<table>
<thead>
<tr>
<th>Technical Note</th>
<th>1966-21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position Error</td>
<td>B. J. Moriarty</td>
</tr>
<tr>
<td>in Station-Keeping Satellite</td>
<td>1 April 1966</td>
</tr>
</tbody>
</table>

Prepared under Electronic Systems Division Contract AF 19(628)-5167 by

Lincoln Laboratory

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Lexington, Massachusetts
The work reported in this document was performed at Lincoln Laboratory, a center for research operated by Massachusetts Institute of Technology, with the support of the U.S. Air Force under Contract AF 19(628)-5167.

This report may be reproduced to satisfy needs of U.S. Government agencies.

Distribution of this document is unlimited.
POSITION ERROR IN STATION-KEEPING SATELLITE

B. J. MORIZARTY

Group 63

TECHNICAL NOTE 1966-21

1 APRIL 1966
ABSTRACT

An automatic station-keeping satellite must be able to measure its deviation from the nominal position. For the system considered here (an equatorial synchronous orbit) this involves a latitude difference measurement between the earth and sun at certain times. This report shows that a combination of an error in satellite orientation and the sun being in a plane other than the equatorial plane may result in errors in position determination. The nature of the errors involved is described and their magnitudes estimated.

Accepted for the Air Force
Franklin C. Hudson
Chief, Lincoln Laboratory Office
Position Error in Station-Keeping Satellite

Ideal System Operation

The satellite is in a synchronous equatorial orbit and its spin axis is parallel to the orbit normal. It is equipped with sensors which measure the longitude difference in satellite coordinates between the sun and the earth. If the satellite is accurately synchronous, the longitude difference should be a certain value (say 90°) at the same time (measured by an on-board clock) each day. Thus a measurement of the time at which the longitude difference is 90° may be used to control a position correcting mechanism.

Statement of Problem

How will this system function when the satellite spin axis is not parallel to the orbit normal and the sun is not in the plane of the equator? That is, what errors may be expected in the estimation of longitude difference?

I first attempt rough estimates of the errors involved on an intuitive basis. A computer program, based on the vector approach, is described and results from this substantiate the numbers of the next section.
Summary of this Note

Due to the sun's elevation an error θ in satellite spin axis position may (depending on the details of the geometry) couple into an error in orbit position estimation of $\theta \times .4$. It appears at this date that an error of this magnitude is quite significant to functioning of the position control mechanism. This may indicate that a reduction of attitude error is required.

Geometry of the Problem

1. First consider the problem when the sun S is in the equatorial plane of the earth as in Fig. 1 and the satellite axis A' makes an angle θ with the orbit normal. Now $E'S'$ is the longitude difference measured by the satellite. If the satellite were correctly oriented at this point in the orbit, it would measure the arc ES. Let OL be the line of nodes. Then from spherical geometry

$$\tan LE = \tan LE' \cos \theta$$

$$\tan LS = \tan LS' \cos \theta$$

$$ES = \tan^{-1}\left(\frac{\tan LS'}{\cos \theta}\right) + \tan^{-1}\left(\frac{\tan LE'}{\cos \theta}\right)$$

Thus for $\theta < 10^0$ the error is less than 1'.

2. Now consider the effect of the sun's declination on the problem. The previous paragraph has shown that with the sun in the earth's equatorial plane the satellite measures the arc $E'S' \sim ES$. Now let the sun be at its zenith S_1. Let the spin axis move from N to A': then for small tilt angles we may regard the sun longitude line $A'S_1S_1'$ as hinging at S_1. In order to estimate this lever arm effect we project onto a plane perpendicular to the line OS_1. By the arguments of the previous paragraph the error in longitude estimation is $SS_2 \sim S_1S'$. We find $SS_2 \sim .4 \times \theta$ for the worst case. The worst case is when the right ascensions of the sun and spin axis differ by odd multiples of 90^0. The error approaches zero when the right ascensions differ by even multiples of 90^0.
Computer Program Results

These are plotted on Figs. 2, 3, and 4. On each graph there are 2 curves. One curve is for the sun at zenith and the other for the sun is the earth's equator. The position of the sun is fixed for each curve. The longitude difference between earth and sun as seen by a correctly oriented satellite at that point at which a tilted satellite measures this difference as 90° is plotted as ordinate. The curve is now obtained by letting the spin axis move around the North Pole at a constant angle θ and calculating this longitude difference at each point. The graphs are for θ = 20°, 1°, 3° respectively.

Vector Solution of the Problem

Given: The right ascensions and declinations of the spin axis A, the sun S, the longitude difference in satellite coordinates between the sun and earth.

Required: To find the longitude difference that would be measured by a correctly oriented satellite at this point.

Compute coordinates of unit vectors A, S from the right ascensions and declinations.

The X, Y, Z components of a unit vector V may be obtained from the right ascension and declination of

\[V_1 = \cos \theta \cos \lambda \]
\[V_2 = \cos \theta \sin \lambda \]
\[V_3 = \sin \theta \]
We obtain components for the two vectors \(S \) and \(A \).

We now obtain the position of \(E \) given the positions of \(S \) and \(A \) and that the longitude differences in satellite coordinates between \(S \) and \(E \) is \(\phi \).

The vector \(A \times E \) is in the equatorial plane of the satellite, at right angles to the plane containing \(A \) and \(E \). Let \(AE \) be the angle between \(A \) and \(E \). Thus
\[
A \times E = \mu_E \sin AE \quad \text{where} \quad \mu_E \quad \text{is a unit vector.}
\]

Similarly
\[
A \times S = \mu_S |A \times S|.
\]

Now a positive rotation \(\phi_A \) about \(A \) will bring \(\mu_E \) into coincidence with \(\mu_S \).

Thus
\[
\mu_E \times \mu_S = \sin \phi_A A
\]

We also have
\[
\mu_E \cdot \mu_S = \cos \phi_A
\]

But
\[
\mu_S \times (\mu_E \times \mu_S) = \mu_E - (\mu_E \cdot \mu_S) \mu_S
\]

or
\[
\mu_E = \mu_S \times A \sin \phi_A + \cos \phi_A \mu_S
\]

This equation may be solved to give the components of \(\mu_E \). \(E \) is the vector which fulfills the following conditions.

1. \(E \cdot \mu_E = 0 \)

2. \(E_3 = 0 \) (the satellite is in an equatorial orbit)

3. \(|E| = 1 \)

4. \(A \times E = \mu E \sin AE \) when \(AE < 180^\circ \)
We obtain

\[E_1 = \frac{A_3}{|A_3|} \cdot \frac{\mu E_2}{\mu E_2 + \sqrt{(\mu E_2)^2 + (\mu E_1)^2}} \]

\[E_2 = -\frac{A_3}{|A_3|} \cdot \frac{\mu E_1}{\mu E_2 + \sqrt{(\mu E_2)^2 + (\mu E_1)^2}} \]

We now calculate the right ascension \(\lambda_E \) of the earth.

\[\cos \lambda_E = E_1 \]

\[\sin \lambda_E = E_2 \]

\[\therefore \tan \frac{\lambda_E}{2} = \frac{\sin \lambda_E}{1 + \cos \lambda_E} = \frac{E_2}{1 + E_1} \]

Let \(\lambda_S \) be the right ascension of the sun. Then at this point in the orbit, when the tilted satellite measured a longitude difference between the earth and the sun of 90° a correctly oriented satellite would measure \(\lambda_S - \lambda_E \).

Acknowledgement

My thanks to Marie Roberts who implemented the program in a remarkably speedy fashion.
Fig. 1. Correctly oriented satellite (spin axis at A) measures arc ES (≈ 90°). With sun at S the satellite measures E'S' ∼ ES. With sun at S₁ the satellite measures E'S₁' ∼ ES - 0.4 × θ.
APPENDIX I

Computation of Position Error

1. Input
 (a) Right ascension and declination of the spin axis A(RA, DA)
 (b) Right ascension and declination of sun S(RS, DS)
 (c) Earth-sun longitude difference LES PRINT RA, DA, RS, DS

2. Compute components of A along the axis
 \[A_1 = \cos DA \cdot \cos RA \]
 \[A_2 = \cos DA \cdot \sin RA \]
 \[A_3 = \sin DA \]

3. Compute components of S along the axes
 \[S_1 = \cos DS \cdot \cos RS \]
 \[S_2 = \cos DS \cdot \sin RS \]
 \[S_3 = \sin DS \]
 PRINT A1, A2, A3, S1, S2, S3

4. Compute vector A x S
 \[A_{S1} = A_2S_3 - S_2A_3 \]
 \[A_{SZ} = A_3S_1 - S_3A_1 \]
 \[A_{S3} = A_1S_2 - S_1A_2 \]

5. Compute unit vector US
 Form \[SQAS = ((A_{S1})^2 + (A_{SZ})^2 + (A_{S3})^2)^{1/2} \]
 \[US1 = \frac{A_{S1}}{SQAS} \]
 \[US2 = \frac{A_{SZ}}{SQAS} \]
US3 = \frac{AS3}{SQAS}

PRINT AS1, AS2, AS3

US1, US2, US3

Calculate MAGUS = \sqrt{(US1)^2 + (US2)^2 + (US3)^2} and PRINT MAGUS

6. Compute unit vector UE

\begin{align*}
UE1 &= (US2*A3 - A2*US3) \sin \text{LES} + US1 \cos \text{LES} \\
UE2 &= (US3*A1 - A3*US1) \sin \text{LES} + US2 \cos \text{LES} \\
UE3 &= (US1*A1 - A1*US2) \sin \text{LES} + US3 \cos \text{LES}
\end{align*}

PRINT UE1, UE2, UE3

and \sqrt{(UE1)^2 + (UE2)^2 + (UE3)^2}

7. Compute vector E

\begin{align*}
E1 &= \frac{+ UE2}{+ \sqrt{(UE2)^2 + (UE1)^2}} \times \frac{|A_3|}{A_3} \\
E2 &= \frac{- UE1}{+ \sqrt{(UE2)^2 + (UE1)^2}} \times \frac{|A_3|}{A_3}
\end{align*}

PRINT E1, E2 and \sqrt{(UE2)^2 + (UE1)^2}

8. Compute right ascension of the earth

\begin{align*}
RE &= 2 \tan^{-1}\left(\frac{E2}{1+E1}\right) + 2\pi, \mod 2\pi
\end{align*}

convert to degrees and PRINT

9. Compute

\begin{align*}
X &= RS - RE + 360, \mod 360
\end{align*}

PRINT R.A. Diff. = X
DISTRIBUTION

Group 63
M. Ash
G. H. Ashley
R. W. Berg
W. L. Black
D. Bold
L. Bowles
A. Braga-Illa
C. Burrowes
R. W. Chick
N. B. Childs
J. B. Connolly
M. C. Crocker
F. W. Floyd
C. L. Gillaspie
A. I. Grayzel
L. Hoffman
B. Howland
C. L. Mack
D. C. MacLellan
J. D. McCarron
R. E. McMahon
L. D. Michelove
B. J. Moriarty
D. M. Nathanson
D. Parker
J. L. Ryan
F. W. Sarles
W. G. Schmidt
V. Sferrino
I. I. Shapiro
H. Sherman
R. L. Sicotte
W. B. Smith
D. M. Snider
A. G. Stanley
D. D. Tang
L. J. Travis
N. Trudeau
E. A. Vrablik
P. Waldron
W. W. Ward
R. Weigand

Group 63 File (10)

Group 65
R. Enticknap
R. Lerner

Group 66
B. Reiffen
J. U. Beusch
T. J. Goblick
B. E. White
H. L. Yudkin
I. ORIGINATING ACTIVITY (Corporate author)
Lincoln Laboratory, M.I.T.

3. REPORT TITLE
Position Error in Station-Keeping Satellite

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)
Technical Note

5. AUTHOR(S) (Last name, first name, initial)
Moriarty, Brian J.

6. REPORT DATE
1 April 1966

7. TOTAL NO. OF PAGES
18

7a. CONTRACT OR GRANT NO.
AF 19(628)-5167

7b. NO. OF REFS
None

8. PROJECT NO.
649L

9a. ORIGINATOR'S REPORT NUMBER(S)
Technical Note 1966-21

9b. OTHER REPORT Nº(S) (Any other numbers that may be assigned this report)
ESD-TR-66-159

10. AVAILABILITY/LIMITATION NOTICES
Distribution of this document is unlimited.

11. SUPPLEMENTARY NOTES
None

12. SPONSORING MILITARY ACTIVITY
Air Force Systems Command, USAF

13. ABSTRACT

An automatic station-keeping satellite must be able to measure its deviation from the nominal position. For the system considered here (an equatorial synchronous orbit) this involves a latitude difference measurement between the earth and sun at certain times. This report shows that a combination of an error in satellite orientation and the sun being in a plane other than the equatorial plane may result in errors in position determination. The nature of the errors involved is described and their magnitudes estimated.

14. KEY WORDS
satellite vehicles
orbital flight paths