ESTIMATION OF PARAMETERS IN MULTIVARIATE EXPERIMENTAL DESIGN AND A HYPOTHETICAL APPLICATION TO ESTIMATING FRACTIONAL DOSE RECOVERY EFFECTS

J. A. Greenwood
This report has been approved for open publication by the Department of Defense.

All aspects of investigative programs involving the use of laboratory animals sponsored by DOD components are conducted according to the principles enunciated in the "Guide for Laboratory Anima. Facilities and Care", prepared by the National Academy of Sciences - National Research Council.
ESTIMATION OF PARAMETERS IN MULTIVARIATE EXPERIMENTAL DESIGN AND A HYPOTHETICAL APPLICATION TO ESTIMATING FRACTIONAL DOSE RECOVERY EFFECTS

J. A. GREENWOOD

JAMES T. BRENNAN
Colonel, MC, USA
Director

ARMED FORCES RADIOBIOLOGY RESEARCH INSTITUTE
Defense Atomic Support Agency
Bethesda, Maryland

Distribution of this document is unlimited.
ACKNOWLEDGMENT

The writer wishes to thank Dr. R. White of the Behavioral Sciences Department, Dr. S. Baum of the Experimental Pathology Department, and Major W. Pfeiffer, USAF, of the Physical Sciences Department, who took time from their busy schedules to read and make helpful comments on this paper.
ABSTRACT

A statistical technique is explained, derived and illustrated. It is believed that a study of the values of the terms of the assumed mathematical model (or the graphs therefrom) would be of great informational help to the scientist in interpreting his results. Analysis of variance, components of variance analysis, and the estimation technique described herein applied to a properly designed experiment will go far toward extracting all the relevant information from a sample.

Estimation formulas for the terms of the assumed mathematical model are derived for two of the most used statistical experimental designs, the factorial and the orthogonal squares. The method is illustrated on a three-variable, hypothetical dose recovery experiment.

It is pointed out that the method gives one a handle on measuring quantitatively the separate and joint contributions to the observed effect, of variables otherwise hopelessly correlated and overlapping.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>1</td>
</tr>
<tr>
<td>I. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>II. The Problem</td>
<td>2</td>
</tr>
<tr>
<td>III. Discussion</td>
<td>2</td>
</tr>
<tr>
<td>IV. Orthogonal Squares Designs</td>
<td>8</td>
</tr>
<tr>
<td>Example</td>
<td>8</td>
</tr>
<tr>
<td>The Discussion of the Experiment</td>
<td>8</td>
</tr>
<tr>
<td>Procedure</td>
<td>9</td>
</tr>
<tr>
<td>Derivation of the Estimation Formulas</td>
<td>13</td>
</tr>
<tr>
<td>Numerical Computations</td>
<td>15</td>
</tr>
</tbody>
</table>

LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Graph of Exposures</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Latin Square Experimental Design</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>Qualitative Traces of Function y</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>Graeco-Latin Square Experimental Design</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>Graphs of $\hat{m}{24k}$, $\hat{m}{41k}$ as Function of C</td>
<td>16</td>
</tr>
</tbody>
</table>

LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Experimental Values</td>
<td>15</td>
</tr>
<tr>
<td>II</td>
<td>Estimates of α_i, β_j, γ_k</td>
<td>16</td>
</tr>
<tr>
<td>III</td>
<td>Estimates of m_{ijk}</td>
<td>17</td>
</tr>
<tr>
<td>IV</td>
<td>Estimates of m_{24k} and m_{41k}</td>
<td>18</td>
</tr>
</tbody>
</table>
I. INTRODUCTION

Considerations like those discussed herein tend to reduce the material requirements of research projects as the methods and implications of such planning and analyses become more familiar. It becomes a case of more prior thinking and planning for the experiment, and less data. One hardly needs to point out that the number of experimental animals to be housed and cared for and personnel and equipment to process them for data acquisition are of prime consideration in setting space requirements in the Armed Forces Radiobiology Research Institute (AFRRI) laboratories. Faced with known space limitations, it is imperative that we do the best we can to maximize the amount and definitiveness of experimental results.

It is quite likely true that the most definitive experiments to test for rejection of alternative branch routes up the tree of hypotheses, making up the bases of a scientific field, are far more logical in character than mathematical. Nevertheless, much AFRRI research will involve the next stage, which is to measure and quantify properties or effects already known or suspected to exist. Considering the interrelationships of variables, this is no easy task.

A systematic approach to the latter stage is to set up a general mathematical model considered appropriate to the situation, test its components for existence and consequent specialization of the model, and finally, estimate the numerical values of parameters of the model. This procedure represents efficient use of information because the models represent a common means of determining facts from experiment and for suggesting new angles requiring investigation. This paper introduces the scientist to a small region of mathematical statistics germane to the latter procedure.
II. THE PROBLEM

In many statistically designed multivariate experiments, analysis of variance gives the appropriate significance tests of the effects of the variables and interactions. The experimenter may then wish to display his findings tabularly and/or graphically. It would seem that this display is not necessarily just to show the observed results in another manner, but that the display should imply the fundamental, underlying basic relationships of which his test data are merely a sample. The aforementioned analysis of variance gives the experimenter reasonable assumptions as to the specialized form of the mathematical model describing these basic relationships.

This methodological paper shows how one can find the various terms of the mathematical model. They are least squares estimates. Then from these estimates the experimenter can show values or graphs having the properties assumed or learned from the analysis of variance, and which also fit his data best in the sense of least squares.

III. DISCUSSION

We restrict ourselves to 'fixed' rather than 'random' variables. Thus a dose variable may have four assigned values - they are not randomly selected. Also, for the moment consider a complete factorial design illustrated as follows.

Let variable A denote the dose rates for a set of experiments. For instance, one might let $a_1 = 10$ rad/min and $a_2 = 100$ rad/min. The limit for the high dose rate would be the pulse mode of operation of the reactor. Variable B denotes the dose delivered in one period of fractionization. $b_1 = 20$ rads, $b_2 = 30$ rads, $b_3 = 40$ rads.
The number of fractionated doses is to be a constant \(k \). A graphic presentation of the exposures for \(a_1b_1 \) and \(a_2b_2 \) is shown below.

![Graph of Exposures](image)

Figure 1. Graph of Exposures

The integrated dose at each condition \(a_i, b_j \) is simply \(b_jk \).

All possible combinations of levels of the variables are used. At each of the \(2 \times 3 = 6 \) possible combinations of \(A, B \), an \(LD_{50/30} (= y) \) will be obtained. (If several values are found at each condition, the method of estimation described herein will be unchanged, but one considers only the averages at each condition.)

It has been found that a practical and satisfactory general representation of the combined several effects is of the form

\[
y_{ij} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + e_{ij}.
\]

Let subscript \(i \) denote the level of variable \(A \), thus \(i = 2 \) means 100 rad/min. Similarly, subscript \(j \) denotes the level of variable \(B \), thus \(j = 1 \) means 20 rad dose per fractionization period. The terms in (1) represent independent contributions to the total \(y \) value at \(a_i, b_j \). Each term on the right but the last one is an underlying average effect or value. \(\mu, \alpha_i, \beta_j, (\alpha\beta)_{ij} \) are all fixed numbers, constants, which will be estimated from the data. One or more might be zero, depending on what one learned from
the analysis of variance on the data in the first place, or could assume from past experience or knowledge. \(\mu \) is a general average of \(y \) over the set of the independent variables \(A \) and \(B \), common to all \(y \) values. \(\alpha_i \) is a main effect (A) and can be so related to the \(\mu \) that \(\sum \alpha_i = 0 \). Condition \(a_1 \) causes a contribution of \(\alpha_1 \) to \(y_{13} \), for example. Similarly \(\sum \beta_j = 0 \) and, for example, condition \(b_3 \) causes a contribution of \(\beta_3 \) to \(y_{13} \).

\((\alpha \beta)_{ij} \) is called an interaction term, and when it exists causes a special contribution to \(y \). Thus the value \((\alpha \beta)_{13} \) will be part of the sum of terms making up the total value of \(y_{13} \). If there is no interaction then by definition all such terms are zero. It is further assumed that summing over any one interaction subscript while holding the other subscripts constant on any of their allowed values is zero. Thus \((\alpha \beta)_{13} + (\alpha \beta)_{23} = 0 \) in the example.

\(e_{ij} \) is a random normal variate with mean zero and variance generally labeled \(\sigma^2 \) and estimated from the experimental data by the analysis of variance.

At this time we will derive the estimates of the terms in (1) for the general two-variable factorial case. By specializing the number of levels of the variables to two and three, respectively, the results will be appropriate to the preceding example.

Obtaining the Least Squares Estimates of the Values in (1)

Let

\[
m_{ij} = \mu + \alpha_i + \beta_j + (\alpha \beta)_{ij}.
\]

Then (1) becomes

\[
y_{ij} = m_{ij} + e_{ij}.
\]

Let the number of levels of \(A \) and \(B \) be \(\ell_1 \) and \(\ell_2 \), respectively. Form the expression
A true minimum exists at the necessary conditions obtained by setting the partials $\frac{\partial A}{\partial \mu}, \frac{\partial A}{\partial \alpha_i}, \frac{\partial A}{\partial \beta_j}, \frac{\partial A}{\partial (\alpha \beta)_{ij}}$ equal to zero. One of these will be written out in detail.

$$\frac{\partial A}{\partial \alpha_i} = -2 \sum_j (y_{ij} - \mu - \alpha_i - \beta_j - (\alpha \beta)_{ij}) = 0.$$

Then

$$\ell_2 \alpha_i = \sum_j y_{ij} - \ell_2 \mu - \sum_j \beta_j - \sum_j (\alpha \beta)_{ij}.$$

But by assumption, the last two terms are zero. Therefore,

$$\alpha_i = \frac{1}{\ell_2} \sum_j y_{ij} - \mu.$$

When one considers that he is solving a system of linear equations in terms of the y_{ij}, the results on $\mu, \alpha_i, \beta_j, (\alpha \beta)_{ij}$ are clearly estimates and are customarily labeled $\widehat{\mu}, \widehat{\alpha_i},$ etc. Thus

$$\widehat{\alpha_i} = \frac{1}{\ell_2} \sum_j y_{ij} - \widehat{\mu}.$$

In fact, the entire set of four answers will be found to be

$$\left\{\begin{array}{l}
\widehat{\mu} = \frac{1}{\ell_1 \ell_2} \sum_{i,j} y_{ij}, \\
\widehat{\alpha_i} = \frac{1}{\ell_2} \sum_j y_{ij} - \widehat{\mu}, \ i = 1, \ldots, \ell_1 \\
\widehat{\beta_j} = \frac{1}{\ell_1} \sum_i y_{ij} - \widehat{\mu}, \ j = 1, \ldots, \ell_2 \\
(\widehat{\alpha \beta})_{ij} = y_{ij} - \widehat{\mu} - \widehat{\alpha_i} - \widehat{\beta_j}.
\end{array}\right.$$

These are the estimates of the effects due to the various levels of the individual variables and also when taken jointly. As an example, let us interpret the effect of
b_2 on y_{12}. First we must recognize that each value y_{ij} has average value \(\mu \) except for the addition to \(\mu \) of the several other effects appearing in (1). The presence of level \(b_2 \) increases algebraically the average \(y_{12} \) from \(\mu \) to \(\mu + \beta_2 \). However, when interaction exists, \(b_2 \) exerts an additional effect along with level \(a_1 \) to further increase (algebraically) the average \(y_{12} \) from \(\mu + \beta_2 \) to \(\mu + \beta_2 + (\alpha \beta)_{12} \). A similar statement shows that level \(a_1 \) increases average \(y_{12} \) from \(\mu + \beta_2 + (\alpha \beta)_{12} \) to \(\mu + \beta_2 + (\alpha \beta)_{12} + \alpha_1 \). Its effect jointly with \(b_2 \), namely, \((\alpha \beta)_{12} \), has already been added in. Since we have only estimates of each of these quantities, in practice the statements will read somewhat as follows: the presence of level \(b_2 \) is to increase (algebraically) the average \(y \) from estimated \(\mu \) to estimated \(\mu + \beta_2 \), i.e., from \(\hat{\mu} \) to \(\hat{\mu} + \hat{\beta}_2 \).

If one turns back to the definition of \(m_{ij} \) he sees that it is the mean or underlying population average value at \(a_1 \), \(b_j \) without the variation due to \(\sigma \) of the individual readings. That is likewise an estimate that is quite useful. It can be found by replacing each component or term by its estimate as just found. So the estimate of

\[
m_{ij} = \mu + \alpha_i + \beta_j + (\alpha \beta)_{ij} \quad \text{becomes}
\]

\[
\hat{m}_{ij} = \hat{\mu} + \hat{\alpha}_i + \hat{\beta}_j + (\hat{\alpha \beta})_{ij}.
\]

All the above has been carried out in a generalization to \(n \) variables with \(\ell_1, \ell_2, \ldots, \ell_n \) levels, respectively. The results, only, will now be stated.

The generalized \(\hat{m}_{i_1 \ldots i_n} \) has the expected appearance but with a slight change of notation to \(\alpha_1 = \alpha, \alpha_2 = \beta, \alpha_3, \ldots, \alpha_n \).

\[
\hat{m}_{i_1 \ldots i_n} = \hat{\mu} + (\hat{\alpha}_1)_{i_1} + (\hat{\alpha}_2)_{i_2} + \ldots + (\hat{\alpha}_1 \hat{\alpha}_2)_{i_1 i_2} + \ldots + (\hat{\alpha}_1 \hat{\alpha}_2 \ldots \hat{\alpha}_n)_{i_1 i_2 \ldots i_n}
\]

wherein all possible combinations of subscripts appear (unless known or shown to be zero).
The method of obtaining the preceding estimates on the right side of the equation turns out to be a recursion formula in terms of estimates having fewer subscripts. Let \(\Pi \ell = \ell_1 \ell_2 \ldots \ell_n \). Then

\[
(\alpha_1 a_2 \ldots a_r)_{i_1 \ldots i_r} = \frac{\ell_1 \ldots \ell_r}{\Pi \ell} \sum_{i_{r+1} \ldots i_n} y_{i_1 i_2 \ldots i_r} - (\alpha_1 a_2 \ldots a_r)_{i_1 i_2} - \ldots - (\alpha_2 \ldots a_r)_{i_2 \ldots i_r} - \mu .
\]

Actually, all possible combinations of the \(a_1, \ldots, a_r \) but less than \(r \) in number are to be used, and all with minus signs.

By the above methods one can obtain least squares estimates of the parameters supposedly describing an underlying system. Thus if analysis of variance of a factorial experiment indicates that only main effects and no interactions are significant, one generally assumes that any families of curves depicting the underlying facts are sensibly parallel systems. The observed values will of course not give rise to such a parallel appearance, so it seems reasonable to present to the reader a set of curves having the parallel property and also fitting the data closest in the sense of least squares. If the first order interaction is found not to be zero, then likewise the (nonparallel) systems of curves can be found from the estimated parameters, which curves contain the assumed interaction effects and are still best fitting to the observed data in the sense of least squares.
IV. ORTHOGONAL SQUARES DESIGNS

When it is known that there is no interaction among the independent variables, the orthogonal squares designs may be used. These can involve essentially the same large coverage of both numbers of variables and levels of each but requiring only a fraction as many experimental points or values. Of course, the total information, which will include precision of estimates and power of significance tests, is correspondingly reduced. Under the preceding circumstances, formulas similar to (4), (5), (6), and (7), without any interaction terms and with all variables having the same number of levels, \(\ell_1 \), for example, as required by the experimental design, are still valid.

Example

It is one of the orthogonal squares designs, called a Latin square, which we shall apply to a hypothetical experiment to estimate fractionated dose recovery effects. In setting up an actual experiment, much consideration should be given to the pros and cons of using a factorial versus orthogonal squares or other design, since so much depends on the existence or nonexistence of interactions. However, we are now about to introduce an experiment merely as a vehicle to illustrate properties of orthogonal squares designs. The experimental design itself will appear naturally in the course of describing the experiment somewhat in detail.

The Discussion of the Experiment

It is desired to estimate the effect of dose delivered in one period, number of such doses and time between doses, on recovery. Assume a fixed dose rate for all
exposures. Let the \(\text{LD}_{50/30} \) be the immediate measure of dose effect, i.e., an increase in the \(\text{LD}_{50/30} \) indicates a repair mechanism, although other effects could be used, e.g., mitotic index, and the same analyses performed and kinds of conclusions drawn.

Procedure

Determine the \(\text{LD}_{50/30} \) for a single dose at the dose rate to be used during the exposures, if a good estimate is not already known. Call it \(\Delta \).

A group of animals, say 50, will be given a partial or fractionated dose of \(\Delta/k \) followed by a stated time interval. Then another partial dose of the same size is given. This is repeated a specified number of times. After this same time interval has elapsed, the remaining animals are used to find the residual \(\text{LD}_{50/30} \).

Some animals may have died before this last phase. We state our interest to be in those that survive to this point. Since animals dying before this stage tend to confound or bias the interpretation of the results, it seems that the total stress or dose to this point should be kept small enough to minimize such effects.

We define and estimate recovery as follows. Let \(P \) denote a point in time relative to which the \(\text{LD}_{50/30} \) is to be obtained in the experimental setup. This is of course after a prescribed number of alternate doses and intervals. Let the sum of fractionated doses to that point equal \(d \) and the \(\text{LD}_{50/30} \) at \(P \) for preirradiated animals at \(P \) be \(\Delta' \). Thus under these conditions a total dose of \(d + \Delta' \) is expected to be administered at \(P \) to achieve \(\text{LD}_{50/30} \). But for a single dose the \(\text{LD}_{50/30} = \Delta \). So \(d + \Delta' - \Delta = \) the excess dose required under the conditions of \(P \).
(d + Δ' - Δ)/d = the fraction of the total dose, just prior to administering the additional Δ' dose, which is recovered, or from which recovery is made. For example, if Δ' = Δ, there is complete recovery, and if d + Δ' = Δ, there is no recovery.

Let the fraction recovered, (d + Δ' - Δ)/d, be found at each of the experimental conditions, P. This will be the main dependent variable y in the analysis.

Let us now define the variables, recalling that in this design all variables must have the same number of levels.

Let dose A have four levels, e.g.,

\[a_1 = \Delta/5, \quad a_2 = 2\Delta/5, \quad a_3 = 3\Delta/5, \quad a_4 = 4\Delta/5. \]

Let B denote the number of fractionated doses.

\[b_1 = 1, \quad b_2 = 2, \quad b_3 = 3, \quad b_4 = 4. \]

Let C denote interval in days between fractionated doses.

\[c_1 = 1, \quad c_2 = 2, \quad c_3 = 3, \quad c_4 = 4. \]

Maximum information would be obtained by subjecting a group of animals to each of all possible conditions \(a_i, b_j, c_k \), a total of \(4^3 = 64 \) groups. Since that many groups are considered to be a prohibitive expenditure of animals and time, it is proposed as mentioned previously, to use an experimental design known in the trade as a Latin square, which will use only 16 of the above conditions. An example of such a design follows.
Figure 2. Latin Square Experimental Design

The circled position denotes condition a_2, b_2, c_1. y, the fraction of total dose recovered (as defined previously) will be found at all 16 conditions. Then, under the assumption of additivity (i.e., zero interactions), one can estimate the y values corresponding to all the remaining conditions, as explained in the main text later. Note the symmetry in the above configuration in that each c subscript occurs once and therefore only once in every row and column.

Qualitative sketches of traces of the functional form would probably appear as below in Figure 3.
With these 64 values, one is in position to attempt curve and surface fitting

\[y = f(A, B, C) \]

in order to descriptively mathematize the results.

If some measurable and meaningful effect on the individual animal could be used as a measure of the recovery effect instead of the animal devouring, time consuming \(LD_{50/30} \) to \(y \), one could afford perhaps to go to the complete factorial design and thus test the significance of the possible interactions. In this case the number of levels of the variables need not be the same. Or one might use larger animals in the experiment.

Now in the same example experiment it would be possible to include a new variable \(D \) which is the dose rate. Let \(d_1 \) denote 10 rad/min, \(d_2 \) denote 100 rad/min. Another orthogonal squares experimental design could then be used as follows.

\[
\begin{array}{cccc}
 a_1 & a_2 & a_3 & a_4 \\
 b_1 & c_1 d_1 & c_2 d_2 & c_3 d_3 & c_4 d_4 \\
 b_2 & c_2 d_3 & c_1 d_4 & c_4 d_1 & c_3 d_2 \\
 b_3 & c_3 d_4 & c_4 d_3 & c_1 d_2 & c_2 d_1 \\
 b_4 & c_4 d_2 & c_3 d_1 & c_2 d_4 & c_1 d_3 \\
\end{array}
\]

Figure 4. Graeco-Latin Square Experimental Design

Now let \(d_3 = d_1, d_4 = d_2 \), for example, since there are only two distinct levels of this \(D \) variable.

Consider any letter and subscript, e.g., \(d_1 \). It occurs once and only once with every other letter-subscript combination. This design also requires only 16 animal groups as did the previous one. In the same manner the remaining
4^4 - 16 = 256 - 16 = 240 values could be filled in. However, do not be misled into thinking there is more independent information in the 256 points than in the 16 points. It is just that the completed display may suggest some otherwise unperceived information.

We now need the estimation formulas for this case.

Derivation of the Estimation Formulas

The derivation and results are essentially the same as for the factorial case. The differences are in the missing interaction terms like \((a \beta)_{ij}\), and summations like \(\sum_{j,k} y_{ijk}\) which are restricted to the \(i, j, k\) combinations displayed in the experimental design. In fact, just as an explicit reminder we write such summations as \(\sum'_{j,k} y_{ijk}\).

The prime (') is to remind us that the \(i, j, k\) values are restricted to combinations found in the experimental design.

Again we assume that

\[
(8) \quad \quad m_{ijk} = \mu + \alpha_i + \beta_j + \gamma_k ,
\]

but with no interaction terms.

\(i, j, k = 1, \ldots, \xi_1\) subject to the restriction that in combination they represent one of the conditions of the experimental design. By analogy with the 4-level Latin square displayed previously, this subset of combinations is \(\xi_1^2\) in number out of the possible \(\xi_1^3\) total combinations.

\[
(9) \quad \quad y_{ijk} = m_{ijk} + e_{ijk} ,
\]

where \(e_{ijk}\) is again a normal variate with zero mean and variance \(\sigma^2\) (usually unknown).

We seek to minimize

\[
A = \sum'_{i,j,k} (y_{ijk} - m_{ijk})^2 = \sum'_{i,j,k} (y_{ijk} - \mu - \alpha_i - \beta_j - \gamma_k)^2 .
\]
Set \[\frac{\partial A}{\partial \mu} = -2 \sum_{i,j,k} (y_{ijk} - \mu - \alpha_i - \beta_j - \gamma_k) = 0 . \]

Each of \(\alpha_i, \beta_j, \gamma_k \) are summed over their \(\kappa \) values and therefore by assumption each adds up to zero, the same assumption we made in the factorial design. If the \(\alpha_1 + \alpha_2 + \ldots + \alpha_{\kappa} = 0.1 \) for example, we would just diminish each \(\alpha_i \) by \(0.1/\kappa_1 \) and add 0.1 to the \(\mu \). It would not affect their differences, and it is only their differences that really count. So

\[\sum_{i,j,k} y_{ijk} - \kappa_1^2 \mu = 0 , \]

or the least squares estimate of \(\mu \) is

\[\hat{\mu} = \frac{1}{\kappa_1^2} \sum_{i,j,k} y_{ijk} . \] (10)

Next

\[\frac{\partial A}{\partial \alpha_i} = -2 \sum_{j,k} (y_{ijk} - \mu - \alpha_i - \beta_j - \gamma_k) = 0 , \]

\[\sum_{j,k} y_{ijk} - \kappa_1 \mu - \kappa_1 \alpha_i = 0 \]

since again \(\sum_{j,k} \beta_j = 0 \) and \(\sum_{j,k} \gamma_k = 0 \), each being summed over its respective total set of values. Therefore,

\[\hat{\alpha}_i = \frac{1}{\kappa_1} \sum_{j,k} y_{ijk} - \hat{\mu} \] (11)

where \(\mu \) must be replaced by its estimate in the solution.

Following exactly similar argument,

\[\hat{\beta}_j = \frac{1}{\kappa_1} \sum_{i,k} y_{ijk} - \hat{\mu} \] (12)

\[\hat{\gamma}_k = \frac{1}{\kappa_1} \sum_{i,j} y_{ijk} - \hat{\mu} . \] (13)

The least squares estimate of any particular \(m_{ijk} \), the underlying true mean at the \(a_i, b_j, c_k \) combination of levels, whether or not this combination occurs in the experimental design used, would be obtained by substituting component estimates like
(10), (11), (12) and (13) into (8), giving

\[\hat{m}_{ijk} = \hat{\mu} + \hat{\alpha}_i + \hat{\beta}_j + \hat{\gamma}_k. \]

Numerical Computations

Let us place some hypothetical numerical values for \(y \) in the four-level three-variable Latin square table displayed in the section on the recovery experiment. The \(y \) values are percent recovery and are displayed in the table below.

Table I. Experimental Values

<table>
<thead>
<tr>
<th></th>
<th>(a_1)</th>
<th>(a_2)</th>
<th>(a_3)</th>
<th>(a_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b_1)</td>
<td>(c_1)</td>
<td>(c_2)</td>
<td>(c_3)</td>
<td>(c_4)</td>
</tr>
<tr>
<td></td>
<td>72.2</td>
<td>74.5</td>
<td>75.9</td>
<td>68.0</td>
</tr>
<tr>
<td>(b_2)</td>
<td>(c_2)</td>
<td>(c_1)</td>
<td>(c_4)</td>
<td>(c_3)</td>
</tr>
<tr>
<td></td>
<td>74.0</td>
<td>58.1</td>
<td>66.1</td>
<td>50.9</td>
</tr>
<tr>
<td>(b_3)</td>
<td>(c_3)</td>
<td>(c_4)</td>
<td>(c_1)</td>
<td>(c_2)</td>
</tr>
<tr>
<td></td>
<td>77.1</td>
<td>62.4</td>
<td>26.9</td>
<td>26.7</td>
</tr>
<tr>
<td>(b_4)</td>
<td>(c_4)</td>
<td>(c_3)</td>
<td>(c_2)</td>
<td>(c_1)</td>
</tr>
<tr>
<td></td>
<td>56.9</td>
<td>42.8</td>
<td>20.5</td>
<td>1.8</td>
</tr>
</tbody>
</table>

\[\hat{\mu} = \frac{1}{16} (72.2 + 74.5 + \ldots + 1.8) = \frac{854.8}{16} = 53.425. \]

Using equations (11), (12), (13) one obtains Table II. As an example

\[\hat{\gamma}_2 = \frac{1}{4} (74.5 + 74.0 + 26.7 + 20.5) - 53.425 = -4.500. \]
Table II. Estimates of α_i, β_j, γ_k

<table>
<thead>
<tr>
<th>i</th>
<th>$\hat{\alpha}_i$</th>
<th>$\hat{\beta}_i$</th>
<th>$\hat{\gamma}_i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>6.025</td>
<td>8.850</td>
<td>-4.500</td>
</tr>
<tr>
<td>3</td>
<td>-6.075</td>
<td>-5.150</td>
<td>8.250</td>
</tr>
<tr>
<td>4</td>
<td>-16.575</td>
<td>-22.925</td>
<td>9.925</td>
</tr>
</tbody>
</table>

We are now ready to fill out the entire table of

$$\hat{m}_{ijk} = \mu + \hat{\alpha}_i + \hat{\beta}_j + \hat{\gamma}_k$$

if we so desire. For example,

$$\hat{m}_{124} = \mu + \hat{\alpha}_1 + \hat{\beta}_2 + \hat{\gamma}_4 = 53.425 + 16.625 + 8.850 + 9.925 = 88.825.$$

See Table III for the complete set of entries.

Next let us graph \hat{m}_{ijk} (estimate of true y average) as a function of interval between doses (C), for level 2 of dose (A), and for level 4 of (B) which is four doses. The values to be graphed are \hat{m}_{24k}, $k = 1, 2, 3, 4$. They can be read from Table III. For comparison let us also graph \hat{m}_{41k} corresponding to one dose applied at the highest level (Figure 5). These values are shown in Table IV. It is evident that a large number of such choices could be made, including even plotting a surface \hat{m}_{ijk} as a function of two of the variables for a fixed value of the third one.
Table III. Estimates of m_{ijk}

<table>
<thead>
<tr>
<th>i j k</th>
<th>\hat{m}_{ijk}</th>
<th>i j k</th>
<th>\hat{m}_{ijk}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1</td>
<td>75.600</td>
<td>3 1 1</td>
<td>52.900</td>
</tr>
<tr>
<td>1 1 2</td>
<td>84.775</td>
<td>3 1 2</td>
<td>62.075</td>
</tr>
<tr>
<td>1 1 3</td>
<td>97.525</td>
<td>3 1 3</td>
<td>74.825</td>
</tr>
<tr>
<td>1 1 4</td>
<td>99.200</td>
<td>3 1 4</td>
<td>76.500</td>
</tr>
<tr>
<td>1 2 1</td>
<td>65.225</td>
<td>3 2 1</td>
<td>42.525</td>
</tr>
<tr>
<td>1 2 2</td>
<td>74.400</td>
<td>3 2 2</td>
<td>51.700</td>
</tr>
<tr>
<td>1 2 3</td>
<td>87.150</td>
<td>3 2 3</td>
<td>64.450</td>
</tr>
<tr>
<td>1 2 4</td>
<td>88.825</td>
<td>3 2 4</td>
<td>66.125</td>
</tr>
<tr>
<td>1 3 1</td>
<td>51.225</td>
<td>3 3 1</td>
<td>28.525</td>
</tr>
<tr>
<td>1 3 2</td>
<td>60.400</td>
<td>3 3 2</td>
<td>37.700</td>
</tr>
<tr>
<td>1 3 3</td>
<td>73.150</td>
<td>3 3 3</td>
<td>50.450</td>
</tr>
<tr>
<td>1 3 4</td>
<td>74.825</td>
<td>3 3 4</td>
<td>52.125</td>
</tr>
<tr>
<td>1 4 1</td>
<td>33.450</td>
<td>3 4 1</td>
<td>10.750</td>
</tr>
<tr>
<td>1 4 2</td>
<td>42.625</td>
<td>3 4 2</td>
<td>19.925</td>
</tr>
<tr>
<td>1 4 3</td>
<td>55.375</td>
<td>3 4 3</td>
<td>32.675</td>
</tr>
<tr>
<td>1 4 4</td>
<td>57.050</td>
<td>3 4 4</td>
<td>34.350</td>
</tr>
<tr>
<td>2 1 1</td>
<td>65.000</td>
<td>4 1 1</td>
<td>42.400</td>
</tr>
<tr>
<td>2 1 2</td>
<td>74.175</td>
<td>4 1 2</td>
<td>51.575</td>
</tr>
<tr>
<td>2 1 3</td>
<td>86.925</td>
<td>4 1 3</td>
<td>64.325</td>
</tr>
<tr>
<td>2 1 4</td>
<td>88.600</td>
<td>4 1 4</td>
<td>66.000</td>
</tr>
<tr>
<td>2 2 1</td>
<td>54.625</td>
<td>4 2 1</td>
<td>32.025</td>
</tr>
<tr>
<td>2 2 2</td>
<td>63.800</td>
<td>4 2 2</td>
<td>41.200</td>
</tr>
<tr>
<td>2 2 3</td>
<td>76.550</td>
<td>4 2 3</td>
<td>53.950</td>
</tr>
<tr>
<td>2 2 4</td>
<td>78.225</td>
<td>4 2 4</td>
<td>55.625</td>
</tr>
<tr>
<td>2 3 1</td>
<td>40.625</td>
<td>4 3 1</td>
<td>18.025</td>
</tr>
<tr>
<td>2 3 2</td>
<td>49.800</td>
<td>4 3 2</td>
<td>27.200</td>
</tr>
<tr>
<td>2 3 3</td>
<td>62.550</td>
<td>4 3 3</td>
<td>39.950</td>
</tr>
<tr>
<td>2 3 4</td>
<td>64.225</td>
<td>4 3 4</td>
<td>41.625</td>
</tr>
<tr>
<td>2 4 1</td>
<td>22.850</td>
<td>4 4 1</td>
<td>0.250</td>
</tr>
<tr>
<td>2 4 2</td>
<td>32.025</td>
<td>4 4 2</td>
<td>9.425</td>
</tr>
<tr>
<td>2 4 3</td>
<td>44.775</td>
<td>4 4 3</td>
<td>22.175</td>
</tr>
<tr>
<td>2 4 4</td>
<td>46.450</td>
<td>4 4 4</td>
<td>23.850</td>
</tr>
</tbody>
</table>

The circled combinations appeared in the experiment.
Table IV. Estimates of m_{24k} and m_{41k}

<table>
<thead>
<tr>
<th>k</th>
<th>\hat{m}_{24k}</th>
<th>\hat{m}_{41k}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22.850</td>
<td>42.400</td>
</tr>
<tr>
<td>2</td>
<td>32.025</td>
<td>51.575</td>
</tr>
<tr>
<td>3</td>
<td>44.775</td>
<td>64.325</td>
</tr>
<tr>
<td>4</td>
<td>46.450</td>
<td>66.000</td>
</tr>
</tbody>
</table>

For interest, the experimental values of the only two conditions corresponding to points above are read from Table I and plotted. They are $y(a_2, b_4, c_3) = 42.8$ and $y(a_4, b_1, c_4) = 68.0$. Equivalent notation would let us write these as $y_{243} = 42.8$ and $y_{414} = 68.0$.

* * * * * * *

The subject should not be closed without pointing out another possible and important application. This is in estimating the effects of combined radiation, thermal and blast stresses on the organism. Note that this would be a three-variable system in the simplest experiment. A factorial or fractional replication factorial to estimate interaction terms would surely be required. Again the estimated terms in equations like (6) and (7) are the required effects; (6) gives the combined effects and (7) gives the separate effects of main variables and interactions. It would require an experimental environment wherein different prescribed levels of the three types of insult could be administered, either simultaneously or nearly so.
DISTRIBUTION LIST

Copies

ARMY

1 Commanding Officer, U. S. Chemical Research and Development Laboratories, Edgewood Arsenal, Maryland 21040, ATTN: Technical Library
1 Commanding Officer, U. S. Chemical Warfare Laboratory, Army Chemical Center, Maryland 21040, ATTN: Technical Library
1 Commanding Officer, U. S. Army Engineer Research and Development Laboratories, Fort Belvoir, Virginia 22060, ATTN: Technical Documents Center
1 Headquarters, U. S. Army Environmental Hygiene Agency, Edgewood Arsenal, Maryland 21040, ATTN: Chief, Library Branch
1 Commanding Officer, U. S. Army Harry Diamond Laboratories, Washington, D. C. 20438
1 Commanding Officer, U. S. Army Medical Research Laboratory, Fort Knox, Kentucky 40121
1 Commanding Officer, U. S. Army Nuclear Defense Laboratory, Edgewood Arsenal, Maryland 21040, ATTN: Library
1 U. S. Army, Office of Chief of Staff, Chief of Research and Development, Life Sciences Division, Washington, D. C. 20301
1 Surgeon General, U. S. Department of the Army, Washington, D. C. 20315, ATTN: MEDDH-N
1 Commanding General, U. S. Army Tank-Automotive Center, Detroit Arsenal, Warren, Michigan 48090, ATTN: Chief Nucleonics Section, SMOTA-RCS.1
1 Commanding Officer, 9th Hospital Center, APO 180, New York, N. Y. 09180, ATTN: CO, U. S. Army Nuclear Medicine Research Det., Europe
1 Director, Walter Reed Army Institute of Research, Walter Reed Army Medical Center, Washington, D. C. 20012, ATTN: Division of Nuclear Medicine
1 Assistant Chief of Staff for Force Development, U. S. Department of the Army, Washington, D. C. 20301
1 Commanding Officer, U. S. Army Combat Developments Command, Nuclear Group, Fort Bliss, Texas 79906
1 Commanding General, Aberdeen Proving Ground, Maryland 21005, ATTN: Technical Library
1 Chief of Research and Development, U. S. Department of the Army, Washington, D. C. 20310, ATTN: Nuclear, Chemical and Biological Division
1 Commanding General, U. S. Army Electronics Research and Development Laboratory, Fort Monmouth, New Jersey 07703, ATTN: Technical Document Center, Evans Area
1 Commanding General, U. S. Army Combat Developments Command, Fort Belvoir, Virginia 22060
1 Commanding General, U. S. Army Chemical Corps, Research and Development Command, Washington, D. C. 20301
Copies

1 Commandant, U. S. Army Chemical Center and School, Port McClellan, Alabama 36205
1 Commanding Officer, U. S. Army Combat Developments Command, Chemical-Biological-Radiological Agency, Fort McClellan, Alabama 36205

NAVY

1 Chief, Bureau of Medicine & Surgery, U. S. Navy Department, Washington, D. C. 20390, ATTN: Code 71
1 Chief, Bureau of Ships, U. S. Navy Department, Washington, D. C. 20360, ATTN: Technical Library
1 Commanding Officer, U. S. Naval Medical Research Institute, National Naval Medical Center, Bethesda, Maryland 20014, ATTN: Technical Reference Library
1 Commanding Officer and Director, U. S. Naval Radiological Defense Laboratory, San Francisco, California 94135, ATTN: Technical Information Division
1 Director, U. S. Naval Research Laboratory, Washington, D. C. 20390, ATTN: Document Library
1 U. S. Naval School of Aviation Medicine, U. S. Naval Aviation Medical Center, Pensacola, Florida 32512, ATTN: Director of Research
1 Commanding Officer, Nuclear Weapons Training Center, Atlantic, U. S. Naval Base, Norfolk, Virginia 23511, ATTN: Nuclear Warfare Department
1 Commanding Officer, Nuclear Weapons Training Center, Pacific, U. S. Naval Air Station, North Island, San Diego, California 92135
1 Superintendent, U. S. Naval Postgraduate School, Monterey, California 93940, ATTN: Director of Libraries
1 Commanding Officer, U. S. Naval Weapons Evaluation Facility, Kirtland Air Force Base, Albuquerque, New Mexico 87117
1 Chief of Naval Operations, U. S. Navy Department, Washington, D. C. 20350, ATTN: Director, Atomic Energy Division
1 Chief of Naval Operations, U. S. Navy Department, Washington, D. C. 20350, ATTN: Director, Office of Naval Warfare Analysis
1 Officer in Charge, U. S. Naval Civil Engineering Research and Engineering Laboratory, Port Hueneme, California 93041, ATTN: Library
1 Commanding Officer, U. S. Naval Hospital, National Naval Medical Center, Bethesda, Maryland 20014, ATTN: Director, REEL

AIR FORCE

Copies

1 Director, Defense Atomic Support Agency, Washington, D. C. 20301, ATTN: Chief, Medical Division
20 Defense Documentation Center, Cameron Station, Alexandria, Virginia 22314

OTHER GOVERNMENT

1 U. S. Atomic Energy Commission, Headquarters Library, Reports Section, Mail Station G-017, Washington, D. C. 20545
1 U. S. Atomic Energy Commission, Bethesda Technical Library, 4915 St. Elmo Avenue, Bethesda, Maryland 20545
1 U. S. Atomic Energy Commission, Division of Biology and Medicine, Washington, D. C. 20545
1 U. S. Atomic Energy Commission, Division of Isotopes Development, Washington, D. C. 20545, ATTN: Mr. John C. Dempsey
10 U. S. Atomic Energy Commission, Division of Technical Information Extension, P. O. Box 62, Oak Ridge, Tennessee 37831
1 NASA Scientific and Technical Information Facility, P. O. Box 33, College Park, Maryland 20740
1 National Aeronautics and Space Administration, Washington, D. C. 20546, ATTN: Document Control Officer, Code ATSS-10
1 National Bureau of Standards, Room 301, Building 7, Connecticut and Van Ness Street, N. W., Washington, D. C. 20234, ATTN: Library
1 National Bureau of Standards, Boulder Laboratories, Boulder, Colorado 80301, ATTN: Library
1 National Bureau of Standards, Washington, D. C. 20234, ATTN: Chief, Radiation Physics Division
1 Deputy Chief, Division of Radiological Health, U. S. Public Health Service, 4th and C Streets, S. W., Washington, D. C. 20201
1 U. S. Public Health Service, Robert A. Taft Sanitary Engineering Center, 4676 Columbia Parkway, Cincinnati, Ohio 45226, ATTN: Library
1 U. S. Public Health Service, Division of Air Pollution, South HEW Building, Washington, D. C. 20201
1 Officer in Charge, U. S. Public Health Service, Southwestern Radiological Health Laboratory, P. O. Box 684, Las Vegas, Nevada 89101
1 Officer in Charge, Southeastern Radiological Health Facility, P. O. Box 61, Montgomery, Alabama 36101
1 Officer in Charge, U. S. Public Health Service, Northeastern Radiological Health Laboratory, 109 Holton Street, Winchester, Massachusetts 01890
1 U. S. Public Health Service, Radiological Health Laboratory, 1901 Chapman Avenue, Rockville, Maryland 20852, ATTN: Library

22
Ames Laboratory, U. S. Atomic Energy Commission, Iowa State University, P. O. Box 1129, ISU Station, Ames, Iowa 50012
Argonne National Laboratory, Building 14-14, 9700 South Cass Avenue, Argonne, Illinois 60440, ATTN: Report Section
Atomic Bomb Casualty Commission, MCAS, Navy 955, c/o FPO, San Francisco, California 96638, ATTN: Librarian
Battelle Memorial Institute, 505 King Avenue, Columbus, Ohio 43201
Battelle Memorial Institute, Radiation Effects Information Center, Columbus Laboratories, 505 King Avenue, Columbus, Ohio 43201
Battelle Memorial Institute, Pacific Northwest Laboratory, Richland, Washington
The Boeing Company, P. O. Box 3707, Seattle 24, Washington
Brookhaven National Laboratory, Information Division, Upton, Long Island, New York 11973, ATTN: Research Library
University of California, Lawrence Radiation Laboratory, Technical Information Division, Berkeley, California 94720
University of California, School of Veterinary Medicine, AEC Project No. 6, Davis, California 95616
University of California, School of Medicine, Laboratory of Nuclear Medicine and Radiation Biology, 900 Veteran Avenue, Los Angeles, California 90024
University of California, Medical Center, Radiological Laboratory, San Francisco, California 94122
University of California, Lawrence Radiation Laboratory, P. O. Box 808, Livermore, California 94551, ATTN: Technical Information Division
University of California, Lawrence Radiation Laboratory, Technical Information Division, P. O. Box 808, Livermore, California 94551, ATTN: Clovis G. Craig, for Bio. Med. Library
Carnegie Institute of Technology, Nuclear Research Center, Saxonburg, Pennsylvania 16056, ATTN: Library
Colorado State University, Collaborative Radiological Health, Animal Research Center, c/o Department of Radiology, School of Veterinary Medicine, Fort Collins, Colorado 80521
Columbia University, Pupin Cyclotron Laboratories, 538 West 120th Street, New York, N. Y. 10027, ATTN: Dr. W. W. Havens, Jr.
Columbia University, Department of Radiology, 630 West 168th Street, New York, N. Y. 10032, ATTN: Dr. Harald H. Rossi
E. I. du Pont de Nemours and Company, Savannah River Laboratory, Technical Information Service-773A, Aiken, South Carolina 29802
E. I. du Pont de Nemours and Company, Explosives Department, Atomic Energy Division, Wilmington, Delaware 19898, ATTN: Document Custodian
Copies

1 Edgerton, Germeshausen and Grier, Inc., P. O. Box 1912, Las Vegas, Nevada 89101, ATTN: Librarian
1 General Atomic Division, General Dynamics Corporation, P. O. Box 1111, San Diego, California 92112, ATTN: Chief, Technical Information Services
1 General Dynamics/Fort Worth, P. O. Box 748, Fort Worth, Texas 76101, ATTN: Keith G. Brown
1 Harvard School of Public Health, Harvard University, 695 Huntington Avenue, Boston, Massachusetts 02115, ATTN: Dr. Ross A. McFarland, Associate Professor of Industrial Hygiene
1 Hazelton Nuclear Science Corporation, 4062 Fabian Way, Palo Alto, California 94303, ATTN: Harry L. Browne
1 IIT Research Institute, 10 West 35th Street, Chicago, Illinois 60616, ATTN: Document Library
1 Johns Hopkins University, Applied Physics Laboratory, 8621 Georgia Avenue, Silver Spring, Maryland 20910, ATTN: Document Library
1 Knolls Atomic Power Laboratory, P. O. Box 1072, Schenectady, New York 12301, ATTN: Document Library
1 Los Alamos Scientific Laboratory, P. O. Box 1663, Los Alamos, New Mexico 87544, ATTN: Report Librarian
1 Louisiana State University, Nuclear Science Center, Baton Rouge, Louisiana 70803, ATTN: Director
1 Lovelace Foundation, 4800 Gibson Boulevard, Albuquerque, New Mexico 87108, ATTN: Director of Research
1 Monsanto Research Corporation, Mound Laboratory, P. O. Box 32, Miamisburg, Ohio 45342, ATTN: Library
1 New York University, Bellevue Medical Center, Institute of Industrial Medicine, Long Meadow Road, Sterling Forest, Tuxedo, New York 10987, ATTN: Professor Merril Eisenbud
1 Nuclear Technology Corporation, 116 Main Street, White Plains, New York 10601
1 Ohio State University, Engineering Experiment Station, Nuclear Reactor Laboratory, 1298 Kinnear Road, Columbus, Ohio 43212
1 Pennsylvania State University, Nuclear Physics, Accelerator Building, University Park, Pennsylvania 16802
1 Princeton University, Cyclotron Laboratory, Department of Physics, Princeton, New Jersey 08540
1 Purdue University, Department of Nuclear Engineering, Lafayette, Indiana 47907
1 University of Rochester, Atomic Energy Project, P. O. Box 287, Station 3, Rochester, New York 14620, ATTN: Technical Report Control Unit
1 Sandia Corporation, Livermore Branch, P. O. Box 969, Livermore, California 94551, ATTN: Technical Library
1 Sandia Corporation, P. O. Box 5800, Albuquerque, New Mexico 87115, ATTN: Technical Library
Copies

Scientific Committee on the Effects of Atomic Radiation, United Nations, Room 3464, New York, N. Y. 10017, ATTN: Library
University of Southern California, Nuclear Physics Laboratory, University Park, Los Angeles, California 90007
University of Tennessee, Agricultural Research Laboratory, 1299 Bethel Valley Road, Oak Ridge, Tennessee 37831, ATTN: Laboratory Director, UT-AEC
Texas Engineering Experiment Station, Texas A and M University System, College Station, Texas 77840
Texas Nuclear Corporation, Box 9267, Allendale Station, Austin, Texas 78756
University of Utah, Radiobiology Laboratory, Salt Lake City, Utah 84112
University of Washington, Laboratory of Radiation Biology, Seattle, Washington 98105, ATTN: Dr. L. R. Donaldson
Western Reserve University, Department of Radiology, Division of Radiation Biology, Cleveland, Ohio 44106
Westinghouse Electric Corporation, Bettis Atomic Power Laboratory, P. O. Box 79, West Mifflin, Pennsylvania 15122, ATTN: Librarian
Yale University, Electron Accelerator Laboratory, New Haven, Connecticut 06520, ATTN: Dr. Howard L. Schultz
Holmes and Narver, Inc., Las Vegas Division, P. O. Box 2044, Las Vegas, Nevada 89101

FOREIGN

University of Puerto Rico, Puerto Rico Nuclear Center, College Station, Mayaguez, Puerto Rico 00917
U. S. Mission to the International Atomic Energy Agency, c/o U. S. Embassy, 14 Schmidgasse, Vienna VIII, Austria
International Atomic Energy Agency, Karntnerring 11, Vienna I, Austria
Euratom - Information, Verlag Handelsblatt GmbH., 4 Dusseldorf, Postfach 1102, Germany
Atomic Energy of Canada Limited, Chalk River, Ontario, Canada, ATTN: Station 14
Atomic Energy of Canada Limited, P. O. Box 905, Toronto 18, Ontario, Canada, ATTN: AECL Library
Saskatchewan Accelerator Laboratory, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
Dr. Helmut Mitschrich, Akademie des Sanitaets und Gesundheits Wesens der Deutschen Bundes Wehr, Spezialstab ATP/ABC, 8 Munchen, Schwere-Reiterstr. 4, Germany

25
A statistical technique is explained, derived and illustrated. It is believed that a study of the values of the terms of the assumed mathematical model (or the graphs therefrom) would be of great informational help to the scientist in interpreting his results. Analysis of variance, components of variance analysis, and the estimation technique described herein applied to a properly designed experiment will go far toward extracting all the relevant information from a sample.

Estimation formulas for the terms of the assumed mathematical model are derived for two of the most used statistical experimental designs, the factorial and the orthogonal squares. The method is illustrated on a three-variable, hypothetical dose recovery experiment.

It is pointed out that the method gives one a handle on measuring quantitatively the separate and joint contributions to the observed effect, of variables otherwise hopelessly correlated and overlapping.
KEY WORDS
- parameter estimation
- multivariate design
- statistical technique
- mathematical model

INSTRUCTIONS

1. **ORIGINATING ACTIVITY:** Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.

2a. **REPORT SECURITY CLASSIFICATION:** Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

2b. **GROUP:** Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

3. **REPORT TITLE:** Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.

4. **DESCRIPTIVE NOTES:** If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. **AUTHOR(S):** Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. **REPORT DATE:** Enter the date of the report as day, month, year; or month, year. If more than one date appears on the report, use date of publication.

7a. **TOTAL NUMBER OF PAGES:** The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

7b. **NUMBER OF REFERENCES:** Enter the total number of references cited in the report.

8a. **CONTRACT OR GRANT NUMBER:** If appropriate, enter the applicable number of the contract or grant under which the report was written.

8b. **PROJECT NUMBER:** Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.

9a. **ORIGINATOR’S REPORT NUMBER(S):** Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

9b. **OTHER REPORT NUMBER(S):** If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

10. **AVAILABILITY/LIMITATION NOTICES:** Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

 1. "Qualified requesters may obtain copies of this report from DDC."
 2. "Foreign announcement and dissemination of this report by DDC is not authorized."
 3. "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through ____________ ."
 4. "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through ____________ ."
 5. "All distribution of this report is controlled. Qualified DDC users shall request through ____________ ."

 If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

11. **SUPPLEMENTARY NOTES:** Use for additional explanatory notes.

12. **SPONSORING MILITARY ACTIVITY:** Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

13. **ABSTRACT:** Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

 It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (T), (S), (C), or (U).

 There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. **KEY WORDS:** Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.