NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
FLUORESCENT ANTIBODY TEST FOR THE SERODIAGNOSIS OF VISCERAL LEISHMANIASIS

RALPH E. DUXBURY AND ELVIO H. SANCHEZ

Veterans Administration Central Laboratory for Clinical Pathology and Department of Medical Zoology, Walter Reed Army Institute of Research, Washington, D. C.

The unequivocal diagnosis of visceral leishmaniasis (kala-azar) is often difficult to obtain since the clinical picture is not always well defined and the organisms frequently cannot be readily recovered for microscopic examination. Consequently, the need for reliable and rapid procedures which could provide the basis for an accurate diagnosis of this infection has been evident for a long time. Although agglutination, precipitin, and complement-fixing antibodies can be demonstrated in animals artificially immunized with cultures of Leishmania donovani and to a lesser degree in infected humans, these tests have so far shown only limited value for the routine laboratory diagnosis of this infection.

Following the early unsuccessful attempts to detect specific antibodies in kala-azar infections, a complement-fixation test was developed which was regarded as a fairly adequate means of diagnosing human infection. Difficulties were encountered, however, in preparing sufficient quantities of specific antigen for use in the complement-fixation test. Extensive cross-reactions reported with acid-fast bacilli led to the widespread use of these organisms in place of the specific antigen. However, as one would expect, when these non-specific antigens were used cross-reactions were observed in lepromatous lepers and in individuals with active tuberculosis. Pellegrino and Brenner performed the complement-fixation test on blood which had been collected on filter paper and allowed to dry at room temperature. They suggested that this method might be used for surveys on canine visceral leishmaniasis.

The growth of Leishmania in media containing serum has been reported. Based on these observations, recently Adler was able to detect species and strain specific antibodies by study of the effects of homologous and heterologous sera on the growth of the organisms on semi-solid culture media. Although this may prove to be a very important research tool, its practical application in the serological diagnosis of visceral leishmaniasis is doubtful.

Recent investigations resulted in the development of a fluorescent antibody (FA) test for the serodiagnosis of trypanosomiasis in experimental animals and man. Relatively few cross-reactions were observed with sera from healthy controls and from patients with non-trypanosomal diseases, thus indicating a high degree of specificity of this reaction. It was also observed that blood dried on absorbent paper could be tested successfully with this technic, thus providing a useful tool for epidemiologic investigations in endemic areas.

The above results obtained with African and American trypanosomes suggested investigations of the use of the fluorescent antibody method in the diagnosis of visceral leishmaniasis. The current report summarizes results of studies in which the FA technic was used to stain culture forms of L. donovani for the purpose of developing a reliable test for the laboratory diagnosis of kala-azar. The procedures were evaluated with sera obtained from humans with proven kala-azar infections in endemic areas. Attempts were made to determine the degree of cross-reactivity with sera from individuals infected with different Leishmania species and from those with several other viral, mycotic, and parasitic infections. Furthermore, studies were carried out to determine whether blood smears dried on paper could be used in the serological diagnosis of visceral leishmaniasis.

MATERIALS AND METHODS

Sera. Thirty human sera were obtained from individuals with well-documented visceral leishmaniasis infections. In most of the patients, diagnosis was established by the identification of organisms recovered by spleen biopsy. A total of 106 control sera from individuals with viral, bacterial, and other parasitic infections as well as sera from individuals with degenerative
The antigen used in the test was the leptomonad form of Leishmania donovani (Khartoum strain) cultivated on diphosphate agar medium. Approximately 0.3 ml of overlay was removed from a culture of L. donovani and washed twice in PBS by centrifugation for 5 minutes at 1,000 × G. The resulting concentrate provided material for 50 or more tests. The tests were conducted on microscope slides on each of which was drawn a circle of "decorito" paint (Craftint Mfg. Co., Cleveland, Ohio) approximately 2 cm in diameter. The circle of paint aided in locating the organisms on the slide and in conserving solutions used in the test by limiting them to the area of the circle. A thin smear of concentrated organisms was made within the circle with an applicator stick or wireloop. The smears were allowed to dry for at least 10 minutes, but no further drying was allowed during the subsequent steps of the procedure. The entire technic was carried out at room temperature (22° to 24°C). Fluorescent staining was accomplished by the indirect FA technic using a commercially prepared fluorescein-labeled antihuman globulin. The highest dilution of conjugate giving a bright fluorescence to the Leishmania with homologous antiserum and essentially no fluorescence with normal serum was used. With few exceptions, a 1:15 dilution fulfilled these requirements. A 0.002% aqueous solution of Evans blue was used as a counterstain. After comparison was made between the use of rhodamine bovine albumin and Evans blue as a counterstain, the latter was chosen for use in the present test because it provided better contrast between results obtained with reactive and non-reactive sera. Titration of sera with and without the counterstain detected no inhibition of specific fluorescence by use of this technic. The Leishmania smears were covered with 5% formalin and fixed for 10 minutes. The test area was then washed three times with PBS. One-tenth ml of previously heated and diluted test serum was applied with a pipette and allowed to react for 10 minutes. The washing procedure was repeated, and 0.1 ml of previously titrated labeled antihuman globulin was added. After 5 minutes of exposure to the antiglobulin, the test area was again washed three times with PBS and 0.1 ml of Evans blue solution was added and allowed to react for 10 minutes. Following a final rinsing three times in PBS, a drop of buffered glycerol was placed on the slide and surmounted with a 22 × 22 mm cover glass. The slide was blotted gently to remove the excess fluid.

Visualization. Fluorescence microscopy was accomplished with a Zeiss photomicroscope with ultra-violet assembly (air-cooled mercury vapor lamp Osram HBO-200) with five excitor filters and eight combinations of barrier filters covering the entire ultraviolet range. The excitor filter BG-12 (4 mm) and barrier filter 50 special yellow gave the best results. The degree of fluorescence seen in the leptomonad forms was estimated according to criteria described previously, and the results were classified as reactive (4+, 3+, 2+), weakly reactive (1+), and non-reactive (± and −). Reactivity was indicated by the presence of a yellow-green fluorescence, non-reactivity by a predominantly red or red-brown color.

RESULTS

A marked degree of yellow-green fluorescence was observed on the leptomonad forms where immune sera were used in the indirect FA technic. This contrasted vividly with the light red fluorescence observed with normal sera in the same system.

The relative sensitivity of the technic is indicated by results obtained with sera from visceral leishmaniasis patients (Table 1). Findings based on sera from individuals with other diseases and from healthy controls indicate the degree of specificity of the test. Cross-reactions were obtained with sera from patients with mucocutaneous leishmaniasis. Among individuals with other proven parasitic, viral, and bacterial infections, cross-reactions occurred occasionally with the sera from malaria, American trypanosomiasis, schistosomiasis, and leprosy patients. Twenty-one of 22 healthy control sera were non-
FA TEST FOR VISCERAL LEISHMANIASIS

TABLE 1
Results obtained in the fluorescent antibody test for visceral leishmaniasis in human sera

<table>
<thead>
<tr>
<th>Diagnostic status</th>
<th>No. tested</th>
<th>Reaction</th>
<th>Weak reaction</th>
<th>No reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visceral leishmaniasis</td>
<td>30</td>
<td>21</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Other infections</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muco-cutaneous leishmaniasis</td>
<td>31</td>
<td>7</td>
<td>5</td>
<td>19</td>
</tr>
<tr>
<td>Cutaneous leishmaniasis</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>African trypanosomiasis</td>
<td>16</td>
<td>0</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>American trypanosomiasis</td>
<td>13</td>
<td>2</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>Malaria</td>
<td>23</td>
<td>3</td>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>Amebiasis</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Trichinosis</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Strongyloidesias</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Onchocerciasias</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Schistosomiasis</td>
<td>15</td>
<td>1</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>Syphilis</td>
<td>12</td>
<td>0</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>Leprosy</td>
<td>15</td>
<td>1</td>
<td>1</td>
<td>13</td>
</tr>
<tr>
<td>Tuberculosis</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>Systemic mycoses*</td>
<td>27</td>
<td>0</td>
<td>1</td>
<td>26</td>
</tr>
</tbody>
</table>

| Degenerative diseases | | | | |
| Lupus erythematosus | 8 | 1 | 0 | 7 |

| Healthy controls | 22 | 0 | 1 | 21 |

* All 27 were positive in one or more tests for histoplasmosis, blastomycosis or coccidioidomycosis; 5 were from patients with coccidioidomycosis proven by recovery of organisms.

antibodies are detectable in a reproducible manner by the indirect fluorescent antibody technique, using as antigen leptomonad forms of L. donovani.

Few cross-reactions occurred with sera from individuals infected with trypanosomes. These results are of major interest because of the close phylogenetic relationships between Leishmania and Trypanosoma and are in agreement with and support the findings observed by Sadun et al. in the development and evaluation of a FA test for the serodiagnosis of trypanosomiasis in man. Similarly, only a few cross-reactions were observed with sera from individuals with syphilis, leprosy and tuberculosis. This observation is particularly significant in view of the fact that positive complement-fixation tests for leishmaniasis using L. donovani as antigen have been reported in patients who had a positive Wassermann reaction and in those infected with acid-fast organisms.

Since some of the sera from patients with proven infections with L. donovani gave a negative reaction, it is quite possible that the FA test described here may be somewhat deficient in sensitivity. This may be due in part to the fact that leptomonad forms were used as a source of antigen and these forms have some antigenic dissimilarities with the Leishmania forms in the mammalian host. If so, the test might be improved by using leishmanial forms as a source of antigen either from cultures incubated at high temperatures or from impression smears or sections from organs of heavily infected experimental animals.

A few serum samples from patients with proven infections of malaria reacted positively in this test. Although this may be due to the fact that some of these sera were obtained from Africa and Southeast Asia where kala-azar is present, the possibilities should be considered that true cross-reactivity exists between Plasmodia and Leishmania. Adler observed that leishmanial infections with virulent strains of L. infanturn in hamsters confer marked protection against Plasmodium berghei and against Babesia rodhains.

Cross-reactions were also observed in individuals infected with mucocutaneous leishmaniasis. Conversely, an apparent species specificity was observed in this test when sera from patients infected with L. tropica were used. This may be simply due to the fact that in man L. tropica fails to elicit production of antibodies in

reactive in the test; the remaining serum specimen was weakly reactive.

Comparison between serum samples and dried blood smears from the same kala-azar patient indicated a close correlation between results obtained with the two types of specimens. Tests performed with these dried blood smears after storage at room temperature indicated that positive results could be obtained for at least 2 months following collection. Similar samples from kala-azar patients tested approximately 15 months after collection gave no reaction in the test.

DISCUSSION

The results of these experiments, conducted with a total of 248 human sera, reveal that specific antibodies are produced in man following active infection with Leishmania donovani. These
sufficient amounts to be readily detectable by serological tests. This observation was made by Adler who failed to detect agglutinating antibodies in the serum of patients with *L. tropica.* To collect additional information on this important question, sera from two patients with proven *L. tropica* infections were also tested in the FA reaction using *L. tropica* as antigen. These sera failed to react with the homologous as well as with the heterologous antigen, thus adding to the already existing evidence of poor antibody production in man following active infection with *L. tropica.*

As observed in schistosomiasis, tripanosomiasis, the FA technic permitted reliable testing for *L. donovani* fluorescent antibodies even when dried blood smears were used instead of serum. The ability to utilize minute amounts of dried blood, which can be easily obtained and mailed to a central laboratory, suggests that after appropriate standardization this test may be used to advantage in epidemiologic investigations of visceral leishmaniasis. However, sufficient information is not yet available regarding the sensitivity and specificity of the FA test and its applicability to field conditions to justify its recommendation for the routine laboratory diagnosis of kala-azar.

SUMMARY

The indirect fluorescein-labeled antibody technic was used and evaluated in the serodiagnosis of kala-azar in humans. The tests were performed on slides using *Leishmania donovani* leptomened forms as antigen. Evans blue, employed as a counter-stain, resulted in improved contrast, thus making the test easier to interpret, yet did not significantly diminish the specific yellow-green fluorescence.

Occasional cross-reactions were observed with specimens from individuals with viral, bacterial, mycotic, and parasitic infections as well as with degenerative diseases. Although cross-reactions were frequently observed in individuals with mucocutaneous leishmaniasis, negative results were reported from *L. tropica* patients. Reliable testing for visceral leishmaniasis fluorescent antibodies was possible even when dried blood smears were used instead of serum.

ACKNOWLEDGMENTS

The authors wish to thank the following individuals for contributions of sera or cultures: Dr. S. Adler, Hebrew University, Jerusalem, Israel; Lt. Col. R. I. Anderson, Walter Reed Army Institute of Research, Washington, D. C.; Col. E. F. Chaffee, Armed Forces Institute of Pathology, Washington, D. C.; Dr. H. Hoogstraal, Naval Medical Research Unit, Cairo, Egypt; Dr. P. E. C. Manson-Bahr, Tulane University Medical School, New Orleans, La.; Maj. R. L. Taylor, Walter Reed Army Institute of Research, Washington, D. C.; Dr. H. Ueres, Universidad Nacional, Bogotá, Colombia; and Maj. B. C. Walton, Mid. Amer. Res. Unit, Balboa Heights, C. Z.

REFERENCES

12. Adler, S., and Adler, J., 1935. The agglutinogenic properties of various stages of the

