr. J. Gehring</td>
</tr>
<tr>
<td></td>
<td>Langley Station</td>
<td></td>
<td>Dr. A. Charters</td>
</tr>
<tr>
<td></td>
<td>Hampton, Virginia 23365</td>
<td></td>
<td>Santa Barbara, California 93108</td>
</tr>
<tr>
<td>No. of Copies</td>
<td>Organization</td>
<td>No. of Copies</td>
<td>Organization</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
<td>---------------</td>
<td>--------------</td>
</tr>
<tr>
<td>1</td>
<td>The Martin Company</td>
<td>1</td>
<td>Professor W. F. Ames</td>
</tr>
<tr>
<td></td>
<td>ATTN: Sc Tech Lib</td>
<td>University of Delaware</td>
<td>University of Delaware</td>
</tr>
<tr>
<td></td>
<td>Baltimore, Maryland 21203</td>
<td>Newark, Delaware 19711</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>The Martin Company Aerospace Division</td>
<td>1</td>
<td>Professor G. Birkhoff</td>
</tr>
<tr>
<td></td>
<td>Orlando, Florida 32805</td>
<td>Harvard University</td>
<td>Harvard University</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cambridge, Massachusetts 02138</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>The Rand Corporation</td>
<td>1</td>
<td>Professor G. Carrier</td>
</tr>
<tr>
<td></td>
<td>1700 Main Street</td>
<td>Division of Engineering and Applied Physics</td>
<td>Division of Engineering and Applied Physics</td>
</tr>
<tr>
<td></td>
<td>Santa Monica, California 90406</td>
<td>Harvard University</td>
<td>Harvard University</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cambridge, Massachusetts 02138</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Sandia Corporation</td>
<td>1</td>
<td>Professor P. C. Chou</td>
</tr>
<tr>
<td></td>
<td>ATTN: Info Dist Div</td>
<td>Drexel Institute of Technology</td>
<td>Drexel Institute of Technology</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 5800</td>
<td>32nd & Chestnut Streets</td>
<td>32nd & Chestnut Streets</td>
</tr>
<tr>
<td></td>
<td>Albuquerque, New Mexico 87115</td>
<td>Philadelphia, Pennsylvania 19104</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Shock Hydrodynamics, Inc.</td>
<td>1</td>
<td>Professor N. Davids</td>
</tr>
<tr>
<td></td>
<td>ATTN: Dr. L. Zernow</td>
<td>Department of Engineering Mechanics</td>
<td>Department of Engineering Mechanics</td>
</tr>
<tr>
<td></td>
<td>15010 Ventura Boulevard</td>
<td>The Pennsylvania State University</td>
<td>The Pennsylvania State University</td>
</tr>
<tr>
<td></td>
<td>Sherman Oaks, California 91403</td>
<td>University Park, Pennsylvania</td>
<td>University Park, Pennsylvania</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16802</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>United Aircraft Corporation</td>
<td>1</td>
<td>Professor Paul Garabedian</td>
</tr>
<tr>
<td>Missiles & Space Systems</td>
<td></td>
<td>Courant Institute of Mathematical Sciences</td>
<td>Courant Institute of Mathematical Sciences</td>
</tr>
<tr>
<td>Group</td>
<td></td>
<td>New York University</td>
<td>New York University</td>
</tr>
<tr>
<td></td>
<td>Hamilton Standard Division</td>
<td>251 Mercer Street</td>
<td>251 Mercer Street</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10012</td>
<td>10012</td>
</tr>
<tr>
<td>1</td>
<td>Brown University</td>
<td>1</td>
<td>Professor R. N. Gunderson</td>
</tr>
<tr>
<td>Division of Engineering</td>
<td></td>
<td>University of Wisconsin</td>
<td>University of Wisconsin</td>
</tr>
<tr>
<td>Providence, Rhode Island 02912</td>
<td></td>
<td>Milwaukee, Wisconsin 53200</td>
<td>Milwaukee, Wisconsin 53200</td>
</tr>
<tr>
<td>1</td>
<td>IIT Research Laboratories</td>
<td>1</td>
<td>Professor M. Holt</td>
</tr>
<tr>
<td>10 West 35th Street</td>
<td></td>
<td>Aeronautical Sciences Division</td>
<td>Aeronautical Sciences Division</td>
</tr>
<tr>
<td>Chicago, Illinois 60616</td>
<td></td>
<td>University of California</td>
<td>University of California</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Berkeley, California 94704</td>
<td>Berkeley, California 94704</td>
</tr>
<tr>
<td>1</td>
<td>Lincoln Laboratory (MIT)</td>
<td>1</td>
<td>Professor G. S. S. Ludford</td>
</tr>
<tr>
<td>244 Wood Street</td>
<td></td>
<td>Cornell University</td>
<td>Cornell University</td>
</tr>
<tr>
<td>Lexington, Massachusetts 02173</td>
<td></td>
<td>Ithaca, New York 14850</td>
<td>Ithaca, New York 14850</td>
</tr>
<tr>
<td>1</td>
<td>University of Utah</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>High Velocity Laboratory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salt Lake City, Utah 84112</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of Copies</td>
<td>Organization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 1 | Professor M. H. Martin
University of Maryland
College Park, Maryland 20740 |
| 1 | Professor M. H. Protter
University of California
Berkeley, California 94704 |
| 1 | Professor E. M. Pugh
Department of Physics
Carnegie Institute of Technology
Pittsburgh, Pennsylvania 15213 |
| 1 | Professor C. A. Truesdell
Johns Hopkins University
34th & Charles Streets
Baltimore, Maryland 21218 |
| 1 | Dr. Michael Cowperthwaite
Stanford Research Institute
333 Ravenswood Avenue
Menlo Park, California 94025 |
| 1 | Dr. M. W. Evans
Stanford Research Institute
333 Ravenswood Avenue
Menlo Park, California 94025 |
| 1 | Dr. C. Grosch
Davidson Laboratory
Stevens Institute of Technology
Castle Point Station
Hoboken, New Jersey 07030 |

Aberdeen Proving Ground

Ch, Tech Lib
Air Force Ln Ofc
Marine Corps Ln Ofc
Navy Ln Ofc
CDC Ln Ofc
BRL Report No. 1316 contains a serious logical error. This invalidates that Report's assertions about the ease with which examples of 1-dimensional flows can be constructed. The present Report (i) expurgates BRL Report No. 1316; describes the error; (iii) corrects it; and (iv) salvages a family of examples of 1-dimensional flows.
One-dimensional flows
Non-steady flows