NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
TECHNICAL MANUSCRIPT 165

EFFECT OF HEMATIN ON THE RECOVERY OF BACILLUS ANTHRACIS AND RELATED ORGANISMS

OCTOBER 1964

UNITED STATES ARMY BIOLOGICAL LABORATORIES FORT DETRICK
EFFECT OF HEMATIN ON THE RECOVERY OF BACILLUS ANTHRACIS
AND RELATED ORGANISMS

Ralph F. Knisely

Physical Defense Division
DIRECTOR OF MEDICAL RESEARCH

Project 1C622401A071

October 1964
This publication or any portion thereof may not be reproduced without specific authorization from the Commanding Officer, U. S. Army Biological Laboratories, ATTN: Technical Releases Branch, Technical Information Division, Fort Detrick, Frederick, Maryland 21701. However, DDC is authorized to reproduce the publication for U. S. Government purposes.

The information in this publication has not been cleared for release to the public.

DDC AVAILABILITY NOTICE

Qualified requestors may obtain copies of this publication directly from DDC.

Foreign announcement and dissemination of this publication by DDC is limited.
ACKNOWLEDGMENT

The author thanks Mr. Chester L. Redmond, Jr. for his technical assistance.

ABSTRACT

Freshly prepared alkaline hematin inhibits the growth of many Gram-positive organisms, including Bacillus anthracis; Gram-negative organisms, however, are generally not inhibited. Work on a selective medium for isolating B. anthracis that does not contain hematin as a selective ingredient is in progress.
EFFECT OF HEMATIN ON THE RECOVERY OF BACILLUS ANTHRACIS AND RELATED ORGANISMS

It was reported by Van Heyningen that growth of Bacillus anthracis was not inhibited on nutrient agar containing 50 μg of hematin per ml, although certain other spore-bearing aerobes were inhibited. Pearce and Powell developed a selective medium for B. anthracis containing hematin and lysozyme. Preliminary work in this laboratory on the development of a selective medium for isolating B. anthracis indicated that quantitative recovery was dependent on the age of hematin solutions added to the medium. Freshly prepared alkaline hematin solutions were found to be inhibitory for Gram-positive organisms.

Hematin solutions were prepared by dissolving 400 μg of hemin (Eastman Kodak Company) per ml of 0.01 N NaOH and autoclaving for 30 minutes at 5 psi (hemin changes to hematin in the presence of alkali). A stock hematin solution was stored at 4°C and used periodically in test media to determine the minimum aging time required for full recovery of various test organisms. The test medium was prepared by adding either freshly prepared or aged hematin solutions to heart infusion agar (HIA-Difco) in a final concentration of 40 μg/ml (pH 7.4); the medium was used after an overnight preincubation period at 37°C. The effect of pH was evaluated by adjusting the media in a range of pH 6.6 to 8.2. The test inoculum was prepared by removing growth from a 24-hour HIA slant and suspending it in 0.06 M phosphate buffer. Dilutions of the suspension were adjusted to contain 1 organisms per ml and 0.1 ml was added to each plate (triplicate plates used and incubated at 37°C).

Recovery of Gram-positive organisms on the various media is shown in Table I. All of the Bacillus species tested, Staphylococcus aureus, and three Streptococcus strains were markedly inhibited in the presence of fresh hematin.

The inhibition of soil organisms was significantly increased, but Escherichia coli, Aerobacter aerogenes, Pseudomonas aeruginosa and four strains of Pasteurella pestis were not inhibited by freshly prepared hematin solutions. Further inhibition of Gram-positive organisms occurred when the concentration of fresh hematin was increased, but full recovery was obtained on media containing as much as 80 μg/ml of hematin aged for 2 months at 4°C. Recovery of some strains from media containing aged hematin was more than double the recovery from the HIA control. Fresh hematin solutions prepared with hematin from two different sources (Nutritional Biochemical Corp. and Eastman Kodak Co.) were equally inhibitory. A 14-day aging period of hematin was required for full recovery of B. cereus and B. subtilis; 3 to 4 weeks were required for B. cereus var. mycoides, S. aureus, and B. anthracis. Similar results were
obtained when nutrient agar was used in place of HIA. Changing the pH of
the medium containing fresh hematin had no significant effect on recovery
of test organisms. The exact composition of the alkaline hematin solution
when freshly prepared and the changes that occurred during storage were not
determined.

Kammerer3 reported inhibition of many Gram-positive organisms (including
\textit{B. anthracis}) by mesohemin while Gram-negative organisms were generally not
inhibited. He was also able to achieve complete inhibition of \textit{B. anthracis}
and \textit{B. megatherium} with a 1:300 dilution (3333 \(\mu\)g/ml) of hematin (age not
specified).

In summary, the results indicate that freshly prepared alkaline hematin
solution is inhibitory for many Gram-positive organisms, including \textit{B.}
\textit{anthracis}, and therefore its use in a selective medium for the isolation
of \textit{B. anthracis} is questionable. However, freshly prepared alkaline hematin
has been found useful in a selective medium for \textit{Pasteurella pestis}\.3 Further
work on a selective medium for \textit{B. anthracis} is in progress.
<table>
<thead>
<tr>
<th>Test Organism</th>
<th>Number of Strains</th>
<th>Average Recovery as Per Cent of HIA Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacillus anthracis</td>
<td>10</td>
<td>95 to 163</td>
</tr>
<tr>
<td>Bacillus anthracis (spore susp)</td>
<td>1</td>
<td>90</td>
</tr>
<tr>
<td>Bacillus agri</td>
<td>1</td>
<td>107</td>
</tr>
<tr>
<td>Bacillus albolactus</td>
<td>1</td>
<td>139</td>
</tr>
<tr>
<td>Bacillus cereus</td>
<td>7</td>
<td>83 to 266</td>
</tr>
<tr>
<td>Bacillus cereus var. mycoides</td>
<td>4</td>
<td>78 to 240</td>
</tr>
<tr>
<td>Bacillus circulans</td>
<td>1</td>
<td>222</td>
</tr>
<tr>
<td>Bacillus graveolens</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>Bacillus lentimorbus</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>Bacillus megatherium</td>
<td>3</td>
<td>93 to 111</td>
</tr>
<tr>
<td>Bacillus polymyxa</td>
<td>1</td>
<td>238</td>
</tr>
<tr>
<td>Bacillus pumilus</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>Bacillus sphaericus</td>
<td>2</td>
<td>94 to 96</td>
</tr>
<tr>
<td>Bacillus sphaericus var. fusiformis</td>
<td>1</td>
<td>80</td>
</tr>
<tr>
<td>Bacillus subtilis</td>
<td>5</td>
<td>60 to 133</td>
</tr>
<tr>
<td>Bacillus thuringiensis</td>
<td>2</td>
<td>122 to 147</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>1</td>
<td>111</td>
</tr>
<tr>
<td>Streptococcus faecalis</td>
<td>4</td>
<td>59 to 133</td>
</tr>
</tbody>
</table>

a. 40 μg/ml.
b. Grown for 24 hours at 37°C on HIA slant, except spore suspension which was stored in distilled water at 4°C.
c. HIA, heart infusion agar as 100% recovery control.
d. Alkaline hematin solution stored at 4°C for 2 months.
e. Medium containing fresh hematin was used within 24 hours after preparation.
LITERATURE CITED

