A Bibliography on Polytetrafluoroethylene (Teflon) Plastics

by

J. T. Milek, H. E. Wilcox and M. Bloomfield

Culver City Library
Hughes Aircraft Co.
November, 1965
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Ablation Behaviour and Properties.</td>
<td>2</td>
</tr>
<tr>
<td>Additive and Modifier Applications</td>
<td>5</td>
</tr>
<tr>
<td>Adhesive Properties and Applications (Miscellaneous)</td>
<td>7</td>
</tr>
<tr>
<td>Barrier and Membrane Applications</td>
<td>11</td>
</tr>
<tr>
<td>Bearing Applications</td>
<td>12</td>
</tr>
<tr>
<td>Bladders (Expulsion) Applications</td>
<td>14</td>
</tr>
<tr>
<td>Cable and Wire Applications</td>
<td>19</td>
</tr>
<tr>
<td>Capacitor Applications</td>
<td>23</td>
</tr>
<tr>
<td>Chemical Analysis</td>
<td>24</td>
</tr>
<tr>
<td>Chemical Applications</td>
<td>26</td>
</tr>
<tr>
<td>Chemical Reactions</td>
<td>30</td>
</tr>
<tr>
<td>Coatings</td>
<td>31</td>
</tr>
<tr>
<td>Combustion</td>
<td>39</td>
</tr>
<tr>
<td>Compatibility</td>
<td>39</td>
</tr>
<tr>
<td>Copolymers and Copolymerization</td>
<td>41</td>
</tr>
<tr>
<td>Corrosion Studies</td>
<td>50</td>
</tr>
<tr>
<td>Crystal Structure</td>
<td>51</td>
</tr>
<tr>
<td>Dispersions</td>
<td>54</td>
</tr>
<tr>
<td>Electrical Applications</td>
<td>58</td>
</tr>
<tr>
<td>Electrical Properties</td>
<td>60</td>
</tr>
<tr>
<td>Fabrication</td>
<td>66</td>
</tr>
<tr>
<td>Fibers</td>
<td>71</td>
</tr>
<tr>
<td>Filler Material</td>
<td>75</td>
</tr>
<tr>
<td>Film Applications</td>
<td>76</td>
</tr>
<tr>
<td>Frictional Properties</td>
<td>78</td>
</tr>
<tr>
<td>General</td>
<td>81</td>
</tr>
<tr>
<td>Home Appliances Applications</td>
<td>87</td>
</tr>
<tr>
<td>Insulation (Electrical) Applications</td>
<td>88</td>
</tr>
<tr>
<td>Irradiation Effects on Teflon</td>
<td>89</td>
</tr>
<tr>
<td>Laminates</td>
<td>102</td>
</tr>
<tr>
<td>Lubrication Properties and Applications</td>
<td>104</td>
</tr>
<tr>
<td>Machining Characteristics</td>
<td>106</td>
</tr>
<tr>
<td>Mechanical Applications</td>
<td>106</td>
</tr>
<tr>
<td>Mechanical Properties</td>
<td>107</td>
</tr>
<tr>
<td>Medical Applications</td>
<td>110</td>
</tr>
<tr>
<td>Metallization of Teflon</td>
<td>111</td>
</tr>
<tr>
<td>Molding and Molding Powders</td>
<td>112</td>
</tr>
<tr>
<td>Molecular Structure</td>
<td>113</td>
</tr>
<tr>
<td>Nuclear Properties</td>
<td>115</td>
</tr>
<tr>
<td>Nuclear & Electronic Resonance Properties</td>
<td>119</td>
</tr>
<tr>
<td>Optical Properties</td>
<td>124</td>
</tr>
<tr>
<td>Paint Applications</td>
<td>127</td>
</tr>
<tr>
<td>Permeability (Gas) & Diffusion Behaviour</td>
<td>128</td>
</tr>
<tr>
<td>Phase Transitions</td>
<td>130</td>
</tr>
<tr>
<td>Physical Properties</td>
<td>131</td>
</tr>
</tbody>
</table>
This bibliographic compilation closes the gap which exists in the open literature with respect to information on the chemistry, properties (chemical, electrical, mechanical, thermal), applications, polymerization of polytetrafluoroethylene plastics. Persons interested in any special property, fabrication process, applications, crystallographic information on polytetrafluoroethylene plastics will find herein a concentration of reference literature.

A preliminary survey by one of the authors (John T. Milek, "Polytetrafluoroethylene," Electronic Properties Information Center, Hughes Aircraft Company, Culver City, Calif., EPIC Report DS-106, September 1964, AD 413907) revealed that no comprehensive book or report had been prepared on this plastic in many years. The bibliography references compiled herein were obtained from the following indexing and abstracting services:

1. Applied Science & Technology Index
2. Bibliographic Index
3. British Technology Index
4. Business Periodicals Index
5. Chemical Abstracts
6. Engineering Index
7. Engineering Index (Electrical/Electronics)
8. Engineering Index (Plastics)
10. International Aerospace Abstracts
11. Nuclear Science Abstracts
12. Science Abstracts
13. DDC Technical Abstract Bulletin
14. NASA Scientific & Technical Aerospace Reports

The bibliography includes references cited in the indexes through issues of June 1965. A supplement is planned to include references from other sources at a later date.

An omission of a very valuable collection of information on Teflon exists in this bibliography report, namely, that contained in the JOURNAL OF TEFILON published by the Plastics Department of the E.I. du Pont de Nemours & Co. (Inc.), Wilmington, Del. 19898. This body of reference material is not indexed by the standard indexing and abstracting services mentioned above, hence are not included. Although widely distributed by the du Pont Company, very few libraries have complete sets of the JOURNAL OF TEFILON on their shelves. Also excluded or omitted are vendor data or catalog sheets and reprints since these are not covered by indexing and abstracting services.

The literature search was conducted by Mr. Wilcox under the supervision of Mr. Bloomfield (who also provided for its publication). The general subject organization and report editing was accomplished by Mr. Milek. The manuscript was typed by Mrs. Linda Capizzo.
A BIBLIOGRAPHY ON POLYTETRAFLUROETHYLENE (TEFLON) PLASTICS
by
J. T. MILEK, H. WILCOX, and M. BLOOMFIELD

Ablation Behaviour and Properties:

1. Adams, E. W.
 Analysis of Quartz and Teflon Shields for a Particular Re-Entry Mis-
 sion. In HEAT TRANSFER AND FLUID MECHANICS INSTITUTE, 1961, PROCEED-

 Re-Entry Observables in the Near Wake of a Slender Ablating Teflon
 15811.

 An Experimental Investigation of Several Ablation Materials in an

4. Choudhury, P. R.
 Chemically Reacting Heterogeneous Hypersonic Boundary Layer of Ablat-
 ing Teflon Vapor and Carbon Particles of Low Number Density. In
 INTERNATIONAL SYMPOSIUM ON SPACE TECHNOLOGY AND SCIENCE, 5TH,
 TOKYO, JAPAN, SEP. 2-7, 1963, PROCEEDINGS. Ed. by Tsuyoshi Hayashi. Tokyo,

6. Compton, D. L., et al. (NASA. Ames Research Center, Moffet .eld,
 Calif.)
 Measurements of the Effective Heats of Ablation of Teflon and Poly-
 ethylene at Convective Heating Rates from 25 to 420 BTU/Ft² Sec.

7. Diasconis, N. S., et al. (Gen. Electric Co. Missile and Space Vehicle
 Dept., Philadelphia.)
 The Heat Protection Potential of Several Ablation Materials for Sat-
 ellite and Ballistic Re-Entry into the Earth's Atmosphere. 65 p.
 Sept. 11, 1959.

8. Disappearing Teflon May Cool Returning Space Vehicles. MACHINE DESIGN,
 v. 32, no. 34, Jan. 7, 1960.

9. Hanst, P. L.
 Surface-Temperature Measurements on Ablating Missile and Satellite
 1962. p. 489-496.
 An Experimental Study of the Behavior of Spheres Ablating Under
 Constant Aerodynamic Conditions. NASA Technical Note D-1635 (April
 1963), 15 p.

11. Hurd, D. E., et al. (Gen. Dynamics Corp. Convair Div., San Diego,
 Calif.)
 Effects of High Temperature, High Velocity Gases on Plastic Mater-

 and Space Systems Div., Santa Monica, Calif.)
 NASA-N63-81564.

 Philadelphia, Pa.)
 N64-26158.

 The Effects of Thermal Environmental Parameters on Ablation Charac-
 teristics. Technical Report 60-101, Conference on Behavior of Plas-
 tics in Advanced Flight Vehicle Environments, by H. S. Schwartz.

16. Myers, H.
 Aerodynamically Heated Surfaces: A Chemical Analysis. AERO-SPACE

17. Newman, R. L.
 Kinetic Treatment of Ablation. J. SPACECRAFT & ROCKET-v. 2, no. 3,

18. Norin, T. L.
 The Measured Electrical Characteristics of Several Ablative and Some
 Non-Ablative High Temperature Radome Materials. In SYMPOSIUM ON
 ELECTROMAGNETIC WINDOWS, 7TH, OHIO STATE U., COLUMBUS, OHIO, JUN. 2-4,

 Ablation Measurements in Turbulent Flow. ARS, SPACE FLIGHT REPORT TO

20. Ohsol, E. O.
 Selection of Plastic Materials for Extreme Temperature Environments.

22. Rashis, B. and T. E. Walton, Jr. (NASA. Langley Res. Center, Langley Field, Va.)

24. Rashis, B., et al. (Langley Aeronautical Lab., Langley Field, Va.)

27. Scala, S. M. and N. S. Diaconis.

31. Vojvodic, N. S. (NASA. Ames Res. Center, Moffett Field, Calif.)
32. Walton, I. E., Jr., et al.

34. Winters, C. W. and W. G. Witte. (NASA. Langley Res. Center, Langley Station, Va.)

35. Winters, C. W. and E. M. Brancelente. (Langley Res. Center, Langley Station, Va.)

36. Zemer, R. F.

Additive and Modifier Applications:

38. Ames, J. (Imperial Chem. Industries Ltd.)

40. Blatz, P. S. (E. I. du Pont de Nemours & Co.)

42. Borisov, S. N., et al.

57. Konkle, G. M. and T. D. Talcott. (Dow Corning Corp.)

58. Konkle, G. M. and T. D. Talcott. (Dow Corning Corp.)

59. Kumpf, H. (Graphitwerk Kropfmuehl Akt.-Ges.)
Pressed Graphite Moderators for Atomic Reactors. Ger. 1,037,608, Aug. 28, 1958 (Cl. 21g). Addn. to Ger. 1,021,514 (CA 54,11774c).

60. Nemecek, J.

61. Onderzoeksinstituut Research, N. V.

62. Rhone-Poulene S.A.

63. Societe d'etudes, de Recherches et de Controle des Effets de la Triboelectricite.

64. South African Council for Scientific and Industrial Research.

Adhesive Properties and Applications:

67. Chesnut, J. A. and J. D. Singalewitch. (Johnson & Johnson)

82. Jordan, O.

83. Korolev, A. Ya., et al.
Adhesion of Poly(tetrafluoroethylene) to Metals. VYSOKOMOLEKUL.

84. Landler, I. and P. Lebel. (Polyplastic)
Chemical Reactivity of Fluorinated Polymers and Their Superficial
Grafting by Preozonization. Fr. 1,296,650, June 22, 1962, Appl.

85. Landler, I. and P. Lebel. (Pneumatiques et Caoutchouc Manufacture
Kleber Colombes)
Fluorine Polymers with Improved Surface Properties. Belg. 617,260,

86. McFarlane, J. S. and D. Tabor.
Adhesion of Solids and the Effect of Surface Films. PROC. ROY. SOC.

87. Mann, R.
Two Component Adhesives for Elastomers. Fr. 1,347,124 (Cl. C 09i),

88. Naval Applied Science Lab., Brooklyn, N. Y.
Investigation of Teflon, Pressure Sensitive Electrical Tape. NASL
64S34ML. Apr. 2, 1964. 13 p. DDC AD-433 842L.

91. Polymer Bond; Untreated Fluorocarbon Bonded Without Melting. PLASTICS

92. Rappaport, G. (Gen. Motors Corp.)
Bonding of Fluorinated Synthetic Resins. U.S. 2,809,130, Oct. 8,
1957.

93. Faraty, L. E. and D. Tabor.
The Adhesion and Strength Properties of Ice. PROC. ROY. SOC., v. A245,

94. Rudner, M. A. (U.S. Gasket Co.)

95. St. Cry, M. C.
Methods of Bonding Fluorocarbon Plastic to Structural Materials.

Applications (Miscellaneous):

Barrier and Membrane Applications:

135. Massignon, D.

137. Moutaud, G. and J. Parisot. (Commissariat a l'Energie Atomique.)

138. Muehlberg, P.E., et al. (Dow Chem. Co.)

Trans. for Oak Ridge Gaseous Diffusion Plant from Fr. 1,213,624, Sept. 18, 1958. 18 p.

140. Nicollier, C.

143. Perona, G., et al. (C.I.S.E. Centro Informazioni Studi Ricerche Societa a R.L.)

144. Plurien, P. and J. Parisot. (Commissariat a l'Energie Atomique.)

146. Reid, C. and J. R. Kuppers.

148. Roberts, R. (E.I. du Pont de Nemours & Co.)

150. Shiraishi, Y. and M. Ukaji. (Osaka Metal Industries Co.)

151. Societe Le Carbone-Lorraine.

152. Staszewski, R.

Bearing Applications:

156. Anderson, W. J. and R. E. Cunningham. (NASA. Lewis Res. Center, Cleveland, Ohio.)

157. Barry, R. C.

Use of Certain Polymers for Sleeve Bearings. SB. TR. INST. MASHINOVED.

161. Benkelman, W. D.

162. Blaiey, A. (United Kingdom Atomic Energy Authority.)

163. Braithwaite, E. R.

164. Caubet, J. J.

168. Coed, B. C. (Morganite Inc.)

169. Cormeill, J. R. I.

170. Craig, W. D., Jr.

171. Craig, W. D., Jr.

172. Craig, W. D., Jr.
173. Du Puy, L. E. R.

178. Glezi, S.

179. Harmon, R.E.

182. Leduc, M. (Societe le Carbone-Lorraine.)

183. Love, P. P. and D. C. Mitchell. (Glacier Metal Co. Ltd.)
Materials for Bearings. Ger. 1,065,182, Sept. 10, 1959 (Cl. 40b).

184. Love, P. P. (Glacier Metal Co. Ltd.)

185. McLeish, F. J. and G. C. Pratt. (Glacier Metal Co. Ltd.)

186. Mitchell, D. C. and G. C. Pratt. (Glacier Metal Co. Ltd.)
187. Mitchell, D. (Glacier Metal Co. Ltd.)
Plain Bearings or Antifriction Elements. U.S. 2,788,324, Apr. 27, 1957.

188. Mitchell, P. D.

189. Morgan, V. T. and B. Sleight. (Bound Brook Bearings, Ltd.)

196. Pratt, G. C. (Glacier Metal Co. Ltd.)

197. Pratt, G. C. and E. M. Rowan. (Glacier Metal Co. Ltd.)

200. Riesing, E. F. (Gen. Motors Corp.)
201. Rising, D. B. and E. S. Shanley. (Garlock Inc.)

202. Rulon-Miller, R., et al. (Dixon Corp.)
Perfluoropropylene-Tetrafluoroethylene and Nylon Bearings. U.S. 3,

Evaluation of Ball-Bearing Performance in Liquid Hydrogen at DN Values

204. Self-Lubricated Bearing with Teflon-Glass Liner Takes Loads to 60,000

205. Tait, W. H. (Glacier Metal Co. Ltd.)

p. 79.

208. Teflon Fabric Used to Face Metal Bearings. MATERIALS & METHODS, v.
44, July 1956. p. 11.

p. 184.

210. Teflon Stops Galling in New Type of Bearing. MATERIALS IN DESIGN ENG.,

211. Tiny Bearings; Fluorocarbon Replaces Felt in Piano Actions. PLASTICS
WORLD, v. 21, July 1963. p. 43.

Bearings in Plastics Materials. ENG. MATLS. & DESIGN, v. 8, no. 2,

213. White, H. S. (U.S.A. as represented by the Secy. of the Navy.)
Bearing Compositions Containing Polytetrafluoroethylene. U.S. 2,715,

214. White, H. S. (U.S.A. as represented by the Secy. of the Navy.)
Bearing Compositions Containing Poly(tetrafluoroethylene) and Poly

215. Who's Using Unlubricated PTFE Bearings. ENGINEERING, v. 191, Feb. 3,

216. Williams, F. J.
High-Temperature Airframe Bearings and Lubricants LUBRICATION ENG.,
Bladders (Expulsion) Applications:

217. Andreopoulos, T. C. (NASA)

218. Bell, J. E., et al. (Beech Aircraft Corp., Boulder, Colo.)

221. DeBan, H. G. (Bell Aerosystems Co., Buffalo, N.Y.)

224. Krivetsky, A., et al. (Bell Aerosystems Co., Buffalo, N.Y.)

Cable and Wire Applications:

226. Boche, E. J. and W. D. McKenzie. (Industrial Lab., Mare Island Naval Shipyard, Vallejo, Calif.)
227. Boche, E. J. and W. D. McKenzie. (Industrial Lab., Mare Island Naval Shipyard, Vallejo, Calif.)
2 p. ASTIA AD-215 606.

228. Boche, E. J. and W. D. McKenzie. (Industrial Lab., Mare Island Naval Shipyard, Vallejo, Calif.)
6 p. ASTIA AD-212 636.

231. De Young, D. N. and G. R. Snelling.
Extrusion of "Teflon" 6 Tetrafluoroethylene Resin for Wire Insulation.
WIRE & WIRE PRODUCTS, v. 32, no. 6, June 1957. p. 644-651, 713.

232. Dorst, S. O. (Sprague Electric Co.)

Design and Fabrication of Type II Wire. Rept. on Phase 5 on Type 2 Wire. Dec. 1-22, 1960. 41 p. ASTIA AD-252 185L.

234. Finholt, R. W. and W. J. Wunch. (Gen. Electric Co.)

235. Franz, G. E.

236. Friese, C. L. (Martin-Marietta Corp.)

237. Goldie, W.

238. Heering, H. (Siemens-Schuckertwerke Akt.-Ges.)

239. Holland, J. W.
240. Johnson, R. W.
Paste Extrusion of Filled TFE-Fluorocarbon Resin for Wire Insulations.

243. Keyes, J. J. (Westinghouse Electric Corp.)

244. Land, W. M.
Teflon 100X FEP Wire and Cable Insulation: Its Place in the Fluoro-

245. Lewis Engineering Co., Naugatuck, Conn.
High Temperature Insulated Wire Development. Final Rept. on Phase 5.

246. Lovett, R. S. and R. E. Stabler.
Wire Insulation of "Teflon" FEP-Fluorocarbon Resin--Properties and
Fabrication. WIRE & WIRE PRODUCTS, v. 33, no. 10, Oct. 1958. p. 1192-
1195, 1283.

247. McKenzie, W. D. and E. J. Boche. (Industrial Lab., Mare Island Naval
Shipyard, Vallejo, Calif.)

Development of Low Temperature Dielectric Coatings for Electrical

Labs.)
Development of Low Temperature Dielectric Coatings for Electrical Con-

250. Midner, R. C.

251. Morrison, W. G., Jr. (Gen. Electric Co.)

Evaluation of Teflon Hook-Up Wire. Quarterly Progress Rept. no. 1
(covering period June 15 to Sept. 15, 1954), 9 p. ASTIA AD-56 616.
Evaluation of Teflon Hook-Up Wire. Quarterly Progress Rept. no. 2

Evaluation of Teflon Hook-Up Wire. Quarterly Progress Rept. no. 4
(covering period Mar. 15 to June 15, 1955), 149 p. ASTIA AD-71 404.

Evaluation of Teflon Hook-Up Wire. Final Rept. (covering period

256. New Fluorocarbon Wire Insulation Resists Abrasion, Cut-Through.

Investigation of "Teflon" Tape Insulated Wire, Inso Products Limited,
 Manufacturer. Final Rept. Apr. 10, 1958. 2 p. ASTIA AD-203 010L.

258. Nicoll, W. A. (E.I. du Pont de Nemours & Co.)
Appl. Nov. 21, 1956.

259. Nicoll, W. A. (E.I. du Pont de Nemours & Co.)
Printing on a Fluorocarbon Resin Surface. U.S. 3,018,188, Jan. 23,

The Techniques of Insulating Cable with Polytetrafluoroethylene.

261. Ondrejcin, J. J.
Wire Insulated with "Teflon" Tetrafluoroethylene Resin for High Tem-
perature Uses. WIRE & WIRE PRODUCTS, v. 30, no. 7, July 1955. p. 776,
780, 815-816.

262. Owens-Corning Fiberglas Corp., Granville, Ohio.
54 p. ASTIA AD-264 768.

264. Sanders, P. F. (E.I. du Pont de Nemours & Co.)

Tetrafluoroethylene (Teflon) Resin-Coated Wire. SUMITOMO DENKI, no.

266. Young, H. R. (E.I. du Pont de Nemours & Co.)
Glass-Fiber Insulating Tape Impregnated with Polytetrafluoroethylene.

22
Capacitor Applications:

Production Engineering Measure for Capacitor, Vaporized Teflon,
Metallized Glow-Discharged Deposited Dielectric Film. Fifth Quar-
NASA-N64-24979.

268. Bickley, W. H. and R. C. Smith. (Williams, Clyde, and Co., Columbus,
Ohio.)
Quantity-Produced Metallized-Teflon Capacitors - A Step Toward Suc-
cessful Extreme-Service Circuitry. An Evaluation of Commercial Appli-

Production Refinement of Very Thin Gauge "Teflon" Dielectrics. Inter-
im Engineering Rept. no. 4 (covering period Oct. 1 to Dec. 31, 1957),

270. Burnham, J. (Sprague Electric Co.)

Capacitor Subcomponents from Gas Discharge-Polymerized Dielectrics.

Film Dielectric Capacitors. Final Rept. (covering period July 1, 1953

Metallized Teflon Capacitors. Scientific Rept. no. 1 (covering period

274. Dalin, G. A. and M. Pope. (Balco Res. Labs., Newark, N.J.)
Metallized Teflon Capacitors. Scientific Rept. no. 2 (covering period

275. Goldstein, M. K. and P. Heilmann. (Balco Res. Labs., Newark, N.J.)
Metallized Teflon Capacitors. Scientific Rept. no. 7 (covering period

Metallized Teflon Capacitors. Scientific Rept. no. 8 (covering period

277. Goldstein, M. K. (Balco Res. Labs., Newark, N.J.)
Metallized Teflon Capacitors. Rept. on Improved Electronic Components
278. McConnell, A. M. (Astron Corp., East Newark, N.J.)
Production Engineering Measure for Capacitor, Vaporized Teflon,
Metallized Glow-Discharged Deposited Dielectric Film. Sixth Quar-

279. Robinson, P. and C.C. Reid. (Sprague Electric Co.)

280. Robinson, F. (Sprague Electric Co.)

281. Schill, H. and F. Geenge. (Siemens & Halske A.-G.)

282. Smith, C. R. and W. H. Bickley. (Williams, Clyde, and Co., Columbus,
Ohio.)
Quantity-Produced Metallized-Teflon Capacitors - A Step Toward Suc-
cessful Extreme Service Circuitry. An Evaluation of Commercial Ap-

283. Yasuda, T. and M. Shimomura. (Nippon Valqua Industries Co.)

Chemical Analysis:

284. Bezuglyi, V. D.
Investigation of Polymers by Means of Polarography. ZAVODSK. LAB.,

285. Blackburn, R.
Determination of Fluorine in Organic Compounds by Fast Neutron Acti-

Chemical Shift and the Fine Structure of the Signal of Nuclear Mag-
netic Resonance of Fluorine-19. II. Organic Fluorine-Containing
Compounds. IZVEST. VYSSHIKH UCHEB. ZAVEDENII, RADIOFIZ., v. 1,

Investigation of Macroradicals Arising During Mechanical Destruction

Fluorination of Samples in Spectral Analysis. ZAVODSK. LAB., v. 29,

Application of Spectroscopy to the Production of Plastics. MOLEKUL-
YARNAYA SPEKTROGOFIYA, LENINGRAD GOSUDARST. UNIV. IM A.A. ZHDANOVA,

301. Sites, J. R. and R. Baldock. (Oak Ridge Nat. Lab.)
Mass Spectrometer Studies of High Vacuum Materials. ORNL-1405.

302. Thieme, G.
Mass-Spectrometer Investigation of Gas Emission from Plastics. VACUUM,

303. Wandeberg, E.
Identification of Type of Resin and Filler in Laminated Plastics.

304. Zanten, B. van., et al.
Elementary Analysis of Fluorine by Neutron Activation. INTERN. J.

Chemical Applications:

305. Benedetti-Pichler, A. A.
Products of Interest to the Microchemist. MIKROCHEMIE VER. MIKROCHIM.

306. Bennett, H. S.

All-Teflon Counting Cell for Flowing Radioactive Solutions. ANAL.

309. Bloom, R., Jr., et al.
Materials of Construction for Equipment Used with Hydrogen Peroxide.

Effect of Turbulence on the Streaming Potential. IND. ENG. CHEM.,

311. Brown, C. S.
Teflon Patches Applied Successfully to Damaged Glass-Lined Kettle.

p. 156.

313. Coriou, H. and G. Flante.
Teflon Cells for Determining Polarization Curves. CORROSION ANTI-
Cell for the Continuous Observation of a Growing Electrodeposit.

315. Dammer, O.
Synthetics as Corrosion-Resistant Materials of Construction. Examples
562-565.

316. Fenner, O. H.
Designing with Fluorocarbons for Chemical Applications. MODERN PLAS-

317. Fergusson, W. C.
Heat Resisting. Poly-tetrafluoroethylene. SOC. CHEM. INDUSTRY (CHEM.

318. Fetter, E. C.
Line Tanks with Teflon. CHEM. ENG., v. 56, no. 11, Nov. 1943. p. 120-
124.

319. Fisher, D. J., et al. (Oak Ridge Nat. Lab., Tenn.)
A Corrosion-Resistant Pipetter for Remote Measurement of Radioactive
Samples. TID-7606. p. 311-329.

320. Fluorocarbon Handles a Sticky Problem for Tom Huston Peanut Co. MOD.

321. Fontana, M. G.
New Teflon-Lined Metal Plug Valve for Corrosion Services. IND. & ENG.

322. Foulke, D. G.
Plastics as Plating-Room Engineering Materials. PROC. AM. ELECTRO-

323. Furrer, J.

324. Gonikberg, M. G. and V. M. Zhulin.
Polymerization of Butyraldehyde and Isobutyraldehyde at High Pressures.

325. Hanson, D. B.
Tetrafluoroethylene Resin in Process Equipment. TAPPI, v. 33, no. 11,

<table>
<thead>
<tr>
<th>Reference</th>
<th>Author(s)</th>
<th>Title</th>
<th>Journal</th>
<th>Volume, Issue, Year</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>329.</td>
<td>Keleti, C.</td>
<td>Use of Plastics as Lining for Chemical Plant Equipment</td>
<td>CAN. CHEM. & PROCESS INDUSTRIES</td>
<td>v. 32, no. 11, Nov. 1948</td>
<td>1007-1008</td>
</tr>
<tr>
<td>333.</td>
<td>Landa, M.</td>
<td>Influence of Ammonium Polysulfide on Technical Material</td>
<td>SB. PRACI VYZKUMU CHEM. VYUZITI UHLI, DEHTU ROPY</td>
<td>no. 1, 1960</td>
<td>182-190</td>
</tr>
<tr>
<td>334.</td>
<td>Landault, C. and G. Guiochon</td>
<td>Teflon as a Support in Gas-Liquid Chromatography</td>
<td>J. CHROMATOG.</td>
<td>v. 9, 1962</td>
<td>133-146</td>
</tr>
<tr>
<td>337.</td>
<td>Onaka, T. and T. Okamoto</td>
<td>Teflon Coated Support for Gas Chromatography at a Lower Temperature</td>
<td>CHEM. PHARM. BULL., Tokyo</td>
<td>v. 10, no. 8, 1962</td>
<td>757-760</td>
</tr>
<tr>
<td>338.</td>
<td></td>
<td>PTFE Fluid Handling Equipment</td>
<td>POWER & WORKS ENGNG.</td>
<td>v. 58, Nov. 1963</td>
<td>54-56</td>
</tr>
</tbody>
</table>
340. Postelnek, W.

343. Rossa, B. B.

345. Sentementes, T. J. and M. A. De Sesa.

347. Shepard, S. W.

352. Wendlandt, R. and H. Kessler. (Norddeutsche Chemische Werke G.m.b.H.)
Pumps for Mixtures of Liquid Nitrogen Peroxide, Nitric Acid, and Water. Ger. 1,032,723, June 26, 1968 (Cl. 121).

353. Yelton, E. B.
Chemical Reactions:

359. Harmon, J. and R. M. Joyce, Jr. (E.I. du Pont de Nemours & Co.)

360. Krespan, C. G. (E.I. du Pont de Nemours & Co.)

361. Krespan, C. G. (E.I. du Pont de Nemours & Co.)

363. Low, S. (Chapman Valve Manufg. Co.)

366. Pummer, W. J. and J. A. Wall.

367. Regan, J. F. (E.I. du Pont de Nemours & Co.)

368. Shipp, L. S. J. and R. P. Smith. (Imperial Chem. Industries Ltd.)

Coatings:

371. Amelungse, H.

372. Anders, H.

373. Aykanian, A. A. and F. A. Carlson, Jr. (Monsanto Chem. Co.)

375. Bardin, P. C.

377. Bartlett, R. C.

378. Bird, V.

381. Britain, J. W. (Mobay Chem. Co.)

382. Brumbaugh, C. C. and R. A. Springer (Diamond Alkali Co.)

383. Brumbaugh, C. C. and R. A. Springer (Diamond Alkali Co.)

384. Bruner, W. M. (E.I. du Pont de Nemours & Co.)

385. Buckingham, W. T. (Griscom-Russell Co.)

386. Cahne, A. (Marc Gregoire)

387. Checkel, R. L.

Masking Material for Paint and Lacquer Coatings. U.S. 3,139,352
(Cl. 117-5.5), June 30, 1964, Appl. Aug. 8, 1962. 5 p.

Coating of Polytetrafluoroethylene Articles with Metals. U.S. 2,689,
80E, Sept. 21, 1954.

392. Dell, H. W.

Polymer-Coated Fabric for Self-Lubricating Bearings. Brit. 909,379,

Fluorocarbon-Polymer Mold Coatings for Ingots or Sand Castings. Brit.

395. Duvivier, C.
Application of High-Melting Coatings to Low-Melting or Flame-Sensitive

396. Evans, V.
Plastic Coatings for Metals Based on Thermoplastics. BRITISH WELDING

397. Extrusion Coating; Great Packaging Discoveries. MOD. PACKAGING,

398. Fay, R. E., Jr. (E.I. du Pont de Nemours & Co.)

399. Fay, R. E., Jr. (E.I. du Pont de Nemours & Co.)
Coating of Fabric with Poly(tetrafluoroethylene). U.S. 2,843,302,
July 15, 1958.

400. Fay, R. E., Jr. (E.I. du Pont de Nemours & Co.)

Pittsburgh.)
Ultrahigh Vacuum Techniques. Annual Report (covering period Jan. 1
38 p.

p. 74.

403. Fischbein, I. W. (Gillette Co.)
Safety Razor Blades. Ger. 1,147,141 (Cl. 69), Apr. 11, 1963; U.S.

33

417. Hochberg, S. (E.I. du Pont de Nemours & Co.)

418. Holly, R. B. (Armstrong Cork Co.)
Asbestos-Rubber Sheet Saturated with Poly(tetrafluoroethylene). U.S.

419. Huntsberger, J. R. (E.I. du Pont de Nemours & Co.)

420. Indevco Ltd.
Cupric Oxide Coatings on Copper. Brit. 925,675, May 8, 1963; South

421. Jovane, F.
Behavior of Copper During Severe Homogeneous Deformation. MET. ITAL.,

422. Jurgensen, D. F. and D. B. Crawford (E.T. Oakes Corp.)
Coatings for Apparatus for Foaming of Rubber Latex. U.S. 2,695,246,
Nov. 23, 1954.

423. Kilbourne, F. L., Jr. and T. S. Moroney (Connecticut Hard Rubber Co.)

424. Kobrin, C. L.
Teflon Teams up with Aluminum; One-Coat Spray Process Combines Diverse

425. Krail, F. (Deutsche Gold- und Silber-Scheideanstalt vorm. Roessler)
Apparatus for the Production of Fluorides. Ger. 1,001,242, Jan. 24,
1957 (Cl. 121, 10).

Coating of Fibrous Materials with Poly(tetrafluoroethylene). U.S.

427. LeMay, C. Z.
Masking of Epitaxial Germanium by Fluorocarbons. ELECTROCHEM. TECH-

428. Liger, A. W.
Spray-Booth Coating. U.S. Pat. Appl. 150,557. OFFICIAL GAZ., v. 652,
1951. p. 892.

Production of Thin Polytetrafluoroethylene Resin (Teflon) Coatings by
Research and Development of Thin Polytetrafluoroethylene (Teflon)
Coatings by Electrodeposition. Quarterly Rept. (covering period Mar.

Research and Development of Thin Polytetrafluoroethylene (Teflon)
Coatings by Electrodeposition. Quarterly Rept (covering period June

Preparing Copper for Coating with Poly(tetrafluoroethylene). U.S.S.R.

Chemical Resistance of Fluorocarbon Coatings and Linings. A Report of
NACE Tech. Unit. Comm. T-6A on Organic Coatings and Linings for Resis-
tance to Chemical Corrosion. Prepared by Task Group T-6A-12 on Fluoro-

434. Machlin, E. S.

435. Marks, H. (Boeing Airplane Co.)
Coatings of Oxides and Polymers for Metals. Belg. 619,766, July 31,

436. Mitchell, D. C. and D. A. Starkey (Glacier Metal Co. Ltd.)
Impregnation of Porous Metal Strip with Polytetrafluoroethylene. U.S.
2,813,041, Nov. 12, 1957.

437. Nagel, F. J.
84-91.

438. Neumann, J., et al. (Kempchen & Co. G. m.b.H.)
Perfluoroethylene Coatings. Ger. 1,064,014, Aug. 27, 1959(C1 8h).

439. Neumann, J. and A. Tambert (Kempchen & Co. G.m.b.H.)
Polytetrafluoroethylene-Coated Sheets and Laminates. Ger. 1,070,589,
Dec. 10, 1959 (Cl. 81).

Applying Protective Coatings of Fluoroplast-3 by Flame Coating.

Industrial Application of Anticorrosion Coatings from Fluoroplast-3.

442. Osdal, L. K. (E.I. du Pont de Nemours & Co.)
Aqueous Coating Composition from Poly(tetrafluoroethylene, Poly-organo-
siloxane), and an Acrylic Triopolymer. U.S. 3,062,764, (Cl. 260-29.3),
<table>
<thead>
<tr>
<th>Number</th>
<th>Citation</th>
<th>Details</th>
</tr>
</thead>
</table>
455. Sanders, P. F. (E.I. du Pont de Nemours & Co.)
Coating Compositions from Polytetrafluoroethylenes and Phenol Aldehydes.

456. Singleton, J. H.
OF THE TENTH NATIONAL VACUUM SYMPOSIUM OF THE AMERICAN VACUUM SOCIETY.

457. Societe d'Exploitation de Produits pour les Industries Chimiques (SEP
PIC.)
Coating of Metallic Surfaces with Plastic Materials, Especially Poly

458. Spawn, O. J.
New Finishes Give Refrigerator Parts Improved Runoff-Properties.

459. Spray-On Teflon Forms Low-Friction Coating. MACHINE DESIGN, v. 30,

460. Swiss, J. (Westinghouse Electric Corp.)

461. Tefal Co.
Refractory Coating of Metals Forming a Substrate for Subsequent Cov-

462. Teflon-and-Steel Die Forms Superalloys. AM. MACH/METALWORKING MANUF.,

p. 48-49.

465. Teflon for Tanks; Spray Coating of Process Equipment. CHEM. IND.,

466. Than, B. and P. P. Benham.
The Protection of Steel Against Corrosion Fatigue by Nonmetallic
Coatings. I: INTERN. CONGR. METALLIC CORROSION, 1ST, LONDON, ENGL.

467. Union Chimique Belge S. A.
Organopolysiloxane-Polytetrafluoroethylene Release Coatings for Metals.

468. Union Chimique Belge S. A.

Combustion:

Compatibility:

Brown, J. A.

Bureau of Ships.

Chen, F., et al.

Clark, J. D., et al. (Picatinny Arsenal, Dover, N.J.)

Davis, N. S. and J. N. Keefe.

Green, J., et al. (Thiokol Chem. Corp., Denville, N.J. Reaction Motors Div.)

Jackson, J. D. and W. K. Boyd. (Defense Metals Information Center, Battelle Memorial Inst., Columbus, Ohio.)

Jackson, J. D., et al. (U.S. Dept. Com., Office Tech. Serv.)
493. Kelman, L. R., et al. (Argonne Nat. Lab., Ill.)
NASA-N63-60648.

Richland, Wash.)
5 p.

495. Moore, R. E. (U.S. At. Energy Comm.)
The Thermal Stability of Teflon and its Compatibility with Austenitic
p. 53-59.

496. Mowers, R. E.
How the New Propellants Affect Plastics and Elastomers. MATERIALS IN

497. Nihart, G. J. and C. P. Smith. (Union Carbide Corp., Tonawanda, N.Y.
Cryogenic Development Lab.)
Compatibility of Materials with 7500 psi Oxygen. Final Report (cover-

Material for Use in Production of Fluorine. Brit. 691,733, May 20,
1953.

499. Rosenblum L. and H. Putre. (Lewis Res. Center, Cleveland, Ohio.)
Compatibility of Several Plastics and Elastomers with Sodium, Potas-

Copolymers and Copolymerization:

Fluoropolymer Compositions. Brit. 952,452 (Cl. C 08f), Mar. 18, 1966;

Fluid Compositions Containing Copolymers of Tetrafluoroethylene and

503. Borders, A. M. (Minnesota Mining and Manuf. Co.)
Synthesis and Evaluation of New Polymers. Quarterly Progress Report
no. 23 (covering period Nov. 15, 1954 to Feb. 15, 1955), NP-5721.
26 p.

505. Bowers, G. H., III. (E.I. du Pont de Nemours & Co.)

Cross Linking of Teflon 100 FEP-Fluorocarbon Resin by Radiation. IND.

Polytetrafluoroethylene-Cellulose Ester Compositions. U.S. 3,118,846

508. Bror, M. I. (E.I. du Pont de Nemours & Co.)
Copolymers of Tetrafluoroethylene and Fluorinated Olefins. U.S. 2,
343,080, June 28, 1960.

Arctic Rubber. 1962. 81 p. DDC AD-418 638.

Composition Comprising a Polyhalogenated Ethylene Polymer and Viscose.

511. Callahan, H. P. and D. G. Jordan. (American Cyanamid Co.)

512. Chapiro, A. and A. Matsumoto.

513. Chapiro, A. and M. Magat. (Centre National de la Recherche Scientifique.)
Graft Copolymers and Grafting on Finished or Semifinished Materials.
Fr. addn. 72,899, Apr. 29, 1960, Appl. Feb. 12, 1958. 3 p. Addn. to Fr. 1,130,099.

514. Chapiro, A. and A. Matsumoto.
Influence of Temperature on the Grafting of Styrene on Films of Poly

515. Chapiro, A. (U.S. At. Energy Comm.)
516. Chapiro, A.

517. Chapiro, A.

518. Chapiro, A.

High-Strength Uniform Ion-Exchange Membranes. Hung. 147,164, July 1, 1960.

525. Dobo, J., et al.

Binders for Poly(tetrafluoroethylene). Ger. 952,997, Nov. 22, 1956 (Cl. 221, 2).

534. Errede, L. A.

536. Hardy, G. and J. Dobo.

537. Hauptschein, M. and M. Braid. (Pennsalt Chem. Corp.)

539. Hayden, P. and R. Roberts.

540. Herrle, K., et al. (Badische Anilin- & Soda-Fabrik, Akt.-Ges.)

541. Hines, R. A. and W. F. Busse (E.I. du Pont de Nemours & Co.)
542. Hirayama, T., et al. (Showa Electric Industry Co.)

Radiation Chemistry of Ethylene Oxide. AEC-tr-6731. p. 525-533

544. Hoyt, J. M. (Minnesota Mining & Manufg. Co.)

545. Hoyt, J. M. (Minnesota Mining & Manufg. Co.)

546. Imperial Chemical Industries Ltd.

547. Imperial Chemical Industries Ltd.

548. Imperial Chemical Industries Ltd.

549. Jendrychowska-Bonamour, A. M.

551. Joyce, R. M., Jr. (E.I. du Pont de Nemours & Co.)

552. Joyce, R. M., Jr. (E.I. du Pont de Nemours & Co.)

553. Kargin, V. A.

556. Korshak, V. V., et al.

557. Korshak, V. V., et al.

558. Korshak, V. V., et al.

559. Landler, Y. and P. Lebel.

561. Mallouk, R. S. (E.I. du Pont de Nemours & Co.)

562. Mallouk, R. S., et al. (E.I. du Pont de Nemours & Co.)

563. Martin, E. L. (E.I. du Pont de Nemours & Co.)

564. Martin, E. L. (E.I. du Pont de Nemours & Co.)

566. Matsuo, H. and M. Kondo.

567. Miller, W. T. (USA, as represented by the Atomic Energy Comm.)

Accelerating Effect of Additives on Radiation-Induced Graft Copolymerization. RAI-301. 1962. 54 p.

Accelerative Effects in Radiation-Induced Graft Copolymerization. TID-7643. 1962. p. 233-244.

578. Pattison, D. B. (E.I. du Pont de Nemours & Co.)

579. Radiation Applications Inc., Long Island City, N.Y.

592. Smith, J. F. (E. I. du Pont de Nemours & Co.)

593. Smith, J. F. (E. I. du Pont de Nemours & Co.)

594. Smith, J. F. (E. I. du Pont de Nemours & Co.)

595. Sobue, H., et al. (Research Foundation for Development of Industries)

596. Sobue, H., et al. (Japanese Assoc. for Radiation on Polymers)

597. Stott, L. L. (Polymer Corp.)

598. Stott, L. L. (Polymer Processes, Inc.)

599. Tabata, Y., et al.

600. Tarutina, L. I.

601. Te Grotenhuis, T. A. and G. H. Swart (Gen. Tire & Rubber Co.)
Copolymers of 3,4- or 3,5-Dichloro-alpha-Methylstyrene with Fluoroethylenes. U.S. 2,546,504, Apr. 10, 1951.

Combination of the Polymer Systems Poly(tetrafluoroethylene) and Polyethylene. IZV. VYSSHIKH UCHEBN. ZAVEDENII, KHIM. I KHIM. TEKHNOL., v. 7, no. 3, 1964. p. 482-485.

604. Wilkus, E. V. (Gen. Electric Co.)

Corrosion Studies:

609. Chiostri, E.

610. Foster, P. K. and A. Tombs.

611. Holley, J. H., et al.

615. Koenig, W. W. (Hanford Works, Richland, Wash.)
616. Landau, R.
Corrosion by Fluorine and Fluorine Compounds. CORROSION, v. 8, 1952.
p. 283-288.

Corrosion Data from the ORNL Purex Pilot Plant Acid Recovery Equip-

Corrosion Data from the ORNL Purex Pilot Plant Acid Recovery Equip-
ment. ORNL-1210. 1962. 71 p.

Experiments on the Corrosion Resistance of Various Materials in Re-
gard to Sodium Chlorite Solutions Apt to be Used in the Textile In-

620. Shackleton, J. W.

621. Shefcik, J. J. (U.S. At. Energy Comm.)

622. Turner, I. T.
Corrosion of Electrical Equipment by Plastics. MATER. PROTECT., v.

623. Zavyazkin, P. G.
Protection of Chemical Equipment Against Corrosion and Erosion.

Crystal Structure:

624. Bryant, W. M. D.
Crystal Structure of Polytetrafluoroethylene. Presented at 130th

625. Bunn, C. W.
Crystallinity in Polymers: Occurrence, Measurement, and Influence on
Properties. SOC. CHEM. IND. (LONDON) MONOGRAPH, v. 5, 1959. p. 3-
13.

626. Clark, E. S. and H. W. Starkweather, Jr.
The Crystal Structure of Quenched Poly(tetrafluoroethylene). J.

627. Clark, E. S.
Partial Disordering and Crystal Transitions in Poly(tetrafluoroethy-

628. Eby, R. K.
The Crystalline Relaxation and First-Order Transitions in Poly(tetra-

631. Fujimoto, K.

632. Fujimoto, K.

634. Hashimoto, M.

635. Heber, I.

637. Jenckel, E.
Crystallization of High Polymers. KUNSTSTOFFE-PLASTICS, v. 5. p. 305-312.

639. Kilian, H. G.

641. Kilian, H. G.

642. Kilian, H. G.

648. McCrum, N. G.

652. Miyake, A.
Melting Fracture and Crystallization of gamma-Irradiated Poly(tetra-

654. Penningink, R.
Crystallographic Study of Teflon. COMPT. REND. 27E CONGR. INTERN.
CHIM. IND. (BRUX. v 3), 1954. p. 3; INDUSTRIE CHIM. BELGE, v. 20,

Investigation of the Crystallinity of Some Polymers by Means of In-

656. Selikhova, V. I., et al.
Comparative Study of Highly Oriented Crystalline and Amorphous Poly-

Crystallographic Study of the Film Structure of Styrene Grafted on
Poly(tetrafluoroethylene). Destruction of the Graft Copolymer by

658. Sidorovich, A. V. and E. V. Kuvshinskii.
Thermomechanical Investigation of Amorphous and Crystalline Polymers.

659. Symons, N. K. J.
Crystals of Poly(tetrafluoroethylene) Grown from Solution. J. POLY-

660. Symons, N. K. J.
Growth of Single Crystals of Poly(tetrafluoroethylene) from the Melt.

Some Characteristics of the Crystal Structure of Polymers with Elec-
tron Paramagnetic Resonance. In FIZ. PROBL. SPEKTROSKPI, II, AKAD.
NAUK SSSR, MATERIALY 13-GO (TRINADTSATOY) SOVESHCH., LENINGRAD,

Dispersions:

662. Berry, K. L. (E.I. du Pont de Nemours & Co.)
Aqueous Colloidal Dispersions of Polytetrafluoroethylene and the For-

663. Berry, K. L. (E.I. du Pont de Nemours & Co.)
9, 1949.

664. Berry, K. L. (E.I. du Pont de Nemours & Co.)
Colloidal Dispersions of Poly(tetrafluoroethylene) in Organic Solvents.
665. Berry, K. L. (E.I. du Pont de Nemours & Co.)

666. Berry, K. L. (E.I. du Pont de Nemours & Co.)
Dispersions of Polytetrafluoroethylene-Ethylene Copolymers. U.S. 2,
448,952, Sept. 7, 1948.

667. Berry, K. L. (E.I. du Pont de Nemours & Co.)

Nonaqueous Suspensions of Polymers, Especially Fluoroplasts. U.S.S.R.
130,673, Aug. 5, 1960.

669. Dave, H. J. and E. L. Youse (Acheson Industries, Inc.)
Re-dispersible Dispersion of Polytetrafluoroethylene. U.S. 2,976,257,

Control of pH in Electrodeposition of Poly(tetrafluoroethylene). Brit.

672. Eldridge, J. E. (E.I. du Pont de Nemours & Co.)

673. Emig, F. J. and M. J. Muth. (E.I. du Pont de Nemours & Co.)

674. Erickson, R. W. and R. Hossfeld.
Effect of Cationic and Nonionic Fluorocarbon Surfactants on the Per-

675. Esso Research and Engineering Co.
Electrodeposition of Polymers in Porous Electrodes. Brit. 939,623

676. Evans, E. F. and D. E. Jackson. (E.I. du Pont de Nemours & Co.)
Dispersions of Polymers and Chrysotile Asbestos for Preparing Films.

Binder Dispersion for Beater Saturation in Papermaking. U.S. 3,093,

p. 1038.

680. Garrison, W. E., Jr. (E.I. du Pont de Nemours & Co.)

685. Ikeda, C. K. (E.I. du Pont de Nemours & Co.)
Codispersions of Polytetrafluoroethylene and Hydrous Oxides. U.S. 2,592,147, Apr. 8, 1952.

687. Jarvis, W. L. and W. A. Zisman.
The Stability and Surface Tension of Teflon Dispersions in Water. PL REPT. 151-635. 21 p.

688. Kuellmar, K. D., et al. (Farbwerke Hoechst Akt.-Ges.)
Dispersions of Fluorine-Containing Polymers. Ger. 1,081,221, May 5, 1960 (Cl. 39b).

689. Kumnick, M. C. and J. F. Lontz (E.I. du Pont de Nemours & Co.)

690. Lange, A. R. (Sulflo, Inc.)

691. Llewellyn, W. E. (E.I. du Pont de Nemours & Co.)
692. Lontz, J. F. (E.I. du Pont de Nemours & Co.)

693. Lontz, J. F. (E.I. du Pont de Nemours & Co.)

694. Lontz, J. F. and W. B. Happoldt, Jr.

697. Lopez, A. H.

698. Marks, B. M. and G. H. Whipple. (E.I. du Pont de Nemours & Co.)

699. Marks, B. M. and G. H. Whipple (E.I. du Pont de Nemours & Co.)

702. Osdal, L. V. K. (E.I. du Pont de Nemours & Co.)

703. Osdal, L. V. K. (E.I. du Pont de Nemours & Co.)

704. Osdal, L. V. K. (E.I. du Pont de Nemours & Co.)

Electrical Applications:

719. Berry, K. L. (E.I. du Pont de Nemours & Co.)

720. Bondon, L. A.

721. Dehez, A.

723. Ehrreich, J. E. (W. R. Grace & Co.)

724. Eichacker, R.

725. Ely, B. E., Jr., et al. (E.I. du Pont de Nemours & Co.)

726. Heering, H.

728. Koyanagi, S.

731. Okawa, A.

735. Sherrod, R. (McDonnell Aircraft Corp., St. Louis, Mo.)

736. Swiss, J.

738. Teflon's Cold Flow Used to Advantage in Resistor Box Trimmer; Receives Citation in Materials in Design Engineering Competition. MATERIALS IN DESIGN ENG., v. 47, Apr. 1958. p. 155.

739. Tomlin, J. E.

Electrical Properties:

740. Adamec, V.

741. Adamec, V.
742. Adamec, V.

747. Blanck, A. R. (Feltman Res. Labs., Picatinny Arsenal, Dover, N.J.)

748. Bowie, D. M.

749. Bragin, S. M.

750. Chapman, J. J. and L. J. Frisco. (Dielectrics Lab., Johns Hopkins U., Baltimore, Md.)

754. Dmitrochenko, D. A. and V. A. Shevelev.

755. Ehrlich, P.

759. Gross, B.

760. Hamon, B. V.

761. Hardtke, F. C.

762. Iida, S.

763. Iida, S.

Dielectric Losses and Polarization of Some Fluoroplasts. VYSOKOMOL-

776. Mel'nikov, M. A. Pulse Breakdown of Certain Polymers and Mica. FIZ. DIELEKTRIKOV

Temperature Dependence of Dielectric Losses and Permeability of Polymers in the Centimeter Wavelength Range ($\gamma = 3.3$ and 10 cm.). I. Method of Measurement of tan delta and epsilon' in the Temperature Range -100 to 200° at Ultrahigh Frequency. SOVIET PHYS. - TFCH. PHYS., v. 3, 1958. p. 243-248.

Temperature Dependence of Dielectric Constant (epsilon') and Dielectric Loss Angle Tangent (tan theta) of Poly(tetrafluoroethylene) at 4.7 times 10^5 Hz. VYSOKOMOLEKUL. SOEDIN., v. 5, no. 5, 1964. p. 868-870.

781. Milek, J. T. (Hughes Aircraft Co., Culver City, Calif., Electronic Properties Information Center.)

782. Nigg, H.

783. Parry, J. V. L.
The Dielectric Properties of Polytetrafluoroethylene and Polychlorotrifluoroethylene. REP. BRIT. ELECT. RES. ASSOC., REF. L/T275, 1952. 8 p.

784. Peoples, J., et al. (Martin Co., Baltimore, Md.)

785. Petoshina, L. N. and F. M. Pekerman.

798. Stone, F. T. and R. McFee.

800. Suhr, H.

801. Takenaka, H. and T. Ogino.

802. Vorozhtsov, B. I., et al.

803. Walewski, L.

805. Warner, A. J.

806. Yamamaka, H.

807. Yelton, E. B.
Properties of Polytetrafluoroethylene of Interest to the Electric Industries. TRANS. ELECTROCHEM. SOC., v. 90, Preprint 1946. 9 p.

Fabrication:

808. Alfthan, J. and J. L. Chynoweth. (E.I. du Pont de Nemours & Co.)

809. Alfthan, J. (E.I. du Pont de Nemours & Co.)
810. Alfthan, J. (E.I. du Pont de Nemours & Co.)

811. Alfthan, J. (E.I. du Pont de Nemours & Co.)

814. Blair, J. A. and H. J. Haon, III.

815. Bogese, S. B. (E.I. du Pont de Nemours & Co.)

820. Deakin, S. T. (Siemens Edison Swan Ltd.)

821. Deakin, S. T. (British Mechanical Productions Ltd.)

824. Extrudable Teflon Resin Now Under Evaluation. MATERIALS & METHODS,

826. Fields, R. T. (E.I. du Pont de Nemours & Co.)

827. Fields, R. T. (E.I. du Pont de Nemours & Co.)
Porous Articles from Fluoroethylene Polymers. U.S. 3,058,166 (Cl.

828. Fields, R. T. (E.I. du Pont de Nemours & Co.)
Shaping of Articles from Polytetrafluoroethylene Powder. U.S. 2,

78.

831. Fluorocarbon Parts; Molding of Large-Sized Components. PLASTICS

832. Gachot, J.
Filters from Tetrafluoroethylene Powder. Fr. 1,124,576, Oct. 15,
1956.

The Conversion of "Fluoroplastic-4" into the Finished Products.

834. Greenman, N. L.
How to Fabricate Reinforced "Teflon" for Mechanical Applications.

Injection Molding of Polytetrafluoroethylene. U.S. 2,770,842, Nov.
20, 1956.

836. Hanson, D. B.
Molding the Specialized Plastics; Teflon Tetrafluoroethylene Resin.

837. Hibbard, R. L.
p. 134.

839. Hochberg, J. (E.I. du Pont de Nemours & Co.)

840. Hoesechele, G. K. and J. J. Verbanc (E.I. du Pont de Nemours & Co.)

841. Imperial Chemical Industries Ltd.
Articles Consisting Essentially of a Polymer of Tetrafluoroethylene.
Brit. 589,714, June 27, 1947.

843. James, D. D.

844. James, D. D.

845. Joyce, R. M., Jr. (E.I. du Pont de Nemours & Co.)

849. Miller, R. R.

850. "Montecatini" Societa generale per l'Industria mineraria e chimica.
852. Moore, R. L. and W. J. Atwell. (Raybestos-Manhattan, Inc.)
Shaped Lengths of Tetrafluoroethylene Polymers Having a Cellular

Nonlinear Deformation. II. Stretching Combined with Flow (Cold

854. Raybestos-Manhattan, Inc.
See U.S. 2,382,234 (CA 54, 20330d).

855. Ricklin, S.
Effect of Processing Methods on Design of TFE Fluorocarbon Parts.

856. Ricklin, S.
152-156.

857. Roberts, R. (E.I. du Pont de Nemours & Co.)
Forming Poly(tetrafluoroethylene) Articles. Belg. 614,854, Sept. 10,

858. Slade, W. L. (Raybestos-Manhattan, Inc.)

859. Smith, J. C. (E.I. du Pont de Nemours & Co.)
Highly Oriented Shaped Tetrafluoroethylene Articles. U.S. 2,776,465,
Jan. 8, 1957.

Mechanism of Lubricant-Extrusion of Teflon TFE-Tetrafluoroethylene

862. Societe d'Electrochecnie, d'Electrometallurgie et des Acieries Electri-
ques d'Ugine and Societe des Resines Fluorees.
Porous Articles of Polytetrafluoroethylene. Fr. 1,220,069, May 23,
1960.

863. Squires, A. T. B. P. and C. G. Hannah (Rolls-Royce Ltd.)
Articles from a Polymer of Tetrafluoroethylene. U.S. 2,710,991, June
21, 1955.
864. Stabler, R. E.
Extrusion of Teflon 100X Perfluorocarbon Resin; A New Melt-Extrudable
p. 73.

865. Stabler, R. E. and W. B. Thompson, Jr.
Paste Extrusion. MODERN PLASTICS, v. 33, no. 6, 1956. p. 115-120,
122, 124-125.

866. Swanson, J. L. and F. H. Welch. (U.S. Atomic Energy Comm.)
Fabrication of Teflon Critical Experiment Fuel Elements. APEX-277.
1956. 16 p.

867. Tordella, J. P.
Unusual Mechanism of Extrusion of Polytetrafluoroethylene at High
231-239.

868. Van Boskirk, R. L.

869. Vanderhoof, A. S. (Resistoflex Corp.)

870. Walker, B. M. and L. W. Van Denburgh, Jr. (Resistoflex Corp.)

871. Weidman, V. W. (E.I. du Pont de Nemours & Co.)
19,1957.

148.

873. Yasuda, T. (Nippon Bulker Industry Co.)

874. Zukor, L. J.
Improved Fabrication Techniques for the Fluorocarbon Resins; Fabricating

Fibers:

875. Anders, H.
Teflon Fibres. TEXTIL-PRAXIS (International Edition), no. 2, June

876. Arledter, H. F. (Hurlbut Paper Co.)
<table>
<thead>
<tr>
<th>No.</th>
<th>Author(s)</th>
<th>Title</th>
<th>Citation Details</th>
</tr>
</thead>
</table>
891. Greenman, N. L.
New Fiber-Reinforced Fluorocarbon. MATLS. & METHODS, v. 42, no. 5,

892. Greenman, N. L.

893. Gruene, A.
Filter Papers for the Analytical Laboratory Made of New Types of Raw

894. Hall, A. J.
Teflon - Industrial Polytetrafluoroethylene Fiber. MFG. CHEMIST, v.

Paper from Polytetrafluoroethylene Fibers. Ger. 1,014,426, Aug. 22,
1957 (Cl. 55f).

896. Harford, E. F. (E.I. du Pont de Nemours & Co.)
Paper from Tetrafluoroethylene Polymers. U.S. 3,003,912, Oct. 10,

897. Industrial Cloth; Woven of 100 FEP Monofilament for a Variety of

898. Klatt, R.
The Progress and Problems in the Manufacture of Artificial Silk.

899. Lantos, P. R. (E.I. du Pont de Nemours & Co.)
Filaments from Polytetrafluoroethylene Emulsions. U.S. 2,951,047,

900. Lantos, P. R. (E.I. du Pont de Nemours & Co.)
Poly(tetrafluoroethylene) Filaments. U.S. 3,074,901, (Cl. 260-31.8),

901. Lauterbach, H. G. (E.I. du Pont de Nemours & Co.)
Poly(tetrafluoroethylene) Septa for Fine Filters. U.S. 2,933,154,

Rheology of Lubricated Polytetrafluoroethylene Compositions. IND.

903. Mark, H. F.
New High Polymers in Industry, Agriculture, and Medicine. COLLOQ.
p. 127-130.
904. Melville, H. W.

907. Moretti, G.

908. Okamura, K. and T. Satokawa. (Osaka Kinzoku Kogyo Co., Ltd.)

909. Piccard, J. A. (E.I. du Pont de Nemours & Co.)

910. Point, J. J.

911. Point, J. J.

913. Rodman, E. A. (E.I. du Pont de Nemours & Co.)

914. Schimmel, G.

915. Shulver, W. and G. W. Guyer. (Owens-Corning Fiberglas Corp.)

917. Statton, W. O.
Microvoids in Fibers as Studied by Small-Angle Scattering of X-Rays.

Filler Material:

931. Hunt, R. E.
Bone-Dry Compressor Rings Promise Long Service, No Process Contamina-
tion; Filled-Teflon Rings, Plastic Rider Rings. POWER, v. 106, July

932. Iler, R. K. (E.I. du Pont de Nemours & Co.)

1960. p. 49.

934. Polymer Corp. Ltd.

935. Ricklin, S.
Do You Need Filled TFE? Use Tape to Cut Costs. MATLS. IN DESIGN ENG.,

936. Watkins, W. B.
What Fillers Will Do for the Latest Teflon; Teflon 100X. PRODUCT

Film Applications:

937. Aiken, W. H.
34-36.

939. Biram, J.
Laboratory Techniques for Vacuum Coating of Plastic Films. VACUUM,
v. 12, no. 2, 1962. p. 77-82.

Production Refinement of Very Thin Gauge Teflon Film. Interim Engineer-
ing Rept. no. 5 (covering period Jan. 1 to Mar. 31, 1958), Apr. 31,
1958. 9 p. ASTIA AD-162 090.

Unsupported Films of Polytetrafluoroethylene. U.S. 2,578,522, Dec. 11,
1951.

942. Estey, W., et al. (American Machine and Foundry Co., Greenwich, Conn.)
Production Refinement of Very Thin Gauge Teflon Film. Quarterly Rept.
no. 2 (covering period Apr. 1 to June 30, 1957), July 30, 1957. 68 p.
ASTIA AD-137 642.

943. Estey, W., et al. (American Machine and Foundry Co., Greenwich, Conn.)
Production Refinement of Very Thin Gauge Teflon Film. Quarterly Rept.
967. Bowers, R. C., et al. (Naval Res. Lab.)
Frictional Behavior of Polyethylene, Polytetrafluoroethylene, and

Frictional Properties of Plastics; Behavior of Polyethylene, Polytet-
rafluoroethylene, and Halogenated Derivatives. MOD. PLASTICS, v. 31,

Frictional Properties of Polyethylenes and Perfluorocarbon Polymers.
MOD. PLASTICS, v. 41, no. 4, 1963. p. 139-140, 142, 145-146, 178,
180, 182, 184, 186, 188.

970. Boyd, A.
Bearing Materials for Nuclear Reactors. TRANS. CAN. INST. MINING MET.,

Degradations of Polymeric Compositions in Vacuum to 10^-9 mm. Hg in
Evaporation and Sliding Friction Experiments. SPE TRANS., v. 4, no.

Friction, Wear, and Decomposition Mechanisms for Various Polymer Com-
positions in Vacuum to 10^-9 Millimeter of Mercury. 1963. 30 p. NASA-
N64-12105.

973. Craig, W. D., Jr.
Friction Variation of PTFE and MoS_2 During Thermal Vacuum Exposure.

Applicability of the Two-Term Friction Law to the Friction Properties

975. Flom, D. G. and N. T. Porile.
p. 1088-1092.

976. Flom, D. G.
p. 1361-1362.

977. Fonarev, S. F., et al.
Antifriction Material from Graphite Impregnated with Poly(tetrafluoro-
ethylene). METODY ISPYTANII DETALEI MASHIN I PRIBOROV SB., no. 2,

978. Fort, T., Jr.
Adsorption and Boundary Friction on Polymer Surfaces. J. PHYS. CHEM.,

992. Tsugawa, K., et al.

General:

995. Barbas, F.

996. Burness, A.

997. Chapman, F. M.

998. Clark, E. S.

999. Cornell, L. W.

1000. Cornell, L. W.

1001. Cornell, L. W.

1003. Diamond, R. J.

1004. Diamond, R. J.

1021. Fontana, M. G.

1022. Gadsby, J.

1023. Genin, G.

1024. Gill, J. C.

1026. Gruntfest, I.

1029. Halls, E. E.

1031. Happoldt, W. B.

1033. Horn, O. and W. Starck.

1034. Horn, O.

1036. Jaray, F. F.

1037. Javitz, A. E.

1038. Javitz, A. E.

1041. Kipnes, J.

1042. Kline, G. M.

1043. Kline, G. M.

1045. Lee, H.

1046. Levitt, A. P. and A. K. Wong. (Watertown Arsenal Lab., Mass.)

1047. Lewis, E. E. and M. A. Naylor.
1048. Lontz, J. F.

1055. O'Rourke, J. T.

1057. Pirani, R.

1062. Press, I. D.

1079. Yelton, E. B.

1080. Yelton, E. B.

1081. Yelton, E. B.

1082. Zurakowska, J.

Home Appliances Applications:

1083. Flarsheim, H.

1086. Gancberg, A. (UCB, Societe Anon.)

1088. McNiven, M. A.

1091. Saving Dough on Bread Dough; Rolls Covered with Plastic. MOD. PLASTICS, v. 27, Jan. 1950. p. 120.

1094. Truffert, L.

Insulation (Electrical) Applications:

1098. Cohn, J. L.

1099. Dorst, S. O. (Sprague Electric Co.)

1101. Glenn, R. E. and E. Grant.

1102. Goldsmith, R.

1103. Gore, W. L. (W. L. Gore & Assoc., Inc.)

1104. Gore, W. L.

1105. Hartshorn, L.

1107. Jolivet, P.

1108. Lysons, H.

1109. Pendleton, W. W. and H. M. Philofsky. (Westinghouse Electric Corp.)

1110. Sanders, P. F.

1111. Sanders, P. F. (E.I. du Pont de Nemours & Co.)

Irradiation Effects on Teflon:

1112. Adamec, V.

1113. Adamec, V.

1114. Anthony, R. L., et al. (Hughes Aircraft Co., Fullerton, Calif.)

1116. Bazin, A. P.

Dielectrics Under Nuclear Environment. NP-9665. 1959. 5 p.

1119. Bradley, A.

1135. Collins, C. G.

1137. Collins, C. G.

1138. Corneretto, A.

1144. Dolezel, B.

28 p.

1146. Downey, M. J. (Royal Aircraft Establishment, Gt. Brit.)
Some Effects of Radiation on Elastomers and Plastics. RAE TMS15.
June 1963. 9 p. DDC AD-412 310.

1147. Ehrenfried, C. E. and D. E. Dodds.
X-Ray Mass Attenuation Coefficients in the 1.49 to 11.9 KeV Range.

Magnetic Analysis of Tritons and alpha-Particles Emitted from the
Deuteron Bombardment of Teflon. PROC. PHYS. SOC. (LONDON), v. 70A,

1149. Erdman, K. L.
The Angular Correlation of Annihilation Radiation. PROC. PHYS. SOC.

Electrical and Chemical Effects of beta-Radiation in Polystyrene.

1151. Flanagan, T. B.
Effects of Nuclear Radiation on Materials. J. ELECTRONICS AND CON-

1152. Florin, R. E. and L. A. Wall.
Gamma Irradiation of Fluorocarbon Polymers. J. RESEARCH NATL. BUR.

1153. Florin, R. E. and L. A. Wall.
Gamma Irradiation of Polytetrafluoroethylene in Chlorine. SPE TRANS.,

Conductivity Induced in Polytetrafluoroethylene by X-Rays. NATURE,

p. 2-3.

Cross-Linking of PTFE (Teflon) and Other Polymer Materials by the
Localized Action of Neutron Irradiation. In CHEMICAL EFFECTS OF

1168. Harrison, S. E. (Sandia Corp., Albuquerque, N. Mex.)
Gamma-Ray Photoconductivity Decay in Organic Dielectric Materials.

1169. Harrison, S. E. (Sandia Corp., Albuquerque, N. Mex.)

1170. Harrison, S. E. (Sandia Corp., Albuquerque, N. Mex.)

1171. Harrison, S. E. and P. F. Proulx. (NASA)

1172. Harrison, S. E. (Sandia Corp., Albuquerque, N. Mex.)

1173. Harrison, S. E. and E. A. Szymkowski. (Martin Co., Baltimore.)

1174. Harrison, S. E. (Sandia Corp., Albuquerque, N. Mex.)

1175. Hollister, W. L. (Lockheed Aircraft Corp. Missiles and Space Div., Sunnyvale, Calif.)

1176. Hornbeck, R. (Martin Co., Baltimore.)

1178. Ide, S., et al.

Activation Analysis of Fluorine and Bromine with 14-m.e.v. Neutrons.

Free Radical Reactions in Irradiated Poly(tetrafluoroethylene). V.
Discussion of Reaction Mechanism. VYSOKOMOLEKUL. SOEDIN., v. 5, no.

Investigation of Free Radical Reactions in Irradiated Polytetrafluoro-
1500-1506.

On the Recombination of Radicals in the Condensed Phase. In THE
FIFTH INTERNATIONAL SYMPOSIUM ON FREE RADICALS. Stockholm, Almqvist

Origin of the Compensation Effect in the Radiation-induced Radical
Recombination in Polymers. KINETIKA I KATALIZ, v. 1, 1960. p. 496-
502.

Recombination of Radicals in the Condensed Phase. In PREPRINTS PAP-

1198. Leininger, R. I. (Battelle Memorial Inst. Radiation Effects Informa-
tion Center, Columbus, Ohio.)
The Effect of Nuclear Radiation on Fluorinated Polymers in Different

1199. Libert, F. J.
p. 10-21.

Effect of gamma Radiation on the Specific Volume of Poly(tetrafluoro-
ethylene) from -80°C to 40°C. J. POLYMER SCI., PT. A, v. 2, no. 10,

1201. Linnenbom, V. J.
The Effects of Radiation on Materials. Part 3. Radiation Damage

1202. Liversage, W. E.
The Effects of X-Rays on the Insulating Properties of Polytetrafluoro-

Chemistry of Radiation Crosslinking of Branched Fluorocarbon Resins.

96
1204. Loy, W. E., Jr.

1205. McCarthy, P. B. (Hanford At. Products Operation, Richland, Wash.)

1206. McLaren, K. G.

1209. Matsugashita, T. and K. Shinohara.

1211. Matsumae, K., et al.

The Conductivity Change in Good Insulators During gamma-Irradiation. The Conductivity of Teflon. WAPD-RM-122. May 1, 1952. 12 p.

97
The Radiochemical Effect of Fast Electrons on Uranium Fluorides. AT.

Effects of gamma-Irradiation on the Loss Properties of Dielectrics in

Surface Activation of Poly(tetrafluoroethylene) Films by Ultraviolet

A beta Ray Source Based on Au198 for Use in Studies of Physical Prop-

Reversible Radiation-Mechanical Effects in Polymers. DOKLADY AKAD.

Study of the Free Radicals Which are Formed in Solids Upon Exposure
882-883.

1222. Mozisek, M.
Plastics in Nuclear Technology. JADERNA ENERGIE, v. 8, 1962. p. 86-
89.

1223. Murphy, C. B. and J. A. Hill.
Detection of Irradiation Effects by Differential Thermal Analysis.

1224. Murphy, P. V., et al.
Effect of Penetrating Radiation on the Production of Persistent In-
ternal Polarization in Electret-Forming Materials. J. CHEM. PHYS.,

1225. Murphy, P. V. and S. C. Ribeiro.
Polarization of Dielectrics by Nuclear Radiation. I. Release of
Space Charge in Electron Irradiated Dielectrics. J. APPL. PHYS.,
v. 34, July 1963. p. 2061-2063.

1226. Newell, D. M.
Radiation Damage to Plastics. SOC. PLASTICS ENGRS., J., v. 14, no.

Radiothermoluminescence of Organic Compounds. DOKLADY AKAD. NAUK

1230. Pascale, J. V., et al.

1231. Rexroad, H. N. and W. Gordy.

1233. Ryan, J. W.

1234. Ryan, S. W.
Decomposition of Polytetrafluoroethylene by gamma-Rays. INDUSTRIE PLASTIQUES MOD., v. 6, no. 6, 1954. p. 40.

1235. Sauer, J. A. (Penn. State Univ., University Park.)

1236. Schneider, E. E.

1237. Schneider, E. E.

1238. Slovokhotova, N. A.
1239. Stephenson, C. V., et al.

1241. Stern, H. S.

1242. Sunderman, D. N.

1244. Tamura, N. and K. Shinohara.

1247. Timmerman, R.

1254. Waddington, F. B.

1259. Weleff, W.

1260. Wilcox, W. S., et al.

1261. Yahagi, K.
Gamma-Ray Induced Conductivity in Polyethylene and Teflon Under Irra-

1263. Yahagi, K., et al.

1264. Yahagi, K.

Laminates:

1267. Carbone-Lorraine.

1270. Landler, I. and P. Lebel.

1271. Lontz, J. F. (E.I. du Pont de Nemours & Co.)

1272. Mulay, S.
Lamination or Coating of Fluorine-Substituted Polyethylene with or on
Other Substances. U.S. reissue 24,856, Aug. 9, 1960. A reissue of
U.S. 2,705,691 (CA 49, 10637c).

1274. Panagrossi, A., et al. (Conn. Hard Rubber Co.)
Lamination or Coating of Fluorine-Substituted Polyethylenes. U.S.
2,945,775, July 13, 1960.

Lamination of Fluorine-Substituted Polyethylenes with or on Other

1276. Plastics-Metal Laminates; Continuous Sheets of Teflon and Aluminum

1277. Polymer Corp.

1278. Reinforced Teflon is Abrasion Resistant. ELECTRONICS, v. 33, July 22,
1960. p. 82-83.

1279. Reinforced Teflon Resists Severe Corrosive Conditions. MATERIALS &

1280. Smith, R. A. (M. W. Kellogg Co.)
Lamination of Perfluorochloroolefins and Polyacrylonitrile. U.S.
2,774,702, Dec. 18, 1956.

1281. Solvay & Cie.

Bonding a Metal to a Plastic, and the Article Produced Thereby. U.S.

1283. Stein, S. J. (International Resistance Co.)
Deposition of Adherent Metal Coatings on Fluorocarbon Resins. U.S.

1284. TFE/Rubber; New Fabricating Method Surmounts Difficulties. PLASTICS

1286. Thompson, J. I. and Co., Washington, D.C.
Evaluation of Foil Clad Fluorocarbon Composite Laminates. Final
Report (covering period July 1, 1956 to May 1, 1959). ASTIA AD-229
643.

Fluoroplast 4-Polyethylene Compositions. U.S.S.R. 146,488, Apr. 23,

1288. Yuan, E. L. (E.I. du Pont de Nemours & Co.)

Lubrication Properties and Applications:

1289. Allen, L. R. and D. H. Woodard. (Kermore Research Co.)
Thixotropic Thread Lubricant. U.S. 3,069,587 (Cl. 252-49.7), Dec.

1290. Baer, D. R. (E.I. du Pont de Nemours & Co.)
Heat-Stable Fluoroolefin Telomers and Lubricants Therefrom. U.S. 2,

1291. Ball Joint That Needs no Lubrication; Socket Lined with Teflon. BSNS.

1292. Clauss, F. J. (Lockheed Missiles and Space Co., Sunnyvale, Calif.)

1293. Clauss, F. J.
Lubrication Under Space/Vacuum Conditions. SCI. LUBRICATION, v. 15,

1294. Fitzsimmons, V. G. and W. A. Zisman.
Thin Films of Poly(tetrafluoroethylene) Resin as Lubricants and Pres-
servative Coatings for Metals. IND. ENG. CHEM., v. 50, 1958. p. 781-
784.

Lubrication of Tetrafluoroethylene Polymers. U.S. 2,752,321, June
26, 1956.

1296. Irwin, C. F. (E.I. du Pont de Nemours & Co.)

The Use of Poly(tetrafluoroethylene) as a Lubricant. BRIT. J. APPL.

1298. Kilmer, C. C. (Gen. Dynamics/Fort Worth, Tex.)
Material - Thread Compound - Unfused Teflon Tape and Led-Plate Met-
ASTIA AD-283 269.

1299. Kirsten, W.
Absorption Train for the Determination of Carbon and Hydrogen. MIK-
ROCHIM. ACTA, 1953. p. 41-43.

1300. Lewis, J. H. (Gen. Motors Corp.)

1315. Stock, A. J.

1316. Sugarman, B. (Birmingham Small Arms Co. Ltd.)

1323. Wolfe, G. F.

1324. Wolinski, L. E. (E.I. du Pont de Nemours & Co.)

1325. Young, A. W.

Machining Characteristics:

1326. Kipnes, H. J.

1328. Machining Teflon to Plus or Minus 0.0005 in. AM. MACH., v. 103, Aug. 24, 1959. p. 106-108.

Mechanical Applications:

1329. Gillespie, L. H.

1331. Holmes, R. L.

1333. Kloepfel, D. V.

1336. O'Connor, H. and J. Hawley.

1337. Pillsbury, R. D., Jr.

Mechanical Properties:

1342. Baccaredda, M.
1343. Becker, G. W.

1344. Chafey, J. E. (Gen. Dynamics/Astronautics, San Diego, Calif.)

1345. Ecker, R.

1347. Fitzgerald, E. R.

1348. Fitzgibbon, D. P. (Texas Univ., Austin. Structural Mechanics Res. Lab.)

1352. Illers, K. H. and E. Jenckel.

1353. Kabin, S. P.

1355. Keys, R.D., et al. (Martin Co., Denver, Colo.)

1356. King, R. F. and D. Tabor.

1358. Leeuwerik, J.

1359. McCrum, N. G.

1360. McLaren, K. G.

1363. Nishioka, A.

1365. Ohzawa, Y. and Y. Wada.

1367. Ratner, S. B.

1369. Schmieder, K. and K. Wolf.

1370. Shimamouchi, T., et al.

1371. Sinnott, K. M.

1373. Swenson, C. A.

1375. Yamaguchi, Y. and K. Oyanagi.

Medical Applications:

1376. Aepli, R.

1378. Byxbee, A. W.

1379. Ludington, L. G. and E. R. Woodward.

1381. Myers, G. H. and V. Parsonnet.

Metallisation of Teflon:

1384. Deakin, S. T. (Siemens Edison Swan Ltd.)

1385. Goldie, W.

1386. Hall, M. B. (E.I. du Pont de Nemours & Co.)

1387. Herczynska, E.

1388. Kelley, F. M. (E.I. du Pont de Nemours & Co.)

1389. Lopez, A. H.

1390. Lorraine, Carbone.

1391. Margolis, D. S.

111

1398. TFE Electroplates are Smooth, Nonporous. MATERIALS IN DESIGN ENG., v. 47, June 1958. p. 141.

Molding and Molding Powders:

Molecular Structure:

1433. Movnihan, R. E.

1434. Nagamatsu, K.

1435. Osten, R. A.

1440. Starkweather, H. W., Jr.

1441. Vol'kenshtein, M. V.

Nuclear Properties:

Time Distribution of Positron Annihilation in Liquids and Solids.
Enhancement of the Long-Lived Positronium Annihilation Rate by a Static

Influence of a Static Electric Field on Positronium Formation in Poly-

Magnetic Quenching of Positronium in Solids and Positron Helicity.

Polarization Effect in Positron Backscattering. NUCL. PHYS., v. 66,

Positron Annihilation in Insulators. NUOVO CIMENTO, v. 22, no. 10,

Wilmington, Del.)
Energy Loss and Range of Charged Particles in Compounds. Research

The Use of Radioisotopes for the Measurement of Interfacial Area.
p. 168-172.

The Fragmentation Probabilities of Fast Heavy Cosmic-Ray Primaries in

1451. Burget, J., et al.
Dynamic Polarization of Protons and Fluorine Nuclei. ARCH. SCI., v.

The Decay of Negative pi-Mesons Stopped in Light Elements and Insula-

The Half Life of Positrons in Condensed Materials. PHYS. REV., v. 85,

1454. Demiltod, A. C. (Univ. of Calif., Berkeley.)
Range-Energy Relations of 3He Calculated for Several Elements. UCRL-
10647. 1963. 50 p.

<table>
<thead>
<tr>
<th>Citation</th>
<th>Author(s)</th>
<th>Title</th>
<th>Journal</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1470</td>
<td>Longequeue, N.</td>
<td>Mean Life of Positrons in Metals.</td>
<td>COMPT. REND., v. 251, 1960.</td>
<td></td>
<td></td>
<td>p. 1375-1378</td>
</tr>
<tr>
<td>1477</td>
<td>Schiff, L. I.</td>
<td>Measurability of Nuclear Electric Dipole Moments.</td>
<td>PHYS. REV., v. 132, no. 5, 1963.</td>
<td></td>
<td></td>
<td>p. 2194-2200</td>
</tr>
</tbody>
</table>

118

Nuclear & Electronic Resonance Properties:

1493. Burget, J. and J. Sall.

1494. Frigge, K.

1495. Fukuda, K.

1497. Hukuda, K.

1500. Kiselev, A. G., et al. (Akademiya Nauk SSSR. Ordena Lenina Institut Atomnoi Energi1.)

Electron Spin Resonance Studies of Radicals Formed in Irradiated Poly-

Electron Spin Resonance Studies of the Oxygen Effect of Irradiated Poly-
tetrafluoroethylene. J. CHEM. PHYS., v. 32, Mar. 1960. p. 954-
955.

1505. Miyake, A.
The Intramolecular Nuclear Magnetic Resonance Second Moment of the

1506. Naylor, R. E., Jr. and S. W. Lasoski, Jr.
Nuclear Magnetic Resonance Spectra of Some Fluorine-Containing Poly-

Nuclear Magnetic Resonance in Some Crystalline Polymers. J. PHYS. SOC.

1508. Nitta, I., et al.
Electron Spin Resonance Absorption Studies on Irradiated High Polymers.

1509. Nohara, S.
Nuclear Magnetic Resonance of High Polymers. I. Apparatus for Nuclear
Magnetic Resonance and Second-Order Transition of High Polymers. KO-

1510. Nohara, S.
Nuclear Magnetic Resonance of High Polymers. II. The Second-Order
Transition and the Intrachain Rotation in High Polymers. KOBUNSHI

1511. Ohnishi, S., et al.
Electron-Spin Resonance Studies of Irradiated Polymers. I. Factors
Affecting the Electron-Spin Resonance Spectra of Irradiated Polymers.

1512. Ohnishi, S., et al.
Some Effects of Air on Irradiated Polymers, Revealed by Electron Spin

1513. Ovenall, D. W.
EPR Spectra of Peroxy Radicals in Irradiated Oriented Polytetrafluoro-

1514. Ovenall, D. W.
EPR Spectrum of Irradiated Oriented Polytetrafluoroethylene. J. CHEM.

1517. Reinhart, R. R.

1519. Schneider, E. E.

1520. Shinohara, K. and T. Matsugashita.

1521. Slichter, W. P.

1522. Smith, J. A. S.

1523. Solodovnikov, S. P. and V. V. Voevodskii.

1524. Tamura, N.

1525. Tamura, N.

1526. Tamura, N.
1527. Tamura, N.
Electron-Spin Resonance in Radiation Chemistry. GENSIRYOKU KOGYO,

1528. Tamura, N.
ESR of Tetrafluoroethylene Irradiated at Low Temperature. Translation.

1529. Tamura, N.
ESR Spectra of Polytetrafluoroethylene Irradiated at 77°K. J. POLY-

Electron Spin Resonance and the Physical State of Irradiated Polymers.

1531. Tamura, N.
Electron Spin Resonance in Irradiated Polytetrafluoroethylene: Temper-

1532. Tamura, N.
Temperature Dependence of ESR Spectra of Irradiated Polytetrafluoro-

Temperature Dependence of Electron-Spin Resonance Spectra of Irradia-
ted Poly(tetrafluoroethylene). PROC. INTERN. SYMP. MOL. STRUCT.

1534. Tanaka, H., et al.
Electron Spin Resonance of Peroxy Radicals in gamma-Irradiated Poly-
1128-1133.

1535. Trappeniers, N. J., et al.
The Measurement of Nuclear Magnetic Relaxation Time T1 in Polymers by
997-1017.

The Second Moment of Nuclear Magnetic Resonance (NMR) Lines in Samples

The Electron Paramagnetic Resonance Spectra of Polymers Exposed (in a
Reactor) at 77°K. DOKLADY ANAD. NAUK S.S.S.R., v. 122, 1958. p. 1053-
1056.

Electron Paramagnetic Resonance (EPR) Spectra of Some Irradiated Poly-

1540. Ueda, K., et al.

1541. Voedovsky, V. V.

1542. Wada, Y.

1543. Wilson, C. W., III.

1544. Wilson, C. W., III and G. E. Pake.

1545. Wilson, C. W., III and G. E. Pake.

Optical Properties:

1548. Billmeyer, F. W., Jr.

1549. Brown, R. G.

1550. Brown, R. G.

1552. Dube, G. and H. Kriegsmann.

1553. Fogelberg, B. C. and E. Kaika.

1558. Hovis, W. A., Jr.

The Infrared Spectra of Tetrafluoroethylene-Trifluorochloroethylene

1561. Lavoie, G. J. and J. W. Purdie.

1565. Miyazawa, T.

1566. Miyazawa, T.

1567. Mcynihan, R. E.

1568. Nikolaev, R. S.

1569. Pokrovskii, E. I.

1571. Rhodes, M. B. and R. Stein.

1577. Tarutina, L. I.

1578. Visapaa, A.

1579. Wentink, T., Jr. and W. C. Planet, Jr.

Paint Applications:

1581. Cass, R. A.

Permeability (Gas) & Diffusion Behaviour:

1583. Barton, R. S.

1587. Graham, D.

1588. Horizoga Inc., Cleveland, Ohio.

1590. Korte-Falinski, M.

1591. Montecatini Societa generale per l'industria mineraria e chimica.

1592. Peirce, E. C., II.

1595. Schittko, F. J.

1598. Stern, S. A., et al. (Union Carbide Corp.)

1599. Tikhomirova, N. S., et al.

1600. Tikhomirova, N. S., et al.

1601. Tikhomirova, N. S., et al.

1602. Tikhomirova, N. S., et al.

1603. Tikhomirova, N. S., et al.

1604. Toner, S. D.

1605. Tsilipotkina, M. V., et al.

Phase Transitions:

1609. Kennedy, G. C. and P. N. La Morri.

1610. Kuroda, T.

1611. Lanzavecchia, G., et al.

1613. McCrum, N. G.
Internal Friction in Copolymers of Tetrafluoroethylene and Hexafluoropropylene. MAKROMOL. CHEM., v. 34, 1959. p. 50-66.

1614. McCrum, N. G.

1615. Miyake, A.

1616. Pistorius, C. W. F. T.

1617. Quinn, F. A., Jr., et al.

130

Physical Properties:

1632. Maeda, Y.

1634. Martinet, J. M.

1635. Nitschmann, Hs. and J. Schrade.

1636. Smilek, P.

1637. Takahashi, M.

Polymerization:

1638. Akutin, M. S., et al.

1639. Atkinson, B.

1640. Ballantine, D. S., et al. (Brookhaven Natl. La., Upton, N.Y.)

1641. Barnhart, W. S. (M. W. Kellogg Co.)

1644. Berlin, A. A.

1649. Brubaker, M. M. (E.I. du Pont de Nemours & Co.)

1652. Compton, J. D., et al. (E.I. du Pont de Nemours & Co.)

1655. Dorough, G. L. (E.I. du Pont de Nemours & Co.)

6 p.

1658. Evans, D. E. M. (Imperial Chem. Industries Ltd.)
3 p.

1659. Farlow, M. W. (E.I. du Pont de Nemours & Co.)
Tetrafluoroethylene. U.S. 3,081,245 (Cl. 204-169), Mar. 12, 1963,

The Cross-Linking of PTFE (Teflon) and Other Polymer Materials by the
Localized Action of Neutron Irradiation. AEC-tr-5144. Translated
from: PROCEEDINGS OF THE SYMPOSIUM ON CHEMICAL EFFECTS OF NUCLEAR TRANS-
FORMATIONS. V. II. Held in Prague, Oct. 24-27, 1960. Vienna, Inter-

Investigation of the Mechanism of Baking of Fluoroplast-4 Blanks. I.
276-282.

1662. Graulich, W.
High-Molecular Fluorine Compounds. KUNSTSTOFFE, v. 40, 1950. p. 258-
261.

1663. Joyce, R. M., Jr. (E.I. du Pont de Nemours & Co.)

Interfacial Polymerization. U.S. 3,078,242 (Cl. 260-29.6), Feb. 19,

1665. Roberts, H. L. (Imperial Chem. Industries Ltd.)
Polymerizing Tetrafluoroethylene with Sulfur Chloride Pentfluoride
and Ultraviolet Radiation. U.S. 3,063,922 (Cl. 204-163), Nov. 13, 1962,

1666. Rocca, M.
p. 119-125.

1667. Tseng, F.-M.
Synthetic Fluororesins, Poly(tetrafluoroethylene) and Poly(trifluoro-

Characteristics of the Polymerization of Tetrafluoroethylene Under the
Action of beta- and gamma-Radiation. TR. 2-GO (VTOROGO) VSES. SOVESHCH.
465-469.
Pressure Effects on Teflon:

1671. Bridgman, P. W.
Rough Compressions of 177 Substances to 40,000 kg./sq.cm. PROC. AM. ACAD. ARTS SCI., v. 76, 1948. p. 71-87.

1672. Grinnell Corp.

1673. Hauver, G. (Ballistic Res. Labs., Aberdeen Proving Ground, Md.)

1675. Weir, C. E.

1676. Weir, C. E.

Properties (General):

1680. Reichherzer, R.

Magnetic Susceptibility of Materials Commonly Used in the Construction

Pyrolysis of Teflon:

Thermal Degradation of Perfluoro- and Hydrofluoro-ethylene Polymer in

1718. Michaelsen, J. D. and L. A. Wall.
Further Studies on Pyrolysis of Polytetrafluoroethylene in the Presence
p. 327-331.

1719. Miller, W. T. (USA, as represented by the At. Energy Comm.)
29, 1953.

1720. Monk, G. W.
485-486.

Degradation of Homogeneous Polymeric Materials Exposed to High Heat

1722. Ouchi, S.
The Radical Degradation of High Polymers. I. Thermal Degradation of
Polystyrene. OSAKA KOGYO GIJUTSU SHIKENJO HOKOKU, no. 309, 1957.
p. 9-18.

1723. P.T.F.E. Cross Linked, Thermal Decomposition Degradation of Polymers
292-293.

1724. Pyrolysis Heats up Fluorocarbon-Polymer Contest; Pennsalt Chemicals

Graphical Estimation of Reaction Order from Thermogravimetric Traces.

1726. Reich, L., et al.
Kinetic Parameters in Polymer Degradation by Dynamic Thermogravimetric

1728. Reich, L., et.
Thermal Degradation of Teflon. J. POLYMER SCI., PT. B, v. 1, no. 10,

1729. Reif, L. and M. Panish. (Res. and Advanced Development Div., AVCO Corp.
Wilmington, Mass.)
Thermal Decomposition of Teflon in a Helium Atmosphere. Technical
1730. Riehl, W. A.

1731. Riehl, W. A. (NASA. Marshall Space Flight Center, Huntsville, Ala.)

Theoretical and Experimental Study to Determine Outgassing Characteristics of Various Materials. 1964. 122 p. DDC AD-433 484. NASA-N64-17959.

1735. Simha, R.

1740. Troyanowsky, C.

1741. Waddell, J. S. (E.I. du Pont de Nemours & Co.)

Rheology:

1753. Nagamatsu, K. On the Viscoelastic Properties of Crystalline High Polymers. KOLLOID
1754. Retting, W.

1755. Schmieder, K. and K. Wolf.

1761. Tsuge, K., et al.

Seals & Sealing with Teflon:

1762. Adam, J. W., et al. (Battelle Memorial Inst., Columbus, Ohio.)

1764. Arnold, W. C. and W. J. Esers, Jr.

1765. Ashmead, R. R.
1766. Bargh, K. A.

1770. Beckmann, W.

1771. Bertolet, E. C., Jr.

Impregnated Teflon as a Packing Material at 150,000 Pounds per Square Inch. REV. SCI. INSTR., v. 27, 1956. p. 550.

1776. Davies, A. J.

1780. Faserlind, L.

1781. Giaino, E. C., Jr.

1783. Gillespie, L. H.

1786. Hetherington, A. C. (M. W. Kellogg Co.)

1787. Horvath, G. T.

1788. House, P. A.

1790. Howe, P. G.

Stuffing-Box Packing and Pads from Ftoroplast-4. KHIM. VOLOKNA, no. 2, 1959. p. 76-77.

1807. Price is Higher; Cost is Lower; Gaskets of Teflon. MOD. PLASTICS, v. 27, Jan. 1950. p. 120-121.

Sintering & Sintered Teflon:

Space Applications:

1837. Frisco, L. J. (Dielectrics Lab., Johns Hopkins U., Baltimore, Md.)

1838. Frisco, L. J. (NASA)

The Effects of Space Environments on Insulation of Teflon TFE and FEP Resins. NP-13615. 1962. 19 p.

1845. Muraca, R. F. (Jet Propulsion Lab., Calif. Inst. of Tech., Pasadena.)
Characteristics of Some Elastomers in the Space Environment. MATER.

1847. Shoffner, J. P.

1848. Wahl, N. E. and R. R. Lapp. (U.S. Wright Air Development Div.)
The Effects of High Vacuum and Ultraviolet Radiation on Plastic Ma-
245 211L.

1849. Walker, L. D.
Wire and Cable Insulation Problems of Space Vehicles. WIRE & WIRE

Surface Treatment:

1850. Benderly, A. A.
Treatment of Teflon to Promote Bondability. J. APPL. POLYMER SCI.,
v. 6, 1962. p. 221-225.

1851. Bonding Qualities of Teflon Improved by New Treatment. MATIS. &

1852. Deacon, P. F.
Surface Polymerization and Bonding to Polytetrafluoroethylene. RESE-

1853. Deakin, S. T. (Siemens Edison Swan Ltd)
Bonding of Poly(tetrafluoroethylene) to Other Substances. U.S. 2,
886,480, May 12, 1959.

1854. Doban, R. C. (E. I. du Pont de Nemours & Co.)
Cementable Fluorocarbon-Polymer Surfaces. U.S. 2,906,658, Sept. 29,
1959.

1856. Kingsley, L. A.
Imprinting Fluorocarbon Polymer Surfaces. U.S. 2,964,867, Dec. 20,
1960.

1857. Kutzeinigg, A. (Friedrich Blasberg Spezialfabrik fuer Galvanotechnik.)
Preparation of Insulators for Metalizing. Ger. 968,380, Feb. 23, 1953
(Cl. 48a, 2).

1858. McBride, R. T. and J. H. Rogers, Jr. (E.I. du Pont de Nemours & Co.)
Surface Treatment for Thermoplastic Organic Polymers. Belg. 619,638,

Activation of Plastic Surfaces in Plasmajet. INDUS. & ENG. CHEM.,

1860. Mozisek, M.
Modification of Poly(tetrafluoroethylene) by Radiation Grafting.

1861. Norton, C. J. (Ohio Oil Co.)

1862. Pinner, S. H. (T. I., Group Services, Ltd.)

1863. Pinner, S. H. (T. I., Group Services, Ltd.)
12, 1961.

1864. Purvis, R. J. and W. R. Beck. (Minnesota Mining & Manufg. Co.)
Surface Activation of Perfluorocarbon Polymers. U. S. 2,789,063,
Apr. 16, 1957.

1865. Ryan, P. L., Jr. (E.I. du Pont de Nemours & Co.)
7, 1958. 4 p.

1866. Sekita, Y. and K. Kawasaki.
Surface Properties of Surface-Treated Poly(tetrafluoroethylene). I.
Treating Methods and Water-Vapor Adsorption by Treated Specimens.

1867. Sekita, Y., et al.
Surface Properties of Surface-Treated Poly(tetrafluoroethylene). III.
Electron Microscopic Study on the Surface Structure of Untreated and
143-147.

Microscopic Examination of the Etched Surface of Fluoroplast-4.

Thermal Properties:

Thermal Conductivity of Some Amorphous Dielectric Solids Below 1º.

1870. Araki, Y.
Thermal Expansion Coefficient of Poly(tetrafluoroethylene) in the

1873. Dietz, J. L. (Missile Div., Chrysler Corp., Detroit, Mich.)

1874. Dietz, J. L. and W. J. Hangen. (Missile Div., Chrysler Corp., Detroit, Mich.)

1875. Eiermann, K., et al.

1876. Eiermann, K.

1878. Hattori, M.

1879. Hattori, M.

1880. Ke, B.

1881. Kirby, R. K.
Thermal Expansion of Polytetrafluoroethylene (Teflon) from -190° to

1882. Kirichenko, Yu. A.

1884. Kline, D. E.

1890. Marx, P. C.
Thermodynamic Properties of High Polymers. VI. Polycaproamide and Polytetrafluoroethylene. UNIV. MICROFILMS, PUBL. No. 13111, 92 p.

1892. Nagler, R. G.

Thermodynamic Properties:

1905. Coa, J. D.

1906. Dole, M.

1908. Dushin, Yu. A.

1909. Errede, L. A.

1910. Flory, P. J.

1911. Fuchs, O.

1914. Gordon, J. L.

1915. Good, R. J., et al.

1916. Good, R. J.
Estimation of Surface and Interfacial Energies. VI. Surface Energies
of Some Fluorocarbon Surfaces from Contact Angle Measurements. ADVAN.

Thermochemistry of Organic Fluorine Compounds and Carbon Compounds of
p. 77-82.

Heat of Formation of Tetrafluoromethane. J. AM. CHEM. SOC., v. 77,
1955. p. 244.

Heats of Formation of Gaseous Fluoro- and Fluoro-carbon Compounds.

Isotherms and Differential Heats of Adsorption of n-Hexane, Benzene,
and Carbon Tetrachloride Vapors on Poly(tetrafluoroethylene) (Teflon).

1921. Kolesov, V. P., et al.
Standard Heat of Formation of Tetrafluoroethylene. ZH. FIZ. KHIM.,

1922. McCrum, N. G.
Inadequacies in Time-Temperature Equivalence of Poly(tetrafluoroethylene).

Heats of Formation of Tetrafluoroethylene, Tetrafluoromethane, and

1924. Patrick, C. R.
p. 698.

Thermodynamic Stability of Macromolecular Crystals. I. The Influence
of the Longitudinal Vibrations of the Chain Molecules. Z. PHYSIK, v.

Torsion-Effusion Technique for Studying the Kinetics of Gas-Forming

1927. Scott, D. W., et al. (Bureau of Mines, Bartlesville, Okla.)
Heat of Formation of Tetrafluoromethane From Combustion Calorimetry
3 p. DDC AD-491 133.

Heat of Formation of Tetrafluoromethane from Combustion Calorimetry

1929. Shimanouchi, T.

1931. Starkweather, H. W., Jr.

1932. Tarasov, V. V.

Toxicology:

1936. Fuchs, A.

1937. Gancberg, A.

1939. Harris, D. K.

The Effects of Plastics on Microorganisms Commonly Encountered in Milk.

Tubes & Tubing:

p. 421.

Teflon Hose Use in Jets, Missiles Grows. AVIATION W., v. 66, Apr. 15,

 Chem. Div.)
Fabrication of the Verticle-Orifice Teflon Capillary of a Teflon Dropping-Mercury

1957. Collingwood, D. G.
Plastics in Aircraft, Pt. 6: An Introduction to P.T.F.E. Hose (Palmer
 19.

Functional Testing of Teflon Flexible Connector, 105-C Type. Final

1959. Ferris, L. A.
Lined Pipe and Other New Forms and Uses for Teflon. CORROSION, v. 17,

Transport of Aqueous Solutions at a Mercury-Glass Interface, Induced

1961. Harpur, R. P.
Simple Valve for Burets or Chromatographic Columns. J. CHEM. EDUC.,
 v. 36, 1959. p. 149.

1963. Karpovich, G. P.
Swage Fittings to Teflon Hose in Your Plant. HYDRAULICS & PNEUMATICS,

Specification Development of Thin Wall Nonrigid Polytetrafluoroethylene
 Electrical Insulating Tubing Submitted by L. Frank Markel and

1965. PTFE Lined Pipes and Flexible Couplings. ENGINEERING, v. 189, Mar. 11,

158

1978. Resistoflex Corp.
Pipe Formed of a Reinforced Laminated Resin of Poly(tetrafluoroethylene).

1981. Schroeder, M. C. (Battelle Memorial Inst. Radiation Effects Information Center, Columbus, Ohio.)

1982. Slade, W. L. (Raybestos-Manhattan, T.)
Electroconductive Tubing of Poly(tetrafluoroethylene). Belg. 632,328,

1983. Stormer, W. C.

1984. Teflon Bids Anew for CPI Piping Dollars. CHEM. W., v. 86, Feb. 27,

1985. Teflon Pipe Handles Corrosives; Resistoflex's Fluoroflex-T. CHEM. &

Paste Extrusion Additive to Tetrafluoroethylene Resin Permits Production of Thin-Wall Tubing by Ram Extrusion. MOD. PLASTICS, v. 33, Feb.
1956. p. 115-120.

New Method for Lining Metal Pipe and Tubing with Teflon. PLASTICS

Water Repellant Behaviour:

Fluoroalkyl Thioperoxides. U.S. 3,081,350 (Cl. 260-607), Mar. 12,

Waxes:

Polytetrafluoroethylene Waxes Having a Sharp Melting Point. U.S. 2,

1997. Fischer, E. (Farbwerke Hoechst Akt.-Ges.)
Fluorocarbon Waxes., Ger. 1,049,099, Jan. 22, 1959 (Cl. 33c).

Lucius & Bruening.)
Low-Molecular-Weight Fluorinated Hydrocarbons with Liquid or Waxlike
Consistency. Ger. 1,003,700, Mar. 7, 1957 (Cl. 120, 201).

Waxlike Fluorocarbon Telomer-Sodium Silicate Compositions Useful as
14, 1961. 4 p.

Weathering Behaviour:

2001. Burgess, A. F.
p. 78-81.

2002. Engel, O. G.
Erosion Damage to Solids Caused by High-Speed Collision with Rain.

Elastomers - Teflon, Neoprene, TA-77 Synthetic Rubber (T.A. Manufac-
Wettability and Absorption Behaviour:

2016. Davies, J. T.

2020. Fokkens, F. M.

2024. Good, R. J. and G. V. Ferry.

2026. Junghahan, L.

2027. Kawasaki, K.

2039. Starik, I. E., et al. The Adsorption of Radioactive Isotopes on Polymer Adsorbents that are Not Ion Exchangers. III. The Adsorption of Cesium, Thallium, Silver,

2046. Thompson, W.