The Infrared Spectra of Perfluorocyclopropane and Cis- and Trans-Perfluorobutene-2

24 JULY 1964

Prepared by JULIAN HEICKLEN, FRANCIS WACH, and VESTER KNIGHT
Materials Sciences Laboratory
Prepared for BALLISTIC SYSTEMS AND SPACE SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND
LOS ANGELES AIR FORCE STATION
Los Angeles, California

LABORATORY OPERATIONS • N. ROSE • CORPORATION
CONTRACT NO. AF 04(695)269
CLEARINGHOUSE FOR FEDERAL SCIENTIFIC AND TECHNICAL INFORMATION CFSTI
DOCUMENT MANAGEMENT BRANCH 410.11

LIMITATIONS IN REPRODUCTION QUALITY

ACCESSION # J6041CS1

☐ 1. WE REGRET THAT LEGIBILITY OF THIS DOCUMENT IS IN PART UNSATISFACTORY. REPRODUCTION HAS BEEN MADE FROM BEST AVAILABLE COPY.

☐ 2. A PORTION OF THE ORIGINAL DOCUMENT CONTAINS FINE DETAIL WHICH MAY MAKE READING OF PHOTOCOPY DIFFICULT.

☐ 3. THE ORIGINAL DOCUMENT CONTAINS COLOR, BUT DISTRIBUTION COPIES ARE AVAILABLE IN BLACK-AND-WHITE REPRODUCTION ONLY.

☐ 4. THE INITIAL DISTRIBUTION COPIES CONTAIN COLOR WHICH WILL BE SHOWN IN BLACK-AND-WHITE WHEN IT IS NECESSARY TO REPRINT.

☐ 5. LIMITED SUPPLY ON HAND: WHEN EXHAUSTED, DOCUMENT WILL BE AVAILABLE IN MICROFICHE ONLY.

☐ 6. LIMITED SUPPLY ON HAND: WHEN EXHAUSTED DOCUMENT WILL NOT BE AVAILABLE.

☐ 7. DOCUMENT IS AVAILABLE IN MICROFICHE ONLY.

☐ 8. DOCUMENT AVAILABLE ON LOAN FROM CFSTI (TT DOCUMENTS ONLY).

☐ 9.

PROCESSOR: TSL-107-10-64
THE INFRARED SPECTRA OF PERFLUOROCYCLOPROPANE
AND CIS- AND TRANS-PERFLUOROBUTENE-2

Prepared by
Julian Heicklen, Francis Wachi, and Vester Knight
Materials Sciences Laboratory

Laboratory Operations
AEROSPACE CORPORATION
El Segundo, California

Contract No. AF 04(695)-269

24 July 1964

Prepared for
BALLISTIC SYSTEMS AND SPACE SYSTEMS DIVISIONS
AIR FORCE SYSTEMS COMMAND
LOS ANGELES AIR FORCE STATION
Los Angeles, California
THE INFRARED SPECTRA OF PERFLUOROCYCLOPROPANE
AND CIS- AND TRANS-PERFLUOROBUTENE-2

Prepared by

Julien Heicklen
Francis Wachi
Vester Knight

Approved by

W. C. Riley, Head
Applied Science Department

John E. Hove, Director
Materials Sciences Laboratory

This technical documentary report has been reviewed and is approved for publication and dissemination. The conclusions and findings contained herein do not necessarily represent an official Air Force position.

For Space Systems Division
Air Force Systems Command

W. J. Iller
Major, USAF
ABSTRACT

The infrared spectra in the NaCl region of cC₃F₆, cis-C₄F₈-2, and trans-C₄F₈-2 are reported. Partial vibration assignments are discussed.
THE INFRARED SPECTRA OF PERFLUOROCYCLOPROPA N E
AND CIS- AND TRANS-PERFLUOROBUTENE-2

We wish to report the infrared spectra in the NaCl region of three simple fluorocarbons. The preparation and purification procedure of the compounds cC_3F_6, cis-C_4F_8-2, and trans-C_4F_8-2 is described by Greene and Wachi (Ref. 1). For the cis and trans compounds, it was necessary that we perform the purification procedure twice for complete separation. The spectra were obtained on a Perkin-Elmer 21 infrared spectrometer and are shown in Fig. 1. The bands and their relative intensities are listed in Table I.

The infrared spectrum of cC_3F_6 has not been previously reported. The molecular symmetry is D_{3h}, and the only allowed infrared fundamental vibrations are the two A''_2 and the four E'' bands. The two intense bands at 1368 and 1272 cm$^{-1}$ must consist mainly of C-F stretching motions. Thus, one of these is an A''_2 band and the other an E'' band. It is not clear which is which. However, there are some indications to suggest that the 1368 cm$^{-1}$ band has A''_2 symmetry and the 1272 cm$^{-1}$ band has E'' symmetry. The A''_2 band involves the asymmetric stretching motion of the CF_2 group, whereas the E'' band involves the symmetric stretching motion. Usually the asymmetric mode has higher frequency, which corresponds to the assignments of cC_3H_6 (Refs. 2, 3). Furthermore, if the 2532 cm$^{-1}$ band is the overtone of the 1272 cm$^{-1}$ band, then the latter band must be of E'' symmetry as the overtones of A''_2 bands are symmetry forbidden. The disturbing feature is that asymmetric bands usually are more intense, but our assignment requires the reverse.
The strong band at 859 cm\(^{-1}\) corresponds undoubtedly to the CF\(_2\) deformation of E' symmetry. The two bending frequencies associated with the motion of the CF\(_2\) groups relative to the carbon skeleton lie below 650 cm\(^{-1}\) and are not observed. The E' ring deformation frequency of cyclopropyl compounds usually lies within 25 cm\(^{-1}\) of 1025 cm\(^{-1}\) (Ref. 4). No such band appears in our spectrum; thus, from this point of view, cC\(_3\)F\(_6\) must be considered atypical. We tentatively assign the 978 cm\(^{-1}\) band to this mode.

The weak band at 2532 cm\(^{-1}\) must be either a combination or an overtone of C-F stretching modes. Only seven such possibilities are consistent with the symmetry selection rules: These are the overtones of the E' or E'' bands or the five combinations A\(_1\) × A\(_{\nu}\), E' × A\(_1\), E'' × A\(_{\nu}\), E' × E', and E' × E''. The overtone of the E' band seems very attractive as 2532 is almost twice 1272, a result that would be expected if anharmonicity were considered.

The infrared spectrum has been reported for mixtures of cis- and trans-C\(_4\)F\(_8\) (Refs. 5,6) but not for the pure geometric isomers. If the internal rotations of the CF\(_3\) groups are nearly free, then the trans and cis compounds have C\(_{2h}\) and C\(_{2v}\) symmetry, respectively. Table II gives the symmetry classes and approximate descriptions of the vibrations.

For the trans molecule, all the gerade vibrations are symmetry forbidden in the infrared spectrum. Thus, there are five stretching modes that should be active. Three of these are surely the intense bands at 1193, 1242, and 1292 cm\(^{-1}\). The band at 882 cm\(^{-1}\) also might correspond principally to stretching motions. At least one (and maybe two) of the stretching bands is...
not readily discernible, it is probably completely or partially obscured by the other bands. All the observed overtone bands must be combinations of gerade and ungerade bands. As a result, the C=C stretch must participate in the overtone bands at 2932 and 3003 cm\(^{-1}\) (except in the unlikely event that they are triple combinations). If the intense bands at 1242 and 1292 cm\(^{-1}\) are respectively the other participating bands, then the differences are 1711 and 1690 cm\(^{-1}\) respectively in reasonably close agreement. Allowing for some anharmonicity sets the C=C stretching frequency at 1710 ±20 cm\(^{-1}\), which correlates nicely with the corresponding frequency in the cis molecule.

For cis-C\(_4\)F\(_8\)-\(\zeta\), all bands are allowed in the infrared spectrum, though some may be weak. The band at 1724 cm\(^{-1}\) is the double bond stretch. Of the remaining ten stretching modes, at least five are observed at 1111, 1193, 1224, 1245, and 1350 cm\(^{-1}\). The band at 952 cm\(^{-1}\) is also likely to contain considerable stretching motion. The other four stretching motions either are weak bands or are completely or partially obscured.
Fig. 1. Infrared spectra.

Path length 10 cm. Discontinuity at 9.82 μ due to change in optical system. For the curve with more intense absorption, the ordinate has been magnified five times.
Fig. 1. Infrared spectra. (Continued)

Path length 10 cm. Discontinuity at 9.82 μ due to change in optical system. For the curve with more intense absorption, the ordinate has been magnified five times.
Fig. 1. Infrared spectra. (Continued)
Path length 10 cm. Discontinuity at 9.82 μ due to change in optical system. For the curve with more intense absorption, the ordinate has been magnified five times.
Fig. 1. Infrared spectra. (Continued)
Path length 10 cm. Discontinuity at 9.82 μ due to change in optical system. For the curve with more intense absorption, the ordinate has been magnified five times.
Fig. 1. Infrared spectra. (Continued)
Path length 10 cm. Discontinuity at 9.82 μ due to change in optical system. For the curve with more intense absorption, the ordinate has been magnified five times.
Fig. 1. Infrared spectra. (Continued)

Path length 10 cm. Discontinuity at 9.82 μ due to change in optical system. For the curve with more intense absorption, the ordinate has been magnified five times.
Fig. 1. Infrared spectra. (Continued)

Path length 10 cm. Discontinuity at 9.82 \(\mu \) due to change in optical system. For the curve with more intense absorption, the ordinate has been magnified five times.
<table>
<thead>
<tr>
<th>v, cm$^{-1}$</th>
<th>Relative intensity</th>
<th>v, cm$^{-1}$</th>
<th>Relative intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>859</td>
<td>s</td>
<td>1172</td>
<td>vw</td>
</tr>
<tr>
<td>932</td>
<td>w</td>
<td>1272</td>
<td>vs</td>
</tr>
<tr>
<td>978</td>
<td>w</td>
<td>1368</td>
<td>s</td>
</tr>
<tr>
<td>1111</td>
<td>w</td>
<td>2532</td>
<td>w</td>
</tr>
<tr>
<td>1135</td>
<td>w</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cC_3F_6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>719</td>
<td>vs</td>
<td>1224</td>
<td>vs</td>
</tr>
<tr>
<td>726</td>
<td>sh</td>
<td>1245</td>
<td>vs</td>
</tr>
<tr>
<td>760</td>
<td>m</td>
<td>1287</td>
<td>m</td>
</tr>
<tr>
<td>766</td>
<td>m</td>
<td>1350</td>
<td>vs</td>
</tr>
<tr>
<td>905</td>
<td>vw</td>
<td>1389</td>
<td>m</td>
</tr>
<tr>
<td>952</td>
<td>vs</td>
<td>1481</td>
<td>vw</td>
</tr>
<tr>
<td>956</td>
<td>sh</td>
<td>1524</td>
<td>vw</td>
</tr>
<tr>
<td>1064</td>
<td>sh</td>
<td>1562</td>
<td>w</td>
</tr>
<tr>
<td>1111</td>
<td>vs</td>
<td>1686</td>
<td>sh</td>
</tr>
<tr>
<td>1156</td>
<td>sh</td>
<td>1724</td>
<td>s</td>
</tr>
<tr>
<td>1166</td>
<td>sh</td>
<td>1779</td>
<td>m</td>
</tr>
<tr>
<td>1193</td>
<td>vs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table I. Infrared frequencies. (Cont nued)

<table>
<thead>
<tr>
<th>ν, cm$^{-1}$</th>
<th>Relative intensity</th>
<th>ν, cm$^{-1}$</th>
<th>Relative intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>682</td>
<td>vs</td>
<td>1387</td>
<td>m</td>
</tr>
<tr>
<td>696</td>
<td>sh</td>
<td>1424</td>
<td>m</td>
</tr>
<tr>
<td>712</td>
<td>m</td>
<td>1451</td>
<td>vw</td>
</tr>
<tr>
<td>730</td>
<td>vw</td>
<td>1499</td>
<td>m</td>
</tr>
<tr>
<td>760</td>
<td>m</td>
<td>1527</td>
<td>w</td>
</tr>
<tr>
<td>875</td>
<td>sh</td>
<td>1560</td>
<td>w</td>
</tr>
<tr>
<td>878</td>
<td>sh</td>
<td>1582</td>
<td>m</td>
</tr>
<tr>
<td>882</td>
<td>s</td>
<td>1751</td>
<td>w</td>
</tr>
<tr>
<td>890</td>
<td>sh</td>
<td>1848</td>
<td>m</td>
</tr>
<tr>
<td>945</td>
<td>m</td>
<td>1953</td>
<td>w</td>
</tr>
<tr>
<td>962</td>
<td>m</td>
<td>2000</td>
<td>w</td>
</tr>
<tr>
<td>1070-1105</td>
<td>m</td>
<td>2053</td>
<td>m</td>
</tr>
<tr>
<td>1149</td>
<td>sh</td>
<td>2105</td>
<td>w</td>
</tr>
<tr>
<td>1163</td>
<td>sh</td>
<td>2353</td>
<td>m</td>
</tr>
<tr>
<td>1193</td>
<td>vs</td>
<td>2512</td>
<td>w</td>
</tr>
<tr>
<td>1242</td>
<td>vs</td>
<td>2652</td>
<td>w</td>
</tr>
<tr>
<td>1292</td>
<td>vs</td>
<td>2932</td>
<td>w</td>
</tr>
<tr>
<td>1321</td>
<td>sh</td>
<td>3003</td>
<td>w</td>
</tr>
</tbody>
</table>

$s =$ strong, $m =$ medium, $w =$ weak, $v =$ very, $sh =$ shoulder
Table II. Vibrations of cis- and trans-$C_4F_8^-2$.

<table>
<thead>
<tr>
<th>Description</th>
<th>Trans symmetry</th>
<th>Cis symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-plane motions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C=C stretch</td>
<td>A_g</td>
<td>A_1</td>
</tr>
<tr>
<td>C-F stretch</td>
<td>A_g</td>
<td>A_1</td>
</tr>
<tr>
<td>C-C stretch</td>
<td>A_g</td>
<td>A_1</td>
</tr>
<tr>
<td>CF$_3$ symmetric stretch</td>
<td>A_g</td>
<td>A_1</td>
</tr>
<tr>
<td>CF$_3$ asymmetric stretch</td>
<td>A_g</td>
<td>A_1</td>
</tr>
<tr>
<td>C-F bend</td>
<td>A_g</td>
<td>A_1</td>
</tr>
<tr>
<td>C-C bend</td>
<td>A_g</td>
<td>A_1</td>
</tr>
<tr>
<td>CF$_3$ symmetric bend</td>
<td>A_g</td>
<td>A_1</td>
</tr>
<tr>
<td>CF$_3$ asymmetric bend</td>
<td>A_g</td>
<td>A_1</td>
</tr>
<tr>
<td>CF$_3$ coupling wag</td>
<td>A_g</td>
<td>A_1</td>
</tr>
<tr>
<td>C-F stretch</td>
<td>B_u</td>
<td>B_1</td>
</tr>
<tr>
<td>C-C stretch</td>
<td>B_u</td>
<td>B_1</td>
</tr>
<tr>
<td>CF$_3$ symmetric stretch</td>
<td>B_u</td>
<td>B_1</td>
</tr>
<tr>
<td>CF$_3$ asymmetric stretch</td>
<td>B_u</td>
<td>B_1</td>
</tr>
<tr>
<td>C-F bend</td>
<td>B_u</td>
<td>B_1</td>
</tr>
<tr>
<td>C-C bend</td>
<td>B_u</td>
<td>B_1</td>
</tr>
<tr>
<td>CF$_3$ symmetric bend</td>
<td>B_u</td>
<td>B_1</td>
</tr>
<tr>
<td>CF$_3$ asymmetric bend</td>
<td>B_u</td>
<td>B_1</td>
</tr>
<tr>
<td>CF$_3$ coupling wag</td>
<td>B_u</td>
<td>B_1</td>
</tr>
</tbody>
</table>
Table II. Vibrations of cis- and trans-C_4F_8-2. (Continued)

<table>
<thead>
<tr>
<th>Description</th>
<th>Trans symmetry</th>
<th>Cis symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Out-of-plane motions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF_3 asymmetric stretch</td>
<td>Au</td>
<td>A_2</td>
</tr>
<tr>
<td>Skeletal bend</td>
<td>Au</td>
<td>A_2</td>
</tr>
<tr>
<td>Skeletal bend</td>
<td>Au</td>
<td>A_2</td>
</tr>
<tr>
<td>CF_3 asymmetric bend</td>
<td>Au</td>
<td>A_2</td>
</tr>
<tr>
<td>CF_3 coupling wag</td>
<td>Au</td>
<td>A_2</td>
</tr>
<tr>
<td>CF_3 asymmetric stretch</td>
<td>Bg</td>
<td>B_2</td>
</tr>
<tr>
<td>Skeletal bend</td>
<td>Bg</td>
<td>B_2</td>
</tr>
<tr>
<td>CF_3 asymmetric bend</td>
<td>Bg</td>
<td>B_2</td>
</tr>
<tr>
<td>CF_3 coupling wag</td>
<td>Bg</td>
<td>B_2</td>
</tr>
</tbody>
</table>
REFERENCES

DISTRIBUTION

Internal

W. Barry
P. Breisacher
H. Claflin
N. Coher
J. Colwell
E. Cook
G. Cook
F. Fitzgerald
W. Gamber
R. Geidt
S. A. Greene
R. Hartunian
J. Heicklen
B. Henshall
T. Jacobs
R. Johnson
H. Judeikis
V. Knight
T. Lee
J. Logan

D. Marsh
S. Mayer
H. Myers
M. T. O Shaughnessy
R. Peterson
P. Propp
J. Quinville
W. Riley
D. Saunders
L. Schieler
B. Siegel
S. Siegel
J. Slaughter
E. Smith
H. Takimoto
W. Thompson
F. Wachi
A. Whittaker
R. Wilkins

External

K. Wray
Avco Research Company
Everett, Mass.

M. Camac
Avco Research Company
Everett, Mass.
R. Taylor
Avco Research Company
Everett, Mass.

J. Keck
Avco Research Company
Everett, Mass.

D. Teare
Avco Research Company
Everett, Mass.

A. Fairbairn
Avco Research Company
Everett, Mass.

J. Zelinsky
Avco Research Company
Everett, Mass.

W. Kaskan
General Electric Company
Valley Forge, Pa.

D. Teare
Avco Research Company
Everett, Mass.

A. Fairbairn
Avco Research Company
Everett, Mass.

W. Browne
General Electric Company
Valley Forge, Pa.

M. H. Bortner
General Electric Company
Valley Forge, Pa.

A. Modica
Avco Manufacturing Co.
Wilmington, Mass.

L. Isaacson
Avco Manufacturing Co.
Wilmington, Mass.

T. Wentink
Avco Manufacturing Co.
Wilmington, Mass.

Prof. F. W. Dalby
Dept. of Physics
University of British Columbia
Vancouver, British Columbia

Defense Documentation Center (DDC)
Attn: TISIA
Cameron Station
Alexandria, Va.

Commanding General
U. S. Army Ballistic Missile Agency
Technical Information Branch
ORDAM--IKE
Redstone Arsenal, Alabama

RTD (MAG)
Wright-Patterson AFB, Ohio

AFCRL
L G Hanscom Field
Bedford, Mass.

FTD
Wright-Patterson AFB, Ohio

ARPSC
Andrews AFB
Washington 25, D. C.

RTD
Bolling AFB 25, D. C.

OAR (Tech. Library)
Building T-D
Washington 25, D. C.

Hq USAF (Dir. Research and Dev't)
Washington 25, D. C.

\AFFTC
Edwards AFB, Calif.
Office, Chief of Ordnance
Dept. of the Army
Attn: ORDTB, Materials
Washington 25, D.C.

Ordinance Materials Research Office
Watertown Arsenal, RPD
Watertown 72, Mass.

USNRL
Anacostia Station
Washington 25, D.C.

DMIC
Battelle Memorial Institute
505 King Avenue
Columbus 1, Ohio

NASA
Huntsville, Alabama

Scientific and Tech. Info. Facility
P. O. Box 5700
Bethesda, Maryland, 20014

NASA
Langley Research Center
Langley Field, Va.

R. Bryan Erb, Chief of
Thermostructures Branch
NASA
Manned Spacecraft Center
Houston, Texas

Library
NASA
Manned Spacecraft Center
Houston, Texas

Jet Propulsion Laboratory
4800 Oak Grove Drive
Pasadena, Calif.

National Bureau of Standards
Boulder Labs
Boulder, Colorado