SIMULTANEOUS TESTS FOR THE EQUALITY OF VARIANCES AGAINST CERTAIN ALTERNATIVES

P. R. KRISHNAIAH

APPLIED MATHEMATICS RESEARCH LABORATORY

Distribution of this document is unlimited

OFFICE OF AEROSPACE RESEARCH
United States Air Force
NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Qualified requesters may obtain copies of this report from the Defense Documentation Center, (DDC), Cameron Station, Alexandria, Virginia.

(Reproduction in whole or in part is permitted for any purpose of the U.S. Gov't)

Distribution of this document is unlimited

Copies of ARL Technical Documentary Reports should not be returned to Aerospace Research Laboratories unless return is required by security considerations, contractual obligations or notices on a specified document.
SIMULTANEOUS TESTS FOR THE EQUALITY OF VARIANCES AGAINST CERTAIN ALTERNATIVES

P. R. KRISHNAH
Aerospace Research Laboratories, Wright-Patterson A.F.B., Ohio
SIMULTANEOUS TESTS FOR THE EQUALITY OF VARIANCES AGAINST CERTAIN ALTERNATIVES

P. R. Krishnataih
Aerospace Research Laboratories, Wright-Patterson A.F.B., Ohio

1. Introduction

In many situations, the experimenter is interested in testing which of the variances differ significantly from others when the overall hypothesis of equality of variances is rejected. The simultaneous test procedures play an important role in these situations. Hartley (1950) considered the problem of pairwise comparisons of variances simultaneously. Gnanadesikan (1959) considered the problem of comparing several variances simultaneously against a standard one. In the present paper, test procedures are proposed for comparing each variance simultaneously against the next one by using the union-intersection principle of Roy (1953).

2. Simultaneous Test Procedures

Consider \(k \) normal populations with means (known or unknown) \(\mu_1, \mu_2, \ldots, \mu_k \) and unknown variances \(\sigma_1^2, \sigma_2^2, \ldots, \sigma_k^2 \). Let \(s_i^2 \) be the sample estimate of \(\sigma_i^2 \) based on \(n_i \) degrees of freedom. In addition, let \(\Pi : \sigma_1^2 = \sigma_2^2 = \ldots = \sigma_k^2 \). The total hypothesis \(H \) can be expressed

\[H = \cap_{i=1}^{k-1} H_i, \quad H = \cap_{i=1}^{k-1} H_i, \quad H = \cap_{i=1}^{k-1} H_i \]

as \(H = \cap_{i=1}^{k-1} H_i \), \(H = \cap_{i=1}^{k-1} H_i \). Hartley's \(F_{\text{Hartley}} \) test is unbiased.

The tables which are useful in the application of this test procedure are given in David (1952).

Gnanadesikan (1959) considered the problem of testing \(H \) against \(A_1 \), when the sample sizes are equal. This test is known as the \(F_{\text{Gnad}} \) test. Ramachandran (1956) showed that Hartley's \(F_{\text{Hartley}} \) test is unbiased.

Now, let \(A_1 = \bigcup_{i=1}^{k} A_{i,1}, \quad A_2 = \bigcup_{i=1}^{k} A_{i,2}, \quad A_3 = \bigcup_{i=1}^{k} A_{i,3} \), where

\[A_{i,j} : \sigma_i^2 \neq \sigma_j^2 \]

Hartley (1950) considered the problems of testing \(H \) against \(A_1 \), when the sample sizes are equal. This test is known as the \(F_{\text{Hartley}} \) test. Ramachandran (1956) showed that Hartley's \(F_{\text{Hartley}} \) test is unbiased.

The tables which are useful in the application of this test procedure are given in David (1952).

Gnanadesikan (1959) considered the problem of testing \(H \) against \(A_2 \), his proof for the monotonicity of the power of the test is not correct. We now discuss a one-sided version of the test considered in Gnanadesikan (1959).

Manuscript received June 24, 1965; revised October 25, 1965
A procedure for testing H_1, H_2, \ldots, H_{k-1}, and H simultaneously against the respective alternatives A'_1, A'_2, \ldots, A'_{k-1}, and A''_k where $A''_k = \bigcup_{i=1}^{k-1} A'_i$ and $A''_k : \sigma^2_i > \sigma^2_k$ is discussed here.

According to this procedure, we accept or reject H_k according as

$$F_{ik} > c_{ik}$$

where c_{ik}'s are chosen such that

$$P[F_{ik} \geq c_{ik} ; \ i=1, 2, \ldots, k-1 \mid H] = (1-\alpha)$$

and

$$F_{ij} = s_j^2 / s_i^2.$$

The total hypothesis H is accepted if all the individual hypotheses H_1, H_2, \ldots, H_{k-1} are accepted. This test procedure is similar to the test proposed by Ghosh (1955) for testing several hypotheses simultaneously under the ANOVA Model I. For practical purposes, we choose the critical values c_{ik} to be equal, and call them c_k. When $n_1 = n_2 = \ldots = n_k = n$, we can obtain the critical values c_k from the tables of Gupta (1963) for $\alpha = 0.25, 0.10, 0.05, 0.01$, and $k = 2(2)50$. When $n_1 = n_2 = \ldots = n_{k-1} = n$, we can obtain the critical values c_k from the tables of Armitage and Krishnam (1964) for $\alpha = 0.10, 0.05, 0.025, 0.01$, and $n = 1(1)19$, $k = 2(1)13$ and $n_k = 5(1)15$. The simultaneous confidence intervals associated with the above test procedure are given by

$$P \left[\frac{s_k^2 - \tilde{s}_k^2}{\tilde{s}_k^2} > c_{ik} ; \ i=1, 2, \ldots, k-1 \right] = (1-\alpha)$$

where c_{ik}'s are given by (2.1). We will now discuss about another one-sided version of the test considered in Gnanadesikan (1969).

Let $A''_k = \bigcup_{i=1}^{k-1} A'_i$ where $A''_k : \sigma^2_i < \sigma^2_k$. A procedure is proposed in Krishnam and Armitage (1964) to test H_1, H_2, \ldots, H_{k-1} and H simultaneously against the respective alternatives $A''_1, A''_2, \ldots, A''_{k-1}$, and A''_k. When $n_1 = n_2 = \ldots = n_k = n$, the 25%, 10%, 5%, and 1% critical values which are useful in the application of this test procedure can be obtained from the tables of Gupta and Sobel (1963) for $n = 2(2)50$ and $k = 2(1)11$. The 10%, 5%, 2.5%, and 1% critical values for this test procedure can be obtained from the tables of Krishnam and Armitage (1964) for $k = 2(1)13$, $n_i = 5(1)15$ and $m = 1(1)20$ when $n_1 = n_2 = \ldots = n_k = n$. The simultaneous confidence intervals associated with this test procedure are given by

$$P \left[\frac{s_k^2 - \tilde{s}_k^2}{\tilde{s}_k^2} > d_{ik} ; \ i=1, 2, \ldots, k-1 \right] = (1-\alpha)$$

where d_{ik}'s are chosen such that

$$P[F_{ik} \geq d_{ik} ; \ i=1, 2, \ldots, k-1 \mid H] = (1-\alpha).$$

We will now propose a test procedure for testing H_1, H_2, \ldots, H_{k-1}, and H simultaneously against the respective alternatives $A'_1, A'_2, \ldots, A'_{k-1}$, and A''_k. According to this procedure, we accept H_{i+1} if

$$f_{ia} \geq g_{ia}$$

and reject H_{i+1} otherwise. The constants f_{ia} and g_{ia} are chosen such that

$$f_{ia} = \frac{1}{2} (f_{i+1,a} + f_{i-1,a})$$

and

$$g_{ia} = \frac{1}{2} (g_{i+1,a} + g_{i-1,a}).$$
(2.6) \[P[f_{ia} \leq F_{i_{i+1}} \leq g_{ia}; \ i = 1, 2, \ldots, k-1 | H] = (1 - \alpha). \]

The optimum choice of the critical values \(f_{ia} \) and \(g_{ia} \) is not known. For practical purposes, we impose the restriction that the acceptance regions (2.5) are of equal size. In addition, we impose the restriction that, for each \(i \), the test with the acceptance region (2.5) is locally unbiased.

When \(H \) is true, \(n_i e_i^2, n_2 e_2^2, \ldots, n_k e_k^2 \) are distributed independently as central chi-square variates with \(n_i, n_2, \ldots, n_k \) degrees of freedom. Starting from the joint distribution of \(e_i^2, e_2^2, \ldots, e_k^2 \), making the transformations \(F_{i_{i+1}} = e_i^2/\hat{E}_{i_{i+1}}^2, \ s_i^2 = \hat{E}_i^2 \) and integrating out \(e_i^2 \), we obtain the following expression for the joint frequency function of \(F_{i_{1}}, F_{i_{2}}, \ldots, F_{i_{k-1}} \) when \(H \) is true:

\[
(2.7) f(F_{i_{1}}, F_{i_{2}}, \ldots, F_{i_{k-1}} | H) = \frac{(n_i/n_j)[\prod_{j=1}^{k-1} n_j \prod_{i=1}^{k-1} F_{i_{i+1}/n_i}]^{(k-2)}}{\Gamma(n_j/2)[1 + n_j^{-1} \sum_{j=1}^{i} \prod_{i=1}^{k-1} \hat{E}_i^2]^{n_j}}.
\]

The simultaneous confidence intervals associated with the above test are given by

\[
(2.8) P[f_{ia} \leq F_{i_{i+1}} \leq g_{ia}; \ i = 1, 2, \ldots, k-1 | H] = (1 - \alpha).
\]

The above simultaneous confidence intervals can be derived by using the fact that

\[
(2.9) P[f_{ia} \leq F_{i_{i+1}} \leq g_{ia}; \ i = 1, 2, \ldots, k-1 | nA_i] = (1 - \alpha).
\]

A procedure is proposed below for testing \(H_{11}, H_{21}, \ldots, H_{k-1} \) and \(H \) simultaneously against the respective alternatives \(A_{12}, A_{22}, \ldots, A_{k-1,2} \) and \(A_{3} \) where \(A_3 = \cup A_{i_{i+1}}^* \) and \(A_{i_{i+1}}^* : \sigma_i^2 < \sigma_{i_{i+1}}^2 \)

According to this procedure, we accept or reject \(H_{i_{i+1}} \) according as

\[
F_{i_{i+1}} \geq a_{ia},
\]

where \(a_{ia} \)'s are chosen such that

\[
(2.10) P[F_{i_{i+1}} \geq a_{ia}; \ i = 1, 2, \ldots, k-1 | H] = (1 - \alpha).
\]

The simultaneous confidence intervals associated with the above test are given by

\[
(2.11) P[\sigma_{i+1}^2/\sigma_i^2 \leq a_{ia} \sigma_i^2/\sigma_{i+1}^2; \ i = 1, 2, \ldots, k-1] = (1 - \alpha),
\]

For practical purposes, we choose the critical values \(a_{ia} \) in (2.10) to be equal.

We test \(H_{11}, H_{21}, \ldots, H_{k-1} \) and \(H \) simultaneously against the respective alternatives \(A_{12}, A_{22}, \ldots, A_{k-1,2} \) and \(A_3 \) where \(A_3 = \cup A_{i_{i+1}}^{**} \) and \(A_{i_{i+1}}^{**} : \sigma_i^2 < \sigma_{i_{i+1}}^2 \), by accepting or rejecting \(H_{i_{i+1}} \) according as

\[
F_{i_{i+1}} \geq b_{ia}.
\]
where \(b_{ia} \)'s are chosen such that

\[
F_{i,i+1} \geq b_{ia}; \quad i=1, 2, \ldots, k-1; H = (1-\alpha).
\]

The simultaneous confidence intervals associated with the above test are given by

\[
\frac{\sigma_i^2 + b_{ia}}{\sigma_i^2} \geq \frac{\sigma_{i+1}^2}{\sigma_i^2}; \quad i=1, 2, \ldots, k-1 \quad (1-\alpha).
\]

As before we can, for practical purposes, choose the critical values \(b_{ia} \)'s to be equal. When \(k=3 \), the values of \(\alpha \) in (2.12) can be computed for given values of \(b_{ia} \) and \(n_i \) by using the method discussed in Bechhofer and Sobel (1954) and Bozivich, Bancroft and Hartley (1956).

3. General Remarks

Hartley's \(F_{max} \) is useful when the experimenter is interested in testing the hypotheses \(H_i \) \((r \neq \delta = 1, 2, \ldots, k) \) simultaneously and the sample sizes are equal. But there are many situations when the experimenter is interested in testing a subset of these hypotheses. In these situations, it is not desirable to use the \(F_{max} \) test since alternative simultaneous test procedures yield shorter (in terms of lengths) confidence intervals. For example, if we are interested in testing \(H_{11}, H_{23}, \ldots, H_{k-1,k} \) and \(H \) simultaneously against the respective alternatives \(A_{11}, A_{23}, \ldots, A_{k-1,k} \) and \(A_0 \), the lengths of the confidence intervals associated with the simultaneous test procedure proposed in this paper are shorter than those associated with the \(F_{max} \) test if the critical values \(f_{ia} \) and \(g_{ia} \) in (2.6) are chosen such that \(g_{ia} = g_0 \) and \(f_{ia} = f_0^{-1} \) for \(i=1, 2, \ldots, k-1 \) when the sample sizes are equal. Similarly, if we choose the critical values properly, the lengths of the confidence intervals associated with Gnanadesikan's test are shorter than the lengths of the corresponding confidence intervals associated with the \(F_{max} \) test.

Now let \(\beta \) denote the Type II error associated with the test proposed in this paper for testing \(H \) against \(A_0^* \). When \(\bigcap_{i=1}^{k-1} A_{ia}^* \) is true, the test

\[
1-\beta = P[F_{ia} \geq c_{ia}; \quad i=1, 2, \ldots, k-1; \bigcap_{i=1}^{k-1} A_{ia}^*]
\]

\[
= \int_{c_{1,a}}^{\infty} \ldots \int_{c_{k-1,a}}^{\infty} f(F_{1,k}, \ldots, F_{k-1,k} | H) \prod_{i=1}^{k-1} dF_{ia}
\]

where \(\delta_{ia} = \sigma_i^2 / \sigma_a^2 \). It is now evident that \((1-\beta) \) increases as each non-centrality parameter \(\delta_{ia} \) increases. The above proof can be easily modified when only some of the \(A_{ia}^* \)'s are true. We can similarly show that other one-sided test procedures considered in this paper are monotonic increasing functions of the non-centrality parameters.

The test procedures discussed in the present paper are analogous to some special cases of the tests considered in Krishnaiah (1965a, 1965b) for multiple comparisons of means.
EQUALITY OF VARIANCES AGAINST CERTAIN ALTERNATIVES

References

Krishnaiah, P. R., and Armitage, J. V. (1964). Distribution of the Studentized Smallest Chi-Square, with Tables and Applications. ARL 64–218, Aerospace Research Laboratories, Wright-Patterson Air Force Base, Ohio.

