LIMITATIONS IN REPRODUCTION QUALITY

1. We regret that legibility of this document is in part unsatisfactory. Reproduction has been made from best available copy.

2. A portion of the original document contains fine detail which may make reading of photocopy difficult.

3. The original document contains color, but distribution copies are available in black-and-white reproduction only.

4. The original distribution copies contain color which will be shown in black-and-white when it is necessary to reprint.

5.
A PRIMAL—DUAL ALGORITHM
G. B. Dantzig
L. R. Ford, Jr.
D. R. Fulkerson
P-778
Revised May 9, 1956

Approved for OTS release.
SUMMARY

The procedure developed by two of the authors (Ford and Fulkerson) for solving transportation problems is a natural extension of the Kuhn-Egervary method for solving assignment problems. In the present paper the procedure is extended further to the general linear programming case.
CONTENTS

SUMMARY ... 11

Section

1. INTRODUCTION .. 1

2. THE PRIMAL AND DUAL PROBLEMS 2

3. THE EXTENDED PRIMAL PROBLEM 4

4. THE ALGORITHM .. 6

5. NUMERICAL EXAMPLES .. 9

REFERENCES ... 14
A PRIMAL–DUAL ALGORITHM

1. INTRODUCTION

Kuhn, basing his investigation on the work of Egervary, has developed a special routine for solving assignment problems [10]. Paul Dwyer has proposed a similar type of approach for the more general transportation problem [7]. Also, along the same lines, two of the present authors [8] have developed, in connection with maximal-flow problems in networks, a special algorithm that has been extended to Hitchcock–Koopmans transportation problems [3,9].

Experiments indicate that this technique is very efficient. Our purpose is to generalize the process to solve the general linear programming problem. As stated here, it becomes a special variant of the simplex process [4,2,6,5], that promises to reduce the number of iterations by doing away with the two-phase process. (In Phase I a basic feasible solution is determined; this is needed to initiate Phase II, in which an optimal basic feasible solution is obtained.)

Any feasible solution to the dual system may be used to initiate the proposed method. Associated with the dual solution is a "restricted" primal problem that requires optimization. When the solution of the restricted primal problem has been accomplished, an improved solution to the dual system can be obtained. This in turn gives rise to a new restricted problem to be optimized. After a finite number of improvements of the dual, an optimal solution is obtained for both the primal and dual systems.
What distinguishes the transportation case from the more general case is that for the former the optimization of the primal auxiliary problem can be accomplished without the use of the simplex process, whereas the generalization appears to require this process. Thus it might seem that we are proposing a new algorithm to replace the ordinary simplex algorithm when, in fact, the simplex algorithm itself is imbedded within the proposed algorithm.

Actually, the entire process, as we view it, may be considered to be a way of starting with an infeasible basic solution to a linear programming problem and using a feasible solution to the dual if available (otherwise a solution of the modified dual discussed below) to decrease the infeasibility of the primal in such a manner that when a feasible basic solution is obtained, it will be optimal.

2. THE PRIMAL AND DUAL PROBLEMS

We take the primal problem in the following form: Determine values of x_1, \ldots, x_n, z which minimize z subject to

\begin{align*}
(1) & \quad c_1 x_1 + c_2 x_2 + \ldots + c_n x_n = z, \\
(2) & \quad a_{11} x_1 + a_{12} x_2 + \ldots + a_{1n} x_n = b_1 \quad (b_1 \geq 0), \\
& \quad \vdots \\
& \quad a_{m1} x_1 + a_{m2} x_2 + \ldots + a_{mn} x_n = b_m, \\
(3) & \quad x_j \geq 0 \quad (j = 1, \ldots, n),
\end{align*}
where a_{ij}, c_j, b_i are given constants. There is no loss of generality in assuming $b_i \geq 0$ since the signs of all terms in an equation can be changed if necessary.

The dual problem is to find $\pi_1, \ldots, \pi_m, \pi$ which maximize π subject to

\[b_1 \pi_1 + b_2 \pi_2 + \ldots + b_m \pi_m = \pi, \]

\[a_{11} \pi_1 + a_{21} \pi_2 + \ldots + a_{m1} \pi_m \leq c_1, \]

\[\vdots \]

\[a_{1n} \pi_1 + a_{2n} \pi_2 + \ldots + a_{mn} \pi_m \leq c_n. \]

It is easy to show that always $\pi \leq \pi$ for any solutions to (1), (2), (3) and to (4), (5). The fundamental duality theorem states that if solutions to the primal exist and π has a finite lower bound, then optimal solutions for both primal and dual exist; moreover, any optimal solutions for the primal and dual systems have the property that $\pi = \pi$. Our purpose is to construct a pair of such solutions.

We shall need a feasible solution to the dual to start the algorithm. In many problems, such a solution is readily available. For example, if all $c_j \geq 0$ then obviously $\pi_j = 0$ satisfy (5). In general, however, a dual solution is not available. To get around this, we use a device due to Beale [1] and others, and append to system (2) the relation

\[x_0 + x_1 + \ldots + x_n = b_0, \]
where b_0 is unspecified but is thought of as being arbitrarily large. (More precisely, for each cycle k of the algorithm a value b_0^k can be specified such that any $b_0 \geq b_0^k$ will do. Since there will be only a finite number of cycles, we may take $b_0 \geq \max_k b_0^k$.)

The problem (1), (2), (3), (6) will be called the modified primal. The modified dual corresponding to it is the problem of determining $\pi_0, \pi_1, \ldots, \pi_m, y$ which maximize y subject to

\begin{align}
\tag{7} b_0\pi_0 + b_1\pi_1 + \ldots + b_m\pi_m &= y, \\
\tag{8} \pi_0 &\leq 0, \\
\pi_0 + a_{11}\pi_1 + \ldots + a_{m1}\pi_m &\leq c_1, \\
&\vdots \\
\pi_0 + a_{1n}\pi_1 + \ldots + a_{mn}\pi_m &\leq c_n.
\end{align}

Notice that a feasible solution is now readily available; indeed, the set of values $\pi_0 = \min(0, c_1, \ldots, c_n), \pi_i = 0$ for $i > 0$, solves (8).

3. THE EXTENDED PRIMAL PROBLEM

We next consider an extended primal problem with nonnegative error (artificial) variables $\xi_0, \xi_1, \ldots, \xi_m$, where the objective (as in Phase I of the simplex process) is to minimize the sum of the errors. Thus we are to determine values of x_0, x_1, \ldots, x_n, $\xi_0, \xi_1, \ldots, \xi_m$, \bar{w} which minimize \bar{w} subject to
Theorem 1. Any solutions to (7), (8) and to (9), (10), (11),
with the properties that \(\bar{w} = 0 \), \(\nu_0 = 0 \), and \(x_j = 0 \) if the \(j \)th
relation of (8) is strict inequality, are optimal solutions to
the original primal and dual problems.

Proof. Since \(\bar{w} = \epsilon_0 + \ldots + \epsilon_m = 0 \) and \(\epsilon_1 \geq 0 \), we have all
\(\epsilon_i = 0 \). Thus, because \(\nu_0 = 0 \), the values of \(x_1, \ldots, x_n; \nu_1, \ldots, \nu_m \)
satisfy the original primal and dual constraints.

Multiplying the \(i \)th relation of (10) by \(\nu_i \) and summing gives

\[
\sum_{i=1}^{m} a_{i1} x_1 + \sum_{i=1}^{m} a_{i2} x_2 + \ldots + \sum_{i=1}^{m} a_{in} x_n + \sum_{i=1}^{m} b_{i1} \nu_1 = \sum_{i=1}^{m} b_{i1} \nu_1 .
\]

By assumption, all terms in (12) corresponding to \(\sum_{i=1}^{m} a_{ij} \nu_i < c_j \)
have \(x_j = 0 \); hence, for all \(j \), the \(j \)th term is the same as
\(c_j x_j \); i.e., (12) reduces to

\[
\sum_{j=1}^{n} c_j x_j = \sum_{i=1}^{m} b_{i1} \nu_1 , \quad \text{or } \bar{z} = \bar{z} ,
\]
thus establishing that \(x_1, \ldots, x_n \) and \(\nu_1, \ldots, \nu_m \) are optimal sol-
olutions to the original primal and dual.
4. THE ALGORITHM

Let \(v_0, v_1, \ldots, v_m \) be any set of numbers satisfying (8). We associate with this selected solution of the modified dual a restricted primal problem, which is identical with the extended primal problem (9), (10), (11) except that certain \(x_j \) variables are "dropped" from the equations. To be more precise, the restricted primal is the extended primal under the added conditions that

\[
(14) \quad x_j = 0 \quad \text{if} \quad \delta_j < 0,
\]

where

\[
(14.1) \quad \delta_0 = v_0, \\
\delta_j = (v_0 + \sum a_{ij} v_i) - c_j \quad (j=1, 2, \ldots, n).
\]

From (3) it will be noted that \(\delta_j \leq 0 \) for all \(j \). Thus if we denote the set of indices for which \(\delta_j = 0 \) by \(J \), the restricted primal is obtained from the extended primal by dropping all variables \(x_j \) whose indices \(j \) do not belong to \(J \).

The restricted problem is next solved using the revised simplex method [6]. (Since \(b_0 \) is unspecified, the values of the variables \(x_j, \xi_1 \) will depend linearly on \(b_0 \), with the property that for all \(b_0 \) sufficiently large, the solution is feasible.) For example, one could use \(\xi_0, \xi_1, \ldots, \xi_m \) as an initial set of basic variables and minimize \(\bar{W} \) under the assumption (14). (On succeeding restricted primal problems, the prior minimal solution may be taken as a starting solution, as we shall see.) The revised simplex algorithm provides, at the minimum of the restricted
problem, optimal solutions \(x_j \), \(\xi_1 \) to the restricted problem, and
\(\sigma_1 \) to its dual, such that

(15) \[
\sigma_1 = 1 \text{ if } \xi_1 > 0, \quad \sigma_1 \leq 1 \text{ if } \xi_1 = 0,
\]
\[
\rho_j = \sigma_0 + \sum_{i=1}^{m} a_{ij} \sigma_1 = 0 \text{ if } x_j > 0,
\]
\[
\rho_j \leq 0 \text{ if } x_j = 0 \text{ and } j \in J.
\]

(Notice that \(\rho_j \) is defined for all \(j = 0, \ldots, n \).)

It follows that the values

(16) \[
\pi^*_{i} = \pi_i + \theta \sigma_1
\]

satisfy the modified dual system (8) for some range of values
\(0 < \theta \leq \theta_0 \). To see this, denote the new values of \(\delta_j \) by \(\delta_j^* \),

so that

(17) \[
\delta_j^* = \delta_j + \theta \rho_j.
\]

Now for all \(j \in J \), \(\delta_j = 0 \) and \(\rho_j \leq 0 \). Thus, for \(j \in J \), \(\delta_j^* \leq 0 \)

for any \(\theta \geq 0 \). For \(j \notin J \), \(\delta_j < 0 \); hence \(\delta_j^* \leq 0 \) for \(0 < \theta \leq \theta_0 \),

where

(18) \[
\theta_0 = \min_{\rho_j > 0} \frac{\delta_j}{\rho_j} \quad \text{or} \quad \theta_0 = \infty
\]

according as there are or are not any \(\rho_j > 0 \).

Denoting the new value of \(y \) by \(y^* \), we have, from (7) and

(16),

(19) \[
y^* = \sum_{i=0}^{m} b_1 \pi^*_{i} = \sum_{i=0}^{m} b_1 (\pi_i + \theta \sigma_1) = y + \theta \sum_{i=0}^{m} b_1 \sigma_1.
\]
Now by multiplying the \(i^{th}\) equation of (10) by \(\varepsilon_i\), summing and noting (15), we get

\[
\sum_{i=0}^{m} b_i \delta_i = \sum_{j=0}^{n} \lambda_j + \sum_{i=0}^{m} \varepsilon_i \delta_i = \sum_{i=0}^{m} \varepsilon_i;
\]

hence by (15), (19) becomes

\[
(20) \quad \lambda^* = \lambda + \Theta \sum_{i=0}^{m} \varepsilon_i = \lambda + \Theta \bar{w}.
\]

We may therefore state the following result.

Theorem 2. An optimal solution to the restricted primal

with \(\bar{w} > 0\) provides a new feasible solution to the modified
dual with a strict increase in the maximizing form \(\lambda\).

If \(\bar{w} > 0\) and all \(\varepsilon_j \leq 0\) (so that \(\Theta = \infty\)), then \(\bar{w}\) is minimal
in the extended primal \((9), (10), (11)\). Hence in this case there
is no solution to the original primal system, and the computation
terminates.

Assuming that \(\bar{w} > 0\) and some \(\varepsilon_j > 0\), we repeat the procedure
using the new modified dual solution \(\lambda_1 = \lambda_1 + \Theta \delta_1\) and its
associated restricted primal. Notice, as was asserted earlier,
that we may take the prior minimizing solution for \(\bar{w}\) as an ini-
tial solution in the new restricted primal, since those \(j\) for
which \(x_j > 0\) have both \(\varepsilon_j = 0\) and \(\epsilon_j = 0\), hence \(\delta_j = 0\).

Theorem 3. The algorithm terminates in a finite number of
steps in one of the following situations:

1. At some stage \(\Theta = \infty\); hence there is no feasible
 solution to the original primal.

2. At some stage, \(\bar{w} = 0\) and \(\pi_0 = 0\); then \(x_1, \ldots, x_n\);
 \(\lambda_1, \ldots, \lambda_n\) are optimal solutions to the original primal and dual.
(IIb) At some stage \(\bar{w} = 0 \) and \(\tau_0 < 0 \); then the original primal form \(\bar{z} \) has no lower bound.

Proof. We suppose that degeneracy is avoided in each restricted primal by using, if necessary, a perturbation of the \(b_i \). This means that when we minimize \(\bar{w} \), the set of \(x_j > 0 \) and \(\bar{z}_j > 0 \) constitutes a basic feasible solution. If \(\tau_0 = \infty \) at some stage, the computation ends (as we have seen) with the conclusion that no feasible solution to the primal exists. If not, then at each stage there is a \(\bar{z}_j > 0 \). It follows that \(x_j \) may be introduced in place of one of the basic variables, and the nondegeneracy assumption means that \(\bar{w} \) will be strictly decreased. Hence the solution of each new restricted primal results in one or more new basic solutions to the extended primal, each with a decrease in \(\bar{w} \). Thus no basis can be repeated and the process must terminate in a finite number of steps with a basic solution for which \(\bar{w} = 0 \).

If \(\tau_0 = 0 \) when termination occurs, then (see Theorem 1) \(x_1, \ldots, x_n, \bar{z}_1, \ldots, \bar{z}_m \) are optimal for the original primal and dual. If, on the other hand, \(\tau_0 < 0 \), then, since \(\gamma = \bar{z} \), we see from (7) that there is no lower bound for \(\bar{z} \) as \(b_0 \to +\infty \).

5. **NUMERICAL EXAMPLES**

The following examples correspond to the cases of Theorem 3. All variables are nonnegative.

Example I. Consider the equations

\[
-x_1 + x_2 - x_3 = 1, \\
x_1 - x_2 - x_4 = 1, \\
-x_3 = \bar{z}.
\]
The problem is illustrated geometrically in Figure 1.

![Geometrical Picture for Example 1](image)

Figure 1

Geometrical Picture for Example 1

The extended primal is

\[x_0 + x_1 + x_2 + x_3 + x_4 + \varepsilon_0 = b_0, \]
\[-x_1 + x_2 - x_3 + \varepsilon_1 = 1, \]
\[x_1 - x_2 + \varepsilon_2 = 1, \]
\[\varepsilon_0 + \varepsilon_1 + \varepsilon_2 = \bar{w}. \]

To start out, take \(x_0 = -1, \) \(x_1 = x_2 = 0. \) Then \(\delta_0 = -1, \)
\(\delta_1 = 0, \delta_2 = -1, \delta_3 = -1, \delta_4 = -1. \) The solution of the corresponding restricted primal is \(x_1 = 1, \varepsilon_0 = b_0 - 1, \varepsilon_1 = 2, \)
with multipliers \(\sigma_0 = 1, \sigma_1 = 1, \sigma_2 = 0. \) Thus \(p_0 = 1, \rho_1 = 0, \rho_2 = 2, \rho_3 = 0, \rho_4 = 1, \) and consequently \(\theta_0 = 1/2. \) Hence
Using the previous minimal solution $x_1 = 1$, $0 = b_0 - 1$, $\xi_1 = 2$ as a starting point and minimizing \bar{w} for the new restricted primal gives the basic solution $x_1^* = (b_0 + 1)/2$, $x_2^* = (b_0 - 1)/2$, $\xi_1 = 2$, with multipliers $\delta_0 = 0$, $\delta_1 = -1$, $\delta_2 = 1$. Then $f^* = 0$, $\rho_1 = 0$, $\rho_2 = 0$, $\rho_3 = -1$, $\rho_4 = -1$, and $\phi_0 = \infty$. Since all $\delta_i \leq 0$, $\bar{w} = 2$ is minimal and no feasible solution exists to Example 1.

Examples IIa, IIb. For the next two examples, we record in Tables 1 and 2 merely the extended primal in detached-coefficient form together with a record of successive values w, δ, ϕ, ξ, and optimizing x, ξ in the various restricted primal. The problem may be pictured geometrically as in Figure 2, where IIa and IIb denote the normals to the minimizing forms in the direction of decreasing \bar{z}.

Figure 2
Geometrical Picture for Examples IIa, IIb
Table 1
SOLUTION OF EXAMPLE IIa

<table>
<thead>
<tr>
<th>x_0</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>ε_0</th>
<th>ε_1</th>
<th>ε_2</th>
<th>x_1</th>
<th>x_1</th>
<th>x_1</th>
<th>x_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>-1/2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1/2</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

δ_j
x_j, ε_1
μ_j
x_j, ε_1
μ_j
x_j, ε_1
μ_j

Iteration

<table>
<thead>
<tr>
<th>δ_j</th>
<th>x_j, ε_1</th>
<th>μ_j</th>
<th>x_j, ε_1</th>
<th>μ_j</th>
<th>x_j, ε_1</th>
<th>μ_j</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>0</td>
<td>1/2</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

δ_j
x_j, ε_1
μ_j

Iteration

<table>
<thead>
<tr>
<th>δ_j</th>
<th>x_j, ε_1</th>
<th>μ_j</th>
<th>x_j, ε_1</th>
<th>μ_j</th>
<th>x_j, ε_1</th>
<th>μ_j</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>0</td>
<td>1/2</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Table 2

SOLUTION OF EXAMPLE IIb

<table>
<thead>
<tr>
<th>x_0</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>ξ_0</th>
<th>ξ_1</th>
<th>ξ_2</th>
<th>τ_1</th>
<th>σ_1</th>
<th>τ_1</th>
<th>σ_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>b_0</td>
<td>-1</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>b_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>b_2</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>-1</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>-2</td>
<td>1</td>
<td>1</td>
<td>\bar{w}</td>
<td>Iteration</td>
<td>(0)</td>
<td>(1)</td>
</tr>
</tbody>
</table>

δ_j x_j, ξ_1 ρ_j

Iteration (0) requires at least two cycles of the simplex algorithm since basic variables ξ_0, ξ_1 are replaced by x_1, x_2.

Iteration (0) requires at least two cycles of the simplex algorithm since basic variables ξ_0, ξ_1 are replaced by x_1, x_2.
REFERENCES

