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THE RELIABILITY OF ONE-SHOT ITEMS

Nieholas T. Wilburn

Abstract

In the past no satisfactory methods have been available for detérmining
the reliability of onesshot items where extremely high reliability is
required, This has been detrimental t6 the develovment of cne-shot,
automatically activated batteries for missile applications. The lack of a
satisfactory method, one which will permit determination and statistical
analysis of the feilure points of the battery with respect to the specified
énviroamental stresses, has been compensated by reliability programs based
on designing the batteries to meet environmental stresses with large safety
factors.

The response surface determination (RSD) method is proposed for the
determination of mean failure points and reliability tolerance limits for a
battery desigh with respect to operational environmental conditions, thermal
and dynamic. It provides for the analysis of the tattery responses a&s a
function of two or more environmental stresses acting simultaneously, thus
affording information on the effects of interactions between forces on the
battery performance. Emphasis is placed on providing & maximm of reliabil-
ity prediction data with small test sample sizes.
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RESPONSE SURFACE DETERVMIRATIONS IN ESTABLISHING
THE RELIABILITY OF ONE-SHOT TTEMS

INTRODUCTION

This report deals with a new procedure for establishing the reliability
of one=ghot items under similated operational environments where extremely
high reliability is required. One=shot iteims are herein defined as components
6r eguipments whieh are expended in use and which, prior to use, do not lend
themselves to non-déstructive chéckout tests f¥om which their probability
of successful operation or reliability ¢an be inferred., The military one=
shot items of perhaps the greatest interest to USAELRDL at present are the
automatically activated batitery power supplies which have been developed
for guidance and control fuactions in a wide range of missiles. High
reliability standards have been éstablishéd for these batteries since
failure in any sense will destroy the effectiveness of the missile,
Unfortunately no effective and practical method has been available to date
to determine the probable failure rate of a battery design upnder simulated
nissile envirommental conditions. This has made it necessary to use
compromice measures to achieve high engineering confidence in the reliability
of the battery such as designing it to meet envirommental requirements with
high safety factors beyond the speeified requirements.

The envirommentel safety factor concept]has resulted in a commendable
history of high reliability in the field for many missileée batteries.
However it has Peen challenged from many sources on the basis of unnecessarily
increasing the weight, size and cost of the batteries., The concept involves
proving the battery design by testing relatively small samples under each
eritical envirommental condition where the g force for shock, vibration,
acceleration, spin, etc. is held at some arbitrarily chosen multiple of the
required dynamic g force, normally four times. Failure of the battery design
in any manner under a L4X environmental force results in redesign until the
kX capability has been demonstrated. Although statistical statements cannot
be made as to the rrobabllity of failure at the required g level, the concept
does provide for a high engineering confidence in the desigm.

Other approaches to battery reliability have been attempted including
statistical ones such as the evaluation of the variability of the battery
performance parameters [service life, activation time, maxdimum voltage,
minimm voltage under heavy load pulses, etc.] under bench conditions at the
required temperatures or under the specified dynamic g forces or even, in one
program, under 4X g forces. The statistical approach used is to assume a
normal distribution for the battery responses and then to evaluate each
battery test sample for the mean value and the standard deviation for each
response. The number of standard deviation units e.g. between the mean
service life and the required seryice life must exceed a specified
reliabllity standard, or K fact033 vwhich is related to the sample size, the
desired paximum failure rate, and the confidence level used in making the
reliebility statement. Any program of this type has certain basic disadvan-
tages. No real insight 1is gained into the effects on the battery performance
of the thermal and dynamic envirommental forces, unless this is sidestepped
by testing at the 4X levels. Even under this condition the testing is done
with one environment at a time, thus revealing nothing es to the potentially
significant effects of interactions between the envirommental varisbles.
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It was recognized for somé timé that the environmental variables have
a nmajor efféect on the reliability of & battery and that scme test method
was required to study the battery performance as a funetion of these
envirohments treated as continuous varisbles. In fact the goal was t6
apply the same type of statistics as discussed before to demonstrate that
the mean failure point of a battery with respect to an enviromment would be
at least X standard deviation units above the required stress level. A first
step in this direection was made in 1961 by the development of a step=stress
techniquedvhich permitted these determinations. The method had certain
basic limitations thich prevented its wide-scale application. It assumed
that the test responses were normally distributed. It provided for the study
of only one enviroument at a time. Its use required that the battery be
tested at stress levels high enough t6 induece fajilure. This proved possidble
with the thermel enviromments, high and lov temperature, but it was rapidly
shown that the method was not generally adaptable t6 dynamic environments
since practieal test equivment in many if ot most cases could not induce

The RSD method has been developed at USAELRDL during the past two years
t6 overcame these disadvantages. Although it has not been applied as yet
in an actual reliability program, it is believed capablé of providing the

desired environmental capability data for a given battery design. Determins
ing the mean minus KS reliability tolerance limit should bte possible without

testing to fallure. Within the limits of practical test equipment, the
method should provide for the testing under two or more different environ=
mental stresses acting simultaneously;  thus affording some of the desired
insight into potentially destructive interactions between environmental
gtresses, Instead of merely assuming normal distribution of responses,
the method provides a test which, though not conclusive, at least provides
assurance in applying normel distridbution statistics in making reliebility
predietions.

DISCUSSION

The Res onse Sur’ace Determlnatlon RSD Method

The basic techniques of the RSD method are based on conventional design
of experiments procedures which are thoroughly discussed in the literature 4
These procedures provide for the study of the response of an item as a
function of two or more continuous variables acting simultaneously. They
are normally used to provide information as to the settings of the variables

to yield an optimum condition for the response.

Translated into battery testing terms, the continuous variables of
interest are the thermal and dynamic enviromments to which the battery is
exposed in the missile operation. The responses to be evaluated are the
battery's critical performance parameters: activation time, service life
or capacity to minimum voltage, and maximun and minimum voltages under
continuous or pulsasting loads. Each of these responses are evaluated
separately from the same test data and individual reliability predictions
are made for each response,
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the mean 6 average response, but they do not provid.e for 'tolerance intervals
baged on reliability standards. The literature only covers the simplée case
of tolerance intervals around a linear regression line involving oéne
variable, There is no practical technique given for curved functions
involving two or more variables, Straightforward techniques were therefore
derived for this and these, together with the design of experiments procedures,
eonstituté the RSD method. This report is concerned entirely with the study
* +he battery response as a function of only two continuous variables since
present testing equipment for the batteries permits only two envirommentis,
oné thermal and 6ne dynamic, to be applied simultaneously. For one-shot
items capable of tésting under more than two environmentssimultaneously,
or with the advent of more sophisticated test equipment, the techniques as
given will have to be expanded., This is entirely possible and consistent
with conventional design of experiments procedures, though beyond the scope
of this reéeport.

The RSD theory will be developed through a series of illustrations.
The mechanicés of the operations will be developed later through & series of
examples. Figure 1 shows a three dimensional space generated by the Y or
response axis (e.g., battery capacity), the X; axis (e.g., high temperature
as a continuous variable) and the X, axis (e.g. s Vibration g force, also
as a continuous variesble). Point A, the intersection of the axes,
repreésents the combined requirement peint, e.g., 10 seconds capacity at a
10 g vibration force at 165°F. The objective is to determine that the
battery has the desired degree of reliability with respect to capacity at
point A and also to detertiine how far along the X axes the given reliability
standards will be met, and also for any given combination of Xj and Xp above’
the requirement levels.

The first step before exploring the three dimensional space is to
determine if the battery design will meet the reliability standards at
point A (Figure 2). A sufficient sample is tested at point A, 10 g and
165°F, and the data is analyzed to determine the mean cepacity ¥ and the
standard deviation, or measure of variability of individual points around
the mean. A test is made to see if it is reasonable to assume that the
points are normally distributed. (The techniques for all of these procedures
will be explained in detail in the later experimental section). If the
assumption of a normal distribution can be made, a normal curve can be
superimposed on the Y axis, laid off in standard deviation units, and the
Y - K8 ca.pa.city value can be determined, wheré K represents the reliability
standards.? Any ¥ - KS value over 10 seconds indicates adequate reliability
at point A. '

As shown in Figure 3, the X1X, test design is then laid out. One or two

batteries are first run along the {1 and Xp axes to obtain an approximate
idea of the mean failure tempera.turé and g force levels. As will often
prove the case, the upper limit of the vibration equipment capability will
not induce a failure. In this case this limit, hereafter referred to as
the test equipment capability or TEC, will form the X» upper boundary. Some
temperature B will form the boundary along the X; axis. Points C and D are
established at the midpoints of the A-B and A-TEC intervals. This is a 32
factorial design with nine test points, eight of which remain to be investi-

gated, Any appropriate scale can be used glong each axl.s as long as equal
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i{ncrements are held. In the case of vibration, assuming that the TEC is
L0 g, the midpoint D can be 25 g with a linear scale or 20 g with a
logarithmic scale, equal increments in both cases. Assuming B to be 205°F,
C veccmes 185°F.

Two tests are then conducted at each of the eight new tést points
giving capacities, Y responses, as shown on Figure 4. The test data points,
as shown, may be considéred typical of what might be éxpected if the battery
résponse is influenced by the environments. Iooking at the Xl points. at
10; 20 or 40 g the dropoff or regression of Y with respect to X, definitely
does not appear to be linear but appears to suggest a mathematical relation-
ship involving second order, quadratic, terms. Similarly with the X,
points. The depréssion in the responses with increasing levels of K& gets
fiore pronounced at higher levels of X; 'I'he’r same applies in the oth
direction. Thig is the interaction eéffect which means that the effect on
the response of one variable cannot be stated properly without referring to
the level of the other varia'bie. i.ooking at the points as a whoie it can
starting with Y a.nd dropping off with increasing levels of Xl and Xa
This surface is ghoim on Figure 5.

The response surface does not fit uniformly through the test points
but instead has a unique property, It is technically kuown a& a least
squares regression surface, which means that if the vertical deviations of
the 18 test points (doubling YA) from the surface are squared, then the sum
of these squares will be at e minimum value for this one surface., It is
based on a two variable, second order mathematical modél of the form:

Y = by + ByE) + bp¥y + Dy X2 + vpa¥e? + by KKy

where the coefficients are derived from analysis of the 18 test points.

The X3Xp term represents the interaction. The response surface is an
estimate of the mean value of Y for any settings of X throughout
the test area., Therefore the intersection of the surface wi h the 10 second
Y plane is the mean failure contour which represents an important estimate
of the population from which the battery sample was drawvn. The estimate

is that if additional samples were taken, half would pess and half would
fail at any X; and Xp settings along the contour. But this is of little
value in predicting_: reliability of the battery design. What 1s required

is another surface Y - KS below the regponse surface, the intersection of
which with the 10 second plane will be the reliability boundary representing
the highest values of settings of X; and Xlér:t which the reliability
standards can be met. A parallel surface wn through (Y - KS) would not
suffice since there is no reason to assume that this estimate of variance
applies throughout the whole test region. Likewise it isn't known that the
variance is uniform throughout and that the responses are normally

distributed around the response surface throughout the whole test region.

An indication of a normal distribution had been demonstrated at the

10 g, 165°F voint. A similar accumulation oi'mdata is not available elsevhere
in the test region to make an additionsal test for normality. Therefore a

basic assumption is made that if normality can be assumed at the combined

requirement point, it can be assumed throughout the entire test region, It is

7
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position of the relisbility boundary, possibly weakening the value of these
predictions. However they will not weaken the value of the prediction at
the combined requirement point, the most important of the reliability
prédictions. The prediction as to how high we can go in tehmperatuie and
§till achieve reliable opefation may be influenced slightly, but this is not
as ¢ritical a predic¢tion. The assufiption of uniform variahce can be tested
for with the available data. This iS5 done by determining the variance
throughout the test area (except for the combined reguirement point) and
comparing it to6 the variance previously determined at the combined requdr ement
point. If these two estimates of the variance cammot be proved to be
sighificantly different, theh uniforffm variahce can be assuméd by inference,
at not too great & risk. If uniform variance ¢an be assuied in thig manher,
the two estimates of variance can theh be pooled to give a coffon estimate,
based on all of the test data, of the variance and from this of the standard
eérror throughout the entire test region. This latter estimate, multiplied
by K; is then used to establish a Y - KS éequation for a reliability boundary
surface parallel to the response surface as shown in Figure 6.

The_reliability boundary surface is drawn parallel to the response
surface, Y < KS below it. The intersection with the 10 second plane is the
required »eliability boundary. The basic estimate now made from the sample
is that the reliability standards will be met at any combination of Xl and
Xg to the left of the reliability boundary including, of course, the combined
réquirement point of 165°F and 10 g. No statement should be made, by
extrapolation of the reliability boundary, of how many g it would be possible
to go to at 165°F and still meet the reliability standards. The only valid
statement of this is, in excess of 40 g. The interrelation between the X
and ¥ axes should be noted. Predictions can be made for different settings
of ¥ as.well. An 11 second plane could be added, for example, and the
intersection of this plane with the relisbility boundary surface would
indicate the maximum settings of X and X, at which 11 seconds of operation
could be achieved in accordance with the same reliability standards, A
limitless amount of reliability prediction data ecould actually be obtained
once the reliability boundary surface has been determined, a further
advanvage of this approach to reliability.

The problem arises as to how positively the reliability predictions can
be made, If there were no doubt at all that the responses were normally
distributed about the response surface throughout the entire test region,
and that the variance were completely uniform throughout the region, then
there would be no hesitancy in stating that we are, for example, 95%
confident in predicting that no more than one battery in a thousand will
fail when tested at 193°F while undergoing a 10 g vibration., However the
sample on which this estimate was based was also used to provide assurance
in essuming normal distribution and uniform variance. It follows logically
that the size of the sample must bear heavily on the faith in the prediction.
Further comments will be made on this subject in the Conclusions section of
this report once the mechanics of the RSD method have been explained and
the area of sample size has been explored. ’

Sxperimental Brocedure

The preceding section has attempted to explain the basic principles of
the RSD method and general considerations governing its use in a practical
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test program for determing the operational reliability of one=shot items
guch as battery power supplies for missiles. However, in this ares, as in
most in the field of applied statistics; no intuitive understanding is
possible for the practicing engineer without detailed examples to study.
Extensive examples have beén prepared. These will be introduced by taking
what is believed to be representative test data which will be treated,
following the RSD method, in a step by step fashion through to the final
reliability conélusions. Full details of all calculations are given in
sequence in Appendix I.

Among it§ other requirements, a battery is required to deliver a
ninimim of 10 seconds service life within specified voltage tolerances at a
specified maximum temperature of 165°F, while being subjected to a
sinusoidal vibrational force of 10g throughout the specified frequency
range. It is desired 10 demonstrate that the battery design has a
reliability, or probability of successful opere’.tioxi, of a least 99.9%
expressed with a confidence level of 95%, 1.e., admitting a chance of only
one in 20 of stating that the battery has this reliability when, in fact,
4t does not. It 15 also desiréd to know the maximum temperature at which
the battery will operste reliably vhen being vibrated at 10 g, and also the
masimm g force to which the battery may be subjected while still main=
taining 95% coufidence in predicting that only one battery out of a
thousand will give less than 10 seconds of operation when discharged at
165°F. Out of the total guantity of batteries available in thée gualification
test lot, it is desired to demonstrate the reliability with as small a test
sample as possible to assure sufficient batteries being available for the
study of other envirommental veriebles which may prove to be more detrimental
‘than the present high temperature-vibration combination. As e starting
point, a small test sample of 15 is drawvn at random from the lot.

Step 1. Seven batteries are selected for discharge test at the
composite requirement point of 165 F (X;) and 10 g (Xe)’ leaving eight for
later exploration of the other eight points of the X3, X2 space of the 32
test design. The batteries are tested one at a time by stablizing et 165°F
end then quickly removing them from the ambient, mounting them on the
vibration equipment, activating and discharging them before any cooling
effect takes place (or with appropriate temperature monitoring techniques
to assure accurate temperature control). The batteries yield the following
service times in seconds (Y respomses) to minimum voltage:

15.7%
15.63
bkl
16,61
15.47
1k.51
18.79

The results are analyzed (appendix IA) for the mean capacity,
15.88 seconds, and the standard deviation, 1.488 seconds. The relisbility
defining K factor for a sample of size N=7, 99.9% reliability, and 95%
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confidence level is 6. o6L. Therefore, the critical ¥ - K5 value is 15.88 -
6.061 x 1.488 = 6.86 seconds. This is well below the 10 second requirement.
This indicates that either the battery design is basically unrelisble of
that perhaps the sample size was too small to allow the design, if good, to
reveal itself as such. This latter view may be considered valid since the
primary objective is to concede the unreliability, and to then search for
reliability tolerance limits below the requirement levels, only when
convincéd that the reliability standards camnot bé met. Evidence for such
a decision may be based on trends in the Y - XS level with additional
testing, up to a practical limit of, for example, 20 or 25 wnits. “This
approach will now be explored for the preseat example by testing ad.ditiona.l
randomly selected units one at a time and observing the trend in Y - KS with
ea.ch sample a.s tested. The following results are obteined:

I N A < A
_ o _9;02 6,60

8 1%.50 8.38 7. 32|
10 16.43 7.50 8,47
12 16.74 6.53 9.53
13 15.61 6.1% 9.89
is 1%.33 6.16 9.75
15 17.52 6.1k 9,83
15 16.04 5,84 10.10
7 ) 17.73 5.87 10.25

Graphically, the trend is shown in Figure 7. In this example, the trend
is quite clearly upward due to a slight increase in Y and a definite decrease
in S. The testing is stopped according to an arbitrary rule that two
successive ¥ - KS values above the capacity requirement will establish the
design reliability with an upward trend such as this. The reduction in K
with increasing sample size is, of course, a factor in the increase of Y - ks,
but not a significant one 1f the design ¢ actually had no chance of establishing
itself, To indicate this, assume that ¥ and S remained at the N = 7 levels
of 15.86 and 1.488. The increase in ¥ - KS with increasing N is as shown
by the lower line which eventually reaches 10 seconds at N = 35. In practice,
the existence of an upward trend, when testing up to a pra.ctical limit of
20 or 25 units, should be ,judged. by an apparently significent difference in
the two lines, as shown by the shaded area. With an inherently unreliable
design, testing could be stopped presumably after a total N of 10 or 15.

In any case, if the required Y - KS value is not reached by N = 20 or 25,
testing is stopped and the response surface test design is "chen centered on
the X3, X2 requirement point.

Having judged the battery design to have adequate reliability

"Xy, A2 requirement point, the next step is to make a determination of
the appre:dma.te normality of the distribution of the individual test result
points about the mean value of 16,12 for N = 17. This is done by plotting
the curmmulative distribution of the sample responses on arithmetical
probebility paper and observing if an approximate straight line is formed
by the points, particularly in the range of P = 10 to P = 90. Calculations
for the plotted points are given in Appendix IB. The plot is given in

Figure 8.
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The points aré noted to fall along a straight line very well. A
straight line is the plot ome obtains when plotting the cumulative
distribution of a large or infinite sample from a known normally distributed
population. Therefore, it is highly probable that the test sample was
dravn from & normally distributed population. If the population were not
normally distribited; in which case it would plot out as some curved line,
then the probability is that the test sample plot would deviate fram the
straight line.

This test is regarded as an empirical indiéation of the suitability of

assuning a normal distribution of imdividual Y responses about the mean
value at the combined Xj, Xo requirement point. Having satisfied the
assumption at the most important point of the Xl X%space , hormality is
now assumed throughout the entire test range of the , Space, recognizing,
of course, that any departures from normality may bave an influénce on the
eventual estimates of the battery reliability capabilities along the X, and

axes, but not on the estimates in the region close to the Xl, X2 require-
ment point.

Step 4. Having demonstrated reasons for assuming the reliability and
the normality at the cambined X;, X2 requirement point; ahnd having obtained
an estimate, 16.12, of the popu tion mean and an estimate, 1.725, of the

pula.tion variance (82) at that point, the test design to explore the X,,
space will be edtablishéd. This will be a 3 factorial design with its
lower boundaries established by the X. and X2 requirement levels. The upper

boundaries will be established, as explained in the previous section,
preferably at an estimate of the mean failure point but, where this lies
above the TEC level for a given environment, then at the TEC level. In this
example, let it be assumed that the mean failure point at X, = 10 g has been
estimated at 205°F. Iet it also be assumed that the mean failure point at
165°F is in excess of 4O g, the vibration TEC. Therefore, the test design
is established with X; limits of 165°F and 205°F and X, limits of 10 g and
40 g, The intermediate X, value is 185°F. The intermediate X, value,
instead of being O + l()/% 25 g, is set at 20 g to illustrate the techmique
of transforming a variasble, in this case, on a logarithmic basis in which
case 10 to 20 and 20 to 4O g represent equal increments along X,. Coded
values are assigned to the X; and X, values as -1, O and 1 levels. These
coded velues are of the utmost importance for keeping calculations as simple
as possible., All equations and expressions from now on in this example will
be based on the coded values. Thus, the combined X;, Xp requirement points
will be referred to as(<1, -1), the 185°F, L0 g po:.nt as (0,1), etc. Based
on the above, the test design is as shown in Figure 9.

; Tests are nov run at each of the eight points of the design
-1, -1). The results are as follows:

16




The responsés, shown on the test design, are as follows, with the 16,12
mean value introduced for the (=1, =1) point:

] ® —f_ 5. p—] mee p—] 603

The responses indicate potentially significant effects on the response
with increasing stress levels of X; and X,. The coefficients are obtained
(Appendix IC) for the two dimensional, second order mathematical model for
the response surface:

Y = 13.52 - 3.67X, - 1.6T%, - 0.76%,2 = 0.20%,% - 1.13%,X
™ %2 1 % * %

An apalysis of variance (Appendix ID) is now conducted to test the
equation. Since the tests were not replicated (repeated) at the eight test
points, no measure of the experimental error can be made and therefore no
measure of the "lack of fit" of the model to the data can be made. The only
importent test of the data that can be made is the determination of whether
or not the second order coefficients, b and b 1ps 8re significant.

It is seen from the analysis of varia.nce tln it cannot be concluded that
the quadratic components are significantly different from zero. Therefore
it may be concluded that a linear model of the form

would suffice. However in this case such a model is not fitted because
17




there is reason to doubt, for theoretical reasonms, that the quadratie terms
are not sighificant, Therefore the test design is repliecated at the eight
points (except for (<1, =1)) to check this as Wwell as to check the
expérimental error and the "lack-of-fi‘t" tem. The additional test results,
added t6 those previously detez"ﬁtlned,

Design
Point

The average responses, shown on the test design, are as follows with
the 16,12 mean velue again introduced for the (=1, =1) point.

X e ~ ma il -1 _8.¢
e 716 2 |—15. 31 {057

L]
@ © ©

The coefficients are obtained (Appendix IE) for the two dimensional, second
order mathematical model based on the replicated test data:

Y = 14.33 - 3.70%; - 1.70X; - 1.65%,2 - 0.60%,2 - 0.92X;X,

An analysis of variance (Appendix IF) is now conducted to test for the
significance of the quadratic components, b and b Due to the
existence of the extra test data, it is posl]fblezgo div:l%.g the residual
sum of squares into two parts, that due to experimental error and whatever

of the ma.thematical model to £it the test da:ba.

It is found that the quadratic terms are significant and that the lack-
of-fit- term is not significant. Therefore the mathematical model is
accepted as an adequate interpretation of the experimental data.

18
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Step 6, It is now necessary to study the variance throughout the test
space and To compare it to the variance at the (=1, 1) requirement point.
The variance is determined (Appendix IG) by summing the squares of the
differences between each of the 16 test results and the values predicted at
the test points from the equation. The variance is foumd to be 1,00893,
which is to be compared to the variance estimate of 1.72456 found for the
17 results at (=1, =1). The test region variance, 1.00893, is based on
N = 5 & 11 degrees of freedom. The (=1, =1) variance was based on N - 1 =
17 <1 = 16 4.f. The F13 3¢ ratio = 1.00893/1,72456 = 0.59. This ratio
falls within the limits &€ F gz .o oy o o o Of 294 and of 1 .

P, (11, 16 4.f.) ST

e \EVY,y 4=

of 0.302. These are the 95% level of eignificance limite of an F test3for
determining accéptancé or rejection of the hypothesis that there is no
significant difference bétween the two estimates of variance. In this case
the hypothesis is accepted that there is no significant difference between
the variance at (=1, =1) and the variance throughout the remainder of the
test area. It may therefore be concluded by inference that there is a
wiform variance throughout the entire test reglon. The two estimates of
variance are then pocled t6 give an estimate of S, the gtandard error
throughout the entire test regioh. This value, from Appendix IH, is 1.197

seconds.,
Step 7. The total sample size used in this exploration of the X1 Xp

space was 33, 17 at (=1, -1) and two at each of the other eight points. Of
the starting 33 degrees of freedom, six were used in establishing the
coefficients of the mathematical imodel, and the remaining 27 for establishing
the pooled standard error. Twenty-seven is also the effective sample size
in determining the K factor, which for N = 27, P = 0,999 and Confidence =
0.95 is 4,090, The KS factor is therefore 4,090 x 1.197 = 4,90 seconds.

This factor is used in establishing the ¥ - KS reliability boundary value
for any point in the X;, {, test space, Actual equations may now be
established for finding values at any settings in the three dimensional

Y, X;, X, space. Two of the most convenient equations are:

1. The equation for mean failure points of Y with respect to
- Xj and X

Y = 14.33 - 3.70%; - 1.70%; - 1.65% % - 0.60X,2 - 0.92%%, =
10 (¥ requirement) or 3.70%; + L.70K, + 1.65%,2 + 0.60%,2 +

2. The equation for reliability boundary points of Y with respect
to X; and Xp:

Y = 14,33 - 3.70K; - 165X, - 0.60%2 - 0.92XX, = 10 + 4.90(K5)«

14,90 or 3.70%; + 1.70K, + 1.65K;2 + 0,60%,2 + 0.92K %, =
=0.57. ) ) o

Substituting appropriate values of X; or X, (coded values, not actual ones)
and solving the resulting quadratic equations (Appendix I and IJ)
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values from which the mean failure contowr (1) and the relisbility boundary
contour (2) are plotted in Figure 9. (The significance 6f curves (A) and (B)
will be explained later).

The experiment 18 substantially completed with the plotting of the mean
failure eontour and the more significant reliability boundary. Much more
could of eourse be done if necessary or desired. For example, if the
relisbility boundary had passed below the (<1, =1) requirement point
(indicating a probability of more than one unit per thousand failing to give
10 seconds of service at (-1, =1), expressed with a 95% eonfidence level)
then instead of launching & redesigh of the battery, the missile user may
decide that he will be satisfied if he can reliably get nine seconds of
operation. An equation (3.70X3 + 1,70Xp + 1.65%2 + 0.60Xp% + 0.92%%, =
=1.57) will then permit determination of the nine second reliability
boundary (intersection of the surface, which is Y = KS below the mean
response surface, and the nine second plane). For a case of adequate
reliability such as the present example, epproximations of the X; and X,
reliability boundaries éan bBe made for higher requirement levels of ¥, 11
or perhaps even 12 seconds. Singleé variable curves may be generated and
studied, e. g. capacity as a funetion of temperature at a constant vibrational
force anywhere fram 10 to 40 g.

For the preseént purpose, howéver, it is now possidle to make the regquired
prediction of the battery design reliability at the temperature requirement
of 165°F and at the vibration requirement of 10 g. The reliability standard,
it is estimated, will be met anywhere to the left of the relisbility boundary.
Therefore the design has the desired relisbility at the 165°F, 10 g point.
If desired, it is possible to determine how many standard error units there
are along the Y axis through (-1, -1) between the mean response surface and
the 10 second plane and from this give an estimate of the actusl reliability,
99.999 etc. However, this is of no practical significance, the main question
being, has the reliability standard been met or not.

From the reliability boundary plot, estimates can be made of the battery
design capabllity at envirommental siress levels above the requirements.
These estimates are qualified, of course, by the reliability standards. Thus,
expressed with 95% confidence, it may be estimated that no more than one
battery out of a thousand will fail to give at least 10 seconds of gervice
under the following environmental conditions:

a. At a temperature of up to 188°F while undergoing a 10 g
vibration

b, In excess of a 40 g vibrational force at a temperature of 165°F

c. At a temperature of up to 181°F while undergoing a 20 g
vibration, etc, )
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Derivation of Experimental Test Data

In the detailed exmmple just coipleted, tests were conducted throughout
the X;, X, space, the data was analyzed and various estimates were made
concerning the capabilities of the populetion from which the samiple was drawa.
These estimates in final form are represented by the reliability boundary
contour. A logical question at this point would be, how ¢lose is this
contour to the true picture? For examplé; how c¢lose ig it to the average
contour for an infinite number of samplés of the same size drawm from the
same population (in this case, future batteries produced exactly the same
in every respect as the lot from which the test sample was drawn)?

There are two ways to answer such a question. One would be to producé
enough batteries and run enough tests with samples of size N = 30 (14 at
(<1, <1) and 2 at each of the other 8 points) to begin to understand the
variability of the individual sample reliability boundaries. In this way,
it eould eventually be said whether 6r not the sample gave a "good" estimate
of the true picture. This approach is hot practical, of course; with
expensive items and testing. The second way to answer the question is to
know in advance the nature of the true picture, by conducting experiments
vith data vwhich is derived from populations of known statistical parameters
such as mean, standard deviation and, in this case, coefficients for the
two variable second order régression, and the standard error. This will make
it poesible to conduct many relatively inexpensive experiments which can be
made to closely similate tests with actual onésshot items, The use of this
technique has made it possible to thoroughly éxplore the RSD method in the
vital area of the effect of sample size, Completely unexpected phencmena
were observed in this manner, making it possible to derive methods for
handling them.

In establishing the simulated test data, a hypothetical battery design
was visualized with a mean capacity of 16.04 seconds and a standard deviation
of 1.0 second at the (-1, -1) requirement point. The capacity Y of the
battery was established as a function of X; (Temperature) and X (Vibration
g Force) in accordance with the following equation:

Y = 14,61 - 3.24X; - 1.69%p - 2.1352 - 0.94%,2 - 0.43X%;X,

A variance, standard error squared, of 1.0 was selected for the Xk; X, test
region. For N = 30 with 24 degrees of freedom for establishing the pooled
standard error, the K factor is 4,17. Therefore, XS is 4,17, and a
reliability boundary equation may be set up:

The contour generated from this equation is shown on Figure 9 as (B), the
average reliability boundary for an infinite number of samples of size N = 30,
d.f. = 2k, It is by no means the reliability boundary for an infinite sample
size, This limiting contour is generated from an equation similar to the
above except that KS = 3.09, where the K factor of 3.09 is the limiting

value of K for an infinite sample size with an infinite mumber of degrees of
freedom., This infinite sample size contour, or universe reliability boundary,
is discussed and presented later in Figure 17. Curve (A) of Figure 9 is the
mean failure contour for any number of samples of any size. This contour is

a2
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generated by setting ¥ = 10 in the basic equation, giving:
3.24%; + 1.69%, + 2.13%2 + 0.94%52 + 043X = 14,61 = 10 = 461

I+ is seen on Figure 9 that the sample mean failure contour and reliability
boundary obtained in Experimen ment 1 are réelatively good approximations of the
tfue values représeénting the population. Just how good they are ié a
question that ecould best be answered following the expeiimental exploration
of the effect of sample size in determining the response surfaces,

Curve (A) requires some comments. It passes through the X; axis just
about at the limit of the test area. It passes through the X, axis at some
point well beyond the test area. The coefficients of the equation which
generates (A) were chosen deliberately so that the curve would have this
general shape., This represents practical considerations in eéstablishing
the test areéa; as previoiusly expla.ined with limits either at the estimated

mean failure point or at the TEC (test equipment eapability).
The method of obtaining actual simulated test data is as follows:
The base equation, Y = 14.61 - 3'21&21 -1, 6912 - 2, 137(12 - 0. 91&X22

0. haxlxz, will yield the following predicted values of Y when coded Xl and
X valueg of =1, O, or 1 are substituted:

A table of rendom normel mumbers with a universe mean of 0.00 and a
universe standard deviation of 1.00 wes entered at random in order to derive
the test data. In Example 1, for example, column No. 38 was entered. The
first 17 numbers are:

-0.30 =0.57 1.62 <0.43
-O.l&l 91-053 0039 9]_..7]_.
0.57 =1.64 0.70 0.00

1.69

These numbers added to 16,04 give the following Y responses at (-1, -1):

15,74 15,47 17.66 15.61
15.63 14,51 16,43 1k.33
1k 51 18.79 16.38 17.52
16.61 k.40 16.7h 16.04

17.73
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These numbers have a mean value of 16.12 and a standard deviation of 1.313
vhich are estimates 6f the true population values of 16,04 and 1.000.

With an actual large lot of batteries with a mean of 16.04 and a.nd a
standard deviation of 1,000, it is possible that a sample of N = 17 could
have been drawn with a Y of 16,12 and an S of 1.313. In other words, the
artificial populations ecan be as useéful as actual populations in stud:ying
the effects cf performance variability; actually much more s6 since all
types of simulated test data in almost wnlimited quantities can be rapidly
and economically generated.

It was decided t6 exblore the effects of sample size in using the RSD
méthod by constructing samples with three representative sample sizes:
N =15, N= 30 and N = 60, with (-1, -1) point test quantities of 7, 1k
and 28 re@ectivel‘y and with 1, 2 or 4 tests at each of the other eight
points of the 3 test design. Ten examples weré constructed for each of
the three sanple sizes for a total of 30 examples., The examples were
constructed in such a Way that the results of the analysis could be
followed in stages for each of the 10 examples, 1.e, from N = 15 to N = 30
and N = 60 with each increase based on additions to the previous data.

A table of randof nmnbersswas éntered to give 10 consecutive numbers
of 61, 46, 10, 24, 85, 40, 38, 28, 58 and 17. These numbers were used to
determine the column numbers to be used from the previously referenced
table of random normal mumbers. Thus the three No. 1 samples, 1A (N = 15),
1B (N = 30), and 1€ (N = 60) were constructed with the 50 numbers of column
61 and the first 10 of colutm 62. The No. 2 samples were derived from
colums 46 and 47, ete.

The breakdown of the 60 random normal numbers, e.g., from colums 61
and 62, was as follows, with the random numbers added to the predicted value
for each of the nine test design points:

Sample Numbers

1A to 10A | 1B to 10B | 1C to 10C

1-7 ' -lh

53
57 57,58

As an example of the a.bove, the detailed Em.mple 1 was based on the TA
and 7B samples. The No. 7 samples were derived from colums 38 and 39 of
the table of random normal numbers, Taking the (0, O) point as an example,
the predicted value from the basic equation is 14.61. Numbers 41 and 42 in
colum 38 are -1.75 and +1.23. Adding these to 14,61 gives the simulated

test data values of 12.86 and 15.8%, the (0, 0) values used in the example.
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Some of the factors which influence sample size were developed in the
explanation of Example 1. It was seen that testing of only seven units at
the temperature and vibration requirement point (-1, -1) gave an erronedus
indication of the reliability of the desigh and that it was hecessary to test
an additional 10 units before the desired reliability was indicated.
Similarly, testing only one unit at each of the other eight points of the
test design gave an erronecus indication of the shape of the response
surface, implying that the quadratic components weére not significant.

It is desirable to keep the required sample size as small as possible,
particularly when dealing with expensive uhits and tests. In order to gain
insight into the minimun sample size which will give effective results,
extensive empirical data is required, the purpose of this section. Thirty
samples were established in accordance with the procedures given in the
last section. The three sample sizes, 15, 30 and 60, were arbitrarily
c¢hosén as practical round numbers., The established test data for the
samples ié given in Appendix IIA. The remainder of Appendix II gives
calculations, similar to those in Appendix I for Example 1, for the complete
analysis of the test data for the 30 samples, ending With the reliability
boundary equations in Appendices IID6, IIE6 and IIFS from which the contours
were plotted as shown in Figures 14, 15 and 16. -

The inadequacy of & subsample of 7 units at (-1, =1) is clearly shown
in Appendix IIB where 5 of the 10 "A" samples show inadequate reliability,
i.e. Y - KS values below the 10 second requirement. This occurred with
only one of the "B" samples (7B) with 14 tests at (-1, -1). As shown in the
previous Example 1, based on the TA and 7B samples, three more tests were
required to establish the reliability. All of the "C" samples with 28 tests

t (-1, -1) were adequate in this respect.

The inadequacy of the subsample of 7 at (-1, -1) is further illustrated
by the tests of the agssumption of normal distributions as shown on Figures
10, 12, 12 and 13 based on calculations given in Appendix IIC. Figure 10
shows in general a wide variation of the cumulative distribution points
around the best, or least squares, straight lines, indicating little
confidence in making the assumption of normality even when it is known, as
in this case, that the points were derived from a known normal distribution.
Figure 11, showing the plots for the "B" subsamples of 14, indicates that
this number is about sufficient for making the required a.sstmption of
normality. Most of the solid points are close to the required straight
lines. The up, down and up plot of sample 5B is characteristic of a double
popul.ation distribution on either side of the mean va.lue. This actually

derived. In prgctice, ‘however, there is no knovn vay in whic,h a battery
performance parameter can be distributed in this manner other than through
chance sample variability. Therefore the plot of 5B could be considered to
represent a stralight line, thus satisfying the assumption of normality.

The tendency mcst to be looked for in analyzing these plots is a pronounced
curvature in one direction or the other, suggesting the probability of a
skewed distribution. A slight tendency of this sort is noted in the plot
of 10B, but not enough to counter the assumption of normality. The plots
for the "C" samples in Figures 12 and 13 all tend to satisfy the assumptio
of normality of distribution. 2
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"C" sample Cumulative Frequency Distribution Plots
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All of the cumulative distribution ploté have dotted lines on them, all
parallel to each other. These represent the straight line plots for an
infinite sample size with a standard deviation of one and are shown to
indicate how well the individual samples correspond to the true mean and
standard deviation. It is seen that the larger the sample the closer the
correspondencé in general. The threé Vertical lines in each figure reépresent
the mzan, at P = 50, and the minus and plus one standard deviation values at

# 16 and P =

Based on the foregoing, it may be stated that when dealing with samples
drawvn from & hormally distributed population with relatively low variance,
a sample of approximately il at (<1, -1) will in general satisfy the
azsuiiption of normality with a euwmulative distribution plot which approximates
a straight line., Slight departures from normality cannot reasonably be
detected, but the probability is that relatively large degrees of skewness
canh be. Much more confidence in assumihg a normal distribution can of course
be had with a larger sample size if thie is ecchomiecally feasible.

In conducting an actual experimént, once it has been determined that it
is not unreasonable to assiume nofmality of distribution, at least in the
region about (<1, =1), the remainder of the test region will be explored to
estimate the nature of the reSponse surface., The minimum subsample size for
this is eight, one at each of the remaining test design points. Even for a
sample drawn from a population with relatively low variance, Example 1 showed
that this minimmm subsample size is inadequate. This 15 more positively
demonstrated by Figure 14, the "A" sample reliability boundaries drawn from
the calculations given in Appendix TID. Nine of the 10 boundaries fall
above (-1, -1) but the wide variation of them around curve B indicates a high
probability of one of these small samples indicating that the battery design
is not reliable when it actually is. Sample TA is in this category. The
mean failure contour for the sample, as shown by the dots, gives a good
estimate of the true mean failure contour A. In fact each of the 10 samples
do, as shown by the cluster of points around curve A at X5 = 0. The wide
variation in the reliability boundaries ig due to the variation which the
samples give in the estimate of the standard error. There is also & wide
variation in the estimates of the coefficients of the response surface
equations (Appendix IID1). This accounts for the considerable variation
in the slfnpes of the contours. Another indication of the 1na.d.equacy of the

four of the samples show the qua.d'mtic 'bems to be significa.nt. For the
others linear response surfaces, or planes, are erromeously indicated with
straight line contours.

Replication, repeating the experiment, is found to eliminate all of these
problems as shown with the reliability boundaries for the "B" samples as
given in Figure 15, based on the calculations in Appendix ITE. It is seen
that each of the 10 samples now gives a fairly good estimate of the true
contour, represented by curve B. The Analysis of Variance given in Appendix
IIE2 shows that each sample correctly indicates that the quadratlic components
of the mathematical model are significant. Having two results at each test
design point also affords a measure of the fit of the mathematical model to
the data., In every case the lack of fit term is found to be insignificant.
The assumption of uniformity of variance throughout the entire test region

is satisfactorily met for each sample as shown in Appendix TIES. Again,
uniform variance is inferred by the inability to prove the variance at (-1,4)
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to be significantly different from the variance throughout the rest of the
test region. This makes it possible to cempute a uniform pooled standard
error based on all of the test data and from this to caleulate the equations
for the reliability boundaries.

The relisbility boundaries for the "C" samples, with four tests at each
of the eight test pointe, as given in Figure 16, naturally show a still
¢loser estimate of the true curve B. Whether they give that much better an
estimate than the "B" samples do to6 justify the added costs is a dsbatable
point. In the opinion of the author, they do not., However, for a battery
design with much greater variability than the hypothetical design, or for
samples which give reliability boundaries on or slightly below (-1, <1), it
would undoubtedly be necessary to replicate beyond two tests at each point.

_ An analysis of variance is not included in Appendix IIF for the "C"

sefiples since the analysis for the "B" samples had shown these to be
satisfactory in regard to significance of the quadratic terms and proper
£it of the mathematical model.

, The effects of replication are shown quite clearly on Figure 17. The
"A" sample reliability boundary 7.l gives a poor estimate of the true curve
1A (curve B of Figure 14). The "B" sample boundary gives a much better
estimate of the true curve 2A and this is even more pronounced with the "C"
sample curves 7.4 and 4A. Additional curves are shown for a tremendcus sample
consisting of 40 tests at each of the eight design points. Contour 40O
corresponds very closely, as one would expect, with LOA representing the
average relisbility boundary of an infinite number of samples with 40 at

each point. Curve 40 M.F.C., the mean failure contour, is found to
¢orrespond perfectly with the total population or universe mean fallure
contour; The curves 1A, 2A, 4A, and 4OA are seen to approach a limiting
contour which is called the U.R.B., or universe reliability boundary. This
curve is derived from an equation based on a K factor of 3.09 for a sample
8lze of infinity. It may be interpreted by saying that in testing an
infinite sample size, one out of a thousand units would fall below the U.R.B.
Fifty per cent would, of course, fall below the universe mean failure contour.
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_CONCLUSIONS.

The theory of the RSD method has been covered, the mathematics involved
have been explained in detail, and an analysis of the effects of sample size
has been performed in order to provide a guide in determining sample sizes
for an actual reliability program for batteries or other one=ghot items. It
has been demonstrated that the method will provide a great deal of valuable
reliability prediction data from the testing of a relatively small sample.

As posed at the end of the first section of the discussion, a basiec
question is, what assurance is there that the final reliability predictions
are correct and usable? This is particularly relevant since the sample test
data was not only used for making the predictions, but for testing the
assumptions of normality of distribution and uniformity of variance upon
‘which basis the predictions were made, The sample size determining section
showed that the sample size has great bearing on the assurance with which
the final ¢onclusions may be acceépted, The smallest sample size of 15 showed
a relatively high probability of erroneously coneluding that the battery
design was unreliable. The wide scatter of the sample reliability boundaries
also showed that little faith could be placed in reliability estimates out
along the X axes. The predictions for N = 60 showed such excellent conform-
ance with the true picture that the reliability predictions may be made with
great assurance in their accuracy. However, at least for most missile
battery prograims, a sample size of 60 would be considered excessive from an
economic standpoint. Forty-five would probably be as well. Thirty would be
considered a reasonable size in many cases.

The results for the "B" samples of size 30 showed in general a good
approximation of the characteristics of the battery population. The test of
the suitablility of assuming normal distribution appeared satisfactory, as
well as the test for significance of quadratic components, the test of the
assumption of uniform variance and the actusl reliability boundaries
themselves. These factors indicate that the sample gize of 30 should be
adequate in most cases and that the final reliability predictions can be made
with considerable assurance, In conducting an actual program, as previously
pointed out, there may be instances where more than 14 tests will be required
at the X;, Xy requirement point and where it may be necessary to replicate
beyond two tests per point throughout the rest of the test design. In
establishing the total lot size for the program, a reserve should be provided
for these contingencies.
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$Y = 1116
15,88
1,778.5098
1,765.2208

7oy
8 oH, e
N

[ ] L1 L [

B, Cumlative d;l.stgibq‘bﬁ.@ pgints ofi regpon;es at ‘x'l 7-7-716’59'5‘, X = 10g

Select suitable intervals for Y such that there are fram 10 to 20
intervals, Then set up a table for the midpoints of the selected Y
intervals, tally the Y responses and set up three additionsl columns for
frequency, cumulative frequency, and cumulative frequency expressed as
percentages of 2 x N = 34, The cumlative frequency column is derived from
the frequency column by a counterclockwise rotating addition system; e.g.,

0+0 1+1 0+2

1=1, 0=2, 2«4, etc.

The cumlative frequency values thus obtained are divided by the double total

to yield the cumlative frequency percentages (expressed to temths of a per
cent below 10f and above 90%).

38
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L Jally

Cumlative

— Cumilative |
Frequency
(% of 2N = 3h)

19.0
18,6
18.2
17.8
17.h
17.0
166
16.2
15.8
15.L
15.0
1,6
1.2

-

111
11
111

11
11

2.9

5.9
12
2l
2L
32
L7
62
h
76
82
9k.1

| 13.8

fo N N O WY WO N OO

C. Determination of coefficients of a fitted model of the form :

,
T = b+ BL +bX, + b0 + b5

2

* b0,

[

4

-1

16.12
16,07
11.27
16.99
12,86

9.19

15,78
11.22

6,13

XZY

2

o

'1-60]-2

=16.07
-11.27
0
0

0
15.78
.22

16.12
0
.27
16.99

0

9.19
15.78

16.12

XIXZI

3
E
e
d
¥
Y
i
¢
20
5
%
E
k]
2
i
|




221! 522.00 B
by m e = 367

- .67

bt %
ILLY bS50

b, . - =" =

12 hﬂ 4
$X 27-2/36Y  T8.78-77.29  <L.5i

S S - —— = 0,7

1 2 2 2

z"‘x;iaz/zsr 76.89-77.29  «0.10

.b e _—r B e # 0,20
22 2 2 2

-L.13

b =3l . 2/3m..- e 15 881 + 0.E07 + 0.197 = 19,65
b, = 5 - 2/3bn-2/3b22 12,861 + 0,507 + 0.133 = 13,52

Therefore the fitted équation is:
b 4 13.52-3.6711-1.671250.7611 -_CD..ZOX2 1.13111{2

A check is made for arithmetical errors. The sum of the coefficients is 6,09,
This is checked against the addition of the Y response values, ordered from
'!1 to f9 » in accordance with the following formula:

51k <1 +8 B
2_Coefficients = 2 (x;xb !5) !3+ (Iéqs) 7+29!9

- 5x16.12-4(16407+16,99+12,86)=11.27+8(9.19411,22 ) =15, 78+29x6,.43

. 30.60-183,68-11.27+163,28-15. 7842867 | 2982 , 49
36 36 S
Allowing for a difference due to rounding off errors, this check indicates

that no aritimetical errors have beamlﬁgda in establishing the coefficients,




B!
i
3
5
1
i
H
H

_1,599.8497 ] 9
1,k93.3072 1
80.6667 1
16.7668 1
o1, r-2/5° ,
i i 1,101 1
2
o (exr2/3)?
due t0 b,,, == 2' : 0.,0800 . 6.2826] 1 .3 .09l2
¢x5x,7? ) |
due to b, =hhY 5.0625 1 *
12 N
Residual 2.826h 3 0.9421

ook
R

In order for the quadratic components to be significant at a 95% significance
level, the F3 3 ratio must be at least 9.28, The ratio of 2,22 shows the
quadratic »° components to be not significant. Another way of stating
this is that the quadratic components have not been proved to be significantl;
different from sero,

_E. Detamination of coefficients or a ﬁtted nodel of tho fom:

Teby+ bt ”’z‘z""uém*"zz‘zz”‘gﬁxz




=

16.07

16,55

11.27

16.99

15.79

12,86

15.84

9.87 } $




hi - i B e - - 3.69
N V- 12

3%, 20,31 .
By = === &2 = - 169
12 12

L o L L
biz- 8 ---—8— = & 0,90

L INY/sT UTle-whos | 658
n b oy &

L

.- L6

3L,°%-2/337 . 151.69-15k.05 2.36 o
b, & et B — - - = 0.59
22 b L h

0

Therefore the fitted equation is:

Y
b = — =~ 2/3b _-2/3b._ = 12,838 + 1,093 + 0.393 = 14,32
18 1 22 h

Y = ulo32 - 3,6911 - 1.6912 - 1.&!12 - 0.5952 - 0.90{112

Check: 3Coefficients = 5,81

Cottictents = -2 UTTg) Ty +8(1gTg) -Xp 29T,
72 (for N = 18)

5(32,2h) -i(94.10) =21.1k +8(L0.18) =30.87 +29(12.55)

72

72

118.18

L3

161,20 -376,10 21,14 4321 30,87 436355

sl L g L s e e



o oy
A
dus to b, , mme—mnen
2 _
12
(1,12
dus o b, £R0

12
Jﬂ)enmﬂ.nators doubled, in comparison to Appendix ].D, since test results are

quadratic

1, 2v-2/33m)°

4

(s, 21-2/371)°

2,966,5537

163.1670

3L.3747

10,758k

1.392k

)

)

1l
1
1
doubled,
)
16.6&% 1 6.2223
Il
Jeom —

S(differencoa)

'Experimental Error Sum of Squares = ==

2




The critical F3 42 Ttio at a 95% level of significance is 3.49. This is
exceeded by the 6,50 ratio. Therefore, the quadratic components are
significant. The lack of fit ratio, 1.LS, is less than P 8" 3.8L, there-
fore the lack of fit term is not significantly different from experi-
mental érror and, therefore; is non-significant. .

Y e 4 Differences

Test Point Predicted Value Test Results (T=y)
(From equation) (Signs not mcessary)

0 <l 15,13 16.07 0.64
‘ N 16,55 1.12
1 =1 11.00 ‘ 11.27 0.27
<1 o 16.38 16.99 0.61
15.79 0.5%
o o0 1h4.33 | 12,86 1.47
15.8h 1.51
1 0 8.98 9.19 0.21
8.72 0.26
, 15.09 0.09
0 1 12.03 11.22 0.81
, 11.05 0.98
1 1 5.76 6.43 0.67
. . 6.12 0036

Z(lr--:;r)2 = 11,0982

$(¥-y)°

v = : .
arlance = Ta.2.)

- 1-00893

Hate: 5 d.f. are expended for estimating
the coefficients; therefore, the
denominator is N-5 = 16=5 = 11 ,
The sixth coefficient is based on

a d.f, from the tests at (=1, =l).

s




1, _Standard error from pooling of estimates of variance

Sp,z (pooled variasnce) = 11(d.f,) x 1@2213&"’_::6(9“’-0)3 1,72456

. 1109823 + 27.59296 _ 38.69119

= 143301
27 27 k33

S, (pooled standard error) = J sz = 1,197

Lé



I. Determination of Mean Fallure Contour Pointe

1. Mean failure contour equation'

2

3, 7ox1 + 1.7012 + 1.6511 + 0.60%," + 0.921112 s 1.33

, 2
2. ‘Vflue of Il a‘bI =0; 3.7011-#1.6511 & 4.33

estimate xl at 0,80 ;3 2,96 + 1,06 = L.02
estimate ll at 0.85 ;3 3.15 + 1,19 = L.34
estimate ll at 0.84 3 3.11 + 1,16 = 4,27 , .'. root is 0.85 = xl

3. Value of X, st Xy = 03 LT0K, + 0.60K," = L33
estimate X, at 2,5 (beyond test region, maximm X = 1.0)

4 2
ke Valueof lewat 12‘ - 1 3 3,7011 + 1,70 + I.GSH + 0,60 + 0.92!1
= .33 o

be62L, + 1.65K2 = 133 = 1,70 - 0,60
= 2,03
estimate x1 at 0.0 ; 1,85 + 0,26 = 2,11
estimate x1 at 0.38 ; 1,76 + 0,24 = 2,00

estimate X, at 0.39 ; 1,80 + 0,25 = 2,05 , .. root is 0,39 = xl

5. Value of Ll stX, =<l 2,78, + 1.651&2 = 14,33 + 1,70 - 0,60
= 513

estimate xl at 1,50 5 L.17 + 3,71 = 7.88
3.3k + 2,38 = 5,72
3.06 + 2,00 = 5,06 i
3.20 + 2,18 = 5,38 |
estinmate X, at 1.16 5 3.22 + 2,22 = 5.l , J, Toot is 1,16 = - X

_lg_to_ Extraction of the roots by the above trial-and-error method is very

:ut with a desk calculator, mich faster than using the standard
orsmla

we

estinate xl at 1.20

estimate xl at 1,15




Reliability boundar:

Jde Detemnation of reliability boundary

2. Valueofxlatxz-o

éstimate i.l at «0,18

estimate x.l at 40.16 s

estimate 11 at =0,17

.
3

3

L

3. Value of X atXi-O

L.

estmat.e x.z at =040 ;

estimate 12 at =0,39 3

AR

-1

y equation:

3.70K, + 170K, + 1.65%,2 + 0.60%,7 + 0.92,X, = = 0.57

3,708, + 1.65%,2 = = 0.57

estimate xl at =0,20 3 = 0,7h + 0.07 = = 0,67

- O.é? + G.O; s = 0,62
= 0,59 + 0.0h = = 0,55
- 6.63 + 0,05 = = 0,58 »

s TOOL is

=0.17 = X,

1.70K, + 0,60%,% = - 0,57

- 0068 + 0.10 - & 0058

=0,66 + 0,09 = = 0.57 5 & OOt is

- 0039 =X

5 2.78K + 1.65112 --o.

8. Value of Llatxz-O.S, h.1611+1.65112..

estimat.e 11 at - 0,50 ;

estimate 11 at 0,20
estimate 11 at 0,18
estimate XL at 0.17

s

e
3

3

estimate X; at - 0,40

estimate xl at - 0,45

estimate 1; at = 0,47 3

2
ST + 1,70

- O.& = 0053

0056 + 0,07 = 0063
0,50 + 0,05 = 0,55

0.h7 + 0,05 = 0.52 9 es Yoot i5 0,17 = xl

- 2,08 + 0.L1 = - 1,67
=166 + 0,26 = = 1,50

= 1,87 + 0.33 = = 1,5k
= 1,96 + 0,36 = = 1,60 ,

6. Value ofxlatxz-l.o, h.6211+1.6512--0.

estinate x1 gt -1.0
estimate X1 at 0,96

.
3
[3
3

= 162 + 1,65 = = 2,97

= bl + 1,52 = = 2,92

estimate X at 0.9k 3 =3k + L6 = 2,88
estimate X_ at =0.93 ;

1

"}0304'].-6&3-92087’
48

0057 - 0085
0-15 . - ],-057

oo Yoot is

= 0.6 -X1

57 = 1,70
60 = - 2,87

es Toot is
=093 = Xy



APPENDIX IT !
A. _Sa;gr],e Test Data "

1. A" Samples
SAMPLE
Test
Desigh | S AP T R P TR ErYSEE BTV
LPotnt | 34 V.24 ) 3a 1 baA L oA 1 6a 1 74 1 82 | on ] 108

(-1,<1) | 16.09 }15.21 |15.08 | 16.36 | 14.48 | 15.86 | 15.7h | 15.98 J 15.55 ] 15.77
i 15.72 | 16.40 } 16.57 | 14.95 | 16.45 | 15.87 | 15.63 | 15.50 | 16.24 | 16.06
16,98 §16.5h4 | 1b.17 | 16,94 | 17.28 | 15.32 | 1k.k1 | 16.27 | 16.22 | 15.0K
16,54 § 14,55 §15.77 | 17.07 | 16.87 | 17.45 } 16.61 | 15.96 } 16.85 | 17.20}
18,35 ] 14.99 | 16.00 | 1Lk 7k [ 16.99 | 14.95 | 15.47 | 16.23 | 16.56 ] 15.5M
17.86 | 14,78 1 16,41 }15.38 | 16.76 § 15.85 §14.51 | 14.83 | 14.38] 15.86
15.62 §17.06 } 15.34 | 17.39 | 14.76 | 16.19 | 18.79 | 16.38 [ 1%.37 | 1k, 79

L(o,f;)“ 1695 | 16,14 | 16.36 | 15.18 | 1416 | 16.53 | 16.07 | 1440 [ 16,03 | 1811

(1,1) | 9.93]11.30 1049 |11.05 [11.62| 9.21 | 127 n.72| 9.65] 9.43
?(;i,o) 15.77 | 15.80 | 16.83 | 14.93 i6;§érrié;;£ ”ié;éé 15.88 rih.ao Viﬁ.sg
?(o,o) 13.40} 15.05 | 14.31 {1 15.60 1h.5q 15.00 ;2.86 13.61 ] 13.51] 1%.8
>(;, o) | 7.1 |10.61] 8.0u] 9.3 8.13] 9.71| 9.19] 7.00] 8.03| 8.o3
(-1, 1) | 13.77)13.88 | 22.37 | 13.77] 23.50 | 13.07 ] 15.78 | 13.39 | 12.75 ] 15.86

(o 1) 11,92 | 10.85 | 12,60 | 13.39] 11.18 } 12.36 | 11..22 § 12.11 | 12.43] 11.06
(1, 1) 6.61 s s.erl 7.65] 6.66] s5.58] 6.43] s5.97 h.1h1'5.3q

L9

i
i
i
i
i
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SAMPLE

x ] & T T &4 N

(<1,<1) | 26.09 |15.21 J15.08 | 16.36 |14.48 |15.86 | 15.74 [ 15.98 | 15.55
‘ 15,72 J16.40 | 16.57 | 14.95 | 16.45 |15.87 | 15.63 | 15.50 | 16.2k
16.98 J16.54 14,17 | 16.9k §17.28 |15.32 | 1k.b1 | 26.27 | 16.22
16.5% J14.55 115.77 | 17.07 | 16.87 | 17.45 | 16.61 | 15.96 | 16.85
18.35 |14.99 16,00 | 14,74 | 26.99 §14.95 | 15.47 | 16.23 | 16.56
17.86 J14.78 }16.41 | 15.38 | 16.76 |15.85 | 14.51 | 14.83 | 1k.38
15,62 §17.06 | 15.3k | 17.39 | 14.76 | 16.19 [18.79 [ 16.38 | 14.37
16.05 [17.36 ] 15.61 | 15.61 f15.11 f17.32 | 14.40 | 16.86 | 15.59
17.23 115.68 | 15.57 | 16.05 | 14.66 [18.50 § 17.66 | 17.17 | 17.22
17.34 |15.18 | 16.16 | 13.53 } 17.18 | 16.56 | 16.43 | 15.28 | 16.55
16.05 15.8L4 115.80 | 15.89 §15.7% | 15.59 | 16.38 | 16.68 | 16.97
15.45 |14.88 }15.17 § 15.91 | 14.84 §16.8L | 16,74 | 1k.60 | 26.88
15.92 }15.73 | 15.02 | 15.43 | 17.16 | 14.40 | 15.61 | 16.04 | 16.95
16.92 |13.90 | 16,46 | 16.42 f15.77 | 15.16 f14.33 } 17.46 ] 15.8L
16.48 114,26 | 16,10 | 16,43 | 17.4% J15.76 | 17.52 { 15.50 | 15.64
16.69 |15.26 } 16.60 | 16.57 } 15.05 | 1k.85 | 16.04 | 17.28 | 15.3k
15.53 |15.00 } 13.68 | 16.38 | 16.66 | 15.62 [ 17.73 | 15.37 | 14.87
16,28 115.53 } 18,00 | 1k,69 | 15.53 J 14.43 | 15.85 J16.48 | 15.62
16.48 115.98 | 15.76 | 17.16 | 16.55 | 15.06 | 16.80 }16.87 ] 16.56
16.31 J16.21 | 16.97 | 16.75 | 15.45 | 16.53 | 15.77 f17.3k } 16.43
16.30 |16.23 | 15.01 | 14.87 | 16.65 | 14.92 | 15.02 | 1k.97 | 14.62
16.90 J1L4.87 | 16.52 ]| 26.30 | 15.72 ] 16.69 | 15.57 | 15.57 | 1k.72
16.14 115.89 | 18.75 | 15.52 ] 15.67 {15.8% | 16.53 | 1k.15 | 14.58
16.56 15.21 }§ 15.98 | 15.96 | 16.45 | 17.79 | 16.95 §16.23 | 17.51
15.73 | 16.23 } 15.74 | 17.59 | 16.61 { 16.58 | 16.04 |16.50 } 16.03
15.54 116,91 | 15.45 | 16.63 | 16.27 J 14.49 | 17.07 | 16.73 | 14.95
16.0k | 15.68 | 14,99 | 16.38 | 16.96 | 15.52 | 13.87 | 16.74 | 15.25 | 1
17.20 |15.62] 1k, 69 16.26 | 18.47 }15.82 | 16.35 15.99 | 16.19 | 17.¢

51



3. _"C" Samples (Comt'a)

-
=

l%ﬁ

REH

13.47

H

RERE]

suks a8y

Q=10
1 FH




at (=1, -1))

_Variance

1.,11022
0.98978
0.69433
1.27372
0.62088
2,21483
0.29798
1.02458
0.54662

. i; 70".’9‘9‘5;077 - -

53

¥ Variance - Y - K5
1B 16.58 0.78648 0.887 12,42
2B 15.58 0.97T79 0.989 10,94
3B 15.65 0.44202 0.665 12.53
4B 15.83 1.0k261 1.021 11,04
5B 16.00 1.13809 1.067 11.00
6B 16.13 1.22775 1.108 10.93
B 15,91 1.72342 1.313 9.75
88 16.09 0.68952 0.830 12.20
9B 16.:é6 0.83784 0.9(1)3 u.gg
10B 15,80 o.sooie 0. 12,
Averages 15.97 0.93662 O.%S‘O E.EE

“C" Samples, N = 60 (28 at (-1, -1))

Semple 4 Variance <] Y - XS
1C 16,44 0.51193 0.T15 13.53
2c 15.61 0.69610 0.834 12.22
3C 15.83 1.08686 1,043 11.58
ke 16,0k 0.8484k 0.921 12.29
6C 15.92 1.07163 1.035 n.7n
7€ 16.07 1,354%07 1.164 11.33
8c 16.09 0.7232h 0.850 12.63
9C 15.91 0.84103 0.917 12.18

& 1 '8 0 X 12'




c.

The necessary calculations are given for samples 1A, 1B and 1C for 7, 1k,
Caleulations for the remaining

and 28 results respectively at (-1, -1). :
gamples are similar. (See Appendix 1B for specifie instructions).

VI VOV P
O F @D OO £ ®N OV

b et e o et b

|

OMKHNHOMMO

e
PO E owrwro

BVIJZARBE

L]
\To ]}

-~

O MWNDN O

10
1k
19
2k , |
. - 27 | %6.4 53 | 94.6
. 28 N 56 .

OWW OOAWW H O

8l

The cumulative frequenéy percéntages are thén plotted against the ﬁidpoint
velues of the Y intervals on arithmetical probability paper as shown on
Figures 10, 11, 12 and 13. The least squares straight lines are then drawm
through the solid points represeﬁting percentages between 10 and 90. In the
case of the 10 samples 1A to 10A on Figure 10, a best straight line can be
represented only for sample 8A. The wide divergence of the points for the
other samples require calculation of the equation for the least squares
straight line, For the "B" samples this had to be done for samples 5B, 6B,
TB, 9B and 10B. For the "C" samples it had to be done only for 5C and 10C,

the other samples permitting the estimation of the best straight line

directly. A technique for deriving the least squares straight line is
illustrated for sample 5C.
The solid points for the sample are transferred, from Figure 12, to

regular graph paper.

5k



E\”W‘ R B I P MR CLA N S LI M S A

T
10
X

Arbitrary scale values are assighed to the two axes called X and Y for
convenience., Values of X and Y for the points are read off the graph.
A ta.ble of values of X X Y a.nd H is formed

-
_X Y XY
0 0 1.50 0
0.7T7 0.59 1.20 0.92
1.20 1.4k 0.90 1.08
1.43 2.05 0.60 0.86
1.90 3.61 © 0,30 0.57 -
—_— _2.29 5.2k 0__ o |
Sums  7.59 12,93 IR 3.u3

The slope of the least squares straight 1ine is determined from the equation:

The fitted equation is therefore Y = 1.61 - 0,68X
at X =0, Y = 1.61

1.61

t =

at Y=0, X 5 ° = 2,37

The least squares straight line is plotted through these two points and is
then measmd off and transferred to the cumulative frequency distribution
plot for smmple S5C on Figure 12,

s
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_ritted Bqutions
13.85 - 3.67X) - 1.89%, - 2.33%,% + 0.36%,% - 0.09% X,
= 15.2h - 3.011%) - 2.32%, - 212K ° - 1.68%,% - L.20K X,
15.02 - 3.45%) - 1.98%y - 2.93K 2 - 0.89%,2 - 0.b1X X,

= 15.02 - 2,79%; - 1.26X - 2.58%,% - 0.L4X,2 - 0.26% %,

-
®
Lo

n "

= 13,81 - 3.27% - 1.80Kp - 1.21%;° - 0.80%,2 - 0.53% X,
= 15.63 - 3.54%) - 1.71X, - 2.93%,2 - 1.50%,2 - 0.29%%,
= 13.55 = 3.63%) - 1.63K; - 0.80X 2 - 0.24%,2 - 1.19%%,
13.33 = 3.41%) - 1.76%p - 1.74X;2 + 0.08%,2 - 0.82,X,

= 14,08 - 3.48%; - 2.02%; - 3.24%)° - é.lsiéa - 0.63%, %,
10. ¥ = 13.9% - 3.76X, - 1.18K, - 1.69X 2 - 0,88X.2 - 1.03%,X,
: 2 1 « 1

&
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4

15

OS5
2 1,56h hhsz

| 6"

2. Analysis of Variance

1,517.5897

1,593.6913] ¢

1,492.5022
1, 562.8933

>
s}
.

§HHPHHHHHH4“
AJY
e
L ]
8
o\

3 |1.5819
3 [3.8420
3 j1.1840

3 |3.5604
3 |1.kos0
3 |3.1525
3 JL.b786
3 [1.2937

f.JRegidual |

3 |k, holl8 |

Qnaé;atie Terms
Significant
at 95% Level

5\0 DO~ O £ |

1.0508
1.k929
0.4312
1,2726

* Linear Terms:

#* Quadratic Terms:

exceeded,

(102, (s%,7)2

(zx12Y - 2/3:1)"‘

##* To be significant, the F

57

95 3,3

99 o

L (%2 - 2/3)2

ratio of 9.28 must be
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3. Predicted Points from Fitted Egquetions

1) 12.32
2) 11.24
3) 12.15] 8) 1

B 13.32] 9) 11.93

|
\
|
|
|

| 8) 1h.1s e
9] 9) 12.80
5) 13.80[10) 1k.98|

i ow—m\nr#‘O\“
. e e .

: o

i’ Nt N

‘ e

; On O

' AR
AT:

L1 o

1) 15.19] 6) 16.24

2) 16.23] 7) 16.38
PR ﬂ3) 15.5L

B .

8) 15.00 o 3) 15.02
2~ [5) 15.23 1%) 15.02

,Aé) 15.87

9) k.32
10) 16.01

1) 17.35
2) 15.67

6) 16.16

T7) 16.58

[ 3; 16.22] 8) 16.02 ==
~|1) 15.79] 9) 15.58
5) 16.3kJ10) 15.28

5

L. Stendard Errors

16.10_10.10_ 1510 13.85_
116,94 5.77  13.40

T N
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)4.

s= [L.055k = 40.35180 = 0.593

56 0.32  0.30 0.58 0.9 0.02

7 (I-3)

0.69 0.45 0.08  0.63 0.55 0.15 0.06  0.08

= 0.687

9) (Y-y)

S

0.06 0.23 0.12 0.57 0.6T 0.05 0.50 O.is

= E302T =0 .6’567 |

59




| o739 | 2.05: | o.5u550 | 111022 | ok |we | 0.92198] 0.960 |
} 0.720 | 0.995 | 0.51887 | 0.98978 | 0.52 No | 0.83281] 0.913 |
1.077 | 0.883 | 1.16077 | 0.69433 | 1.67 Jmo | 0.84981]0.922
11.085 | 0.3518 | 1.17772 | 0.30 o | 0.90241 ] 6.950
1.088 | 1.129 | 1.18293 | 1.27372 | 0.93 ' Ne | 1.24346(1.115
0.687 | 0.788 | 0.47230 | 0.62088 | 0.76 |¥e | 0.5T.35] 0.756
0.943 | 1.488 | 0.88993 | 2.21483 | o.ko No | 1.77320] 1.332
1] 0.546 | 1.29023 | 0.29798 | s5.00 No | 0.69540} 0.83L
0.656 | 1.012 | 0.43027 | 1.02458 | 0.k2 No | 0.82648] 0.909
Jr.ouk | o.739 ] 1.54830 } 054662 Yo | 0.8%

o RV, T = JUR e
o
\J
0
w

O O o =X
-
ny
Ny
it

.

Reject the hypothesis that the variances are equel, at the 95% level
of significance, if the varience ratio fells outside the region of 6.60 to
0.068 No means no

60, : = 0.068

F' = 6.
975(3,6 d.f.)
significant difference, permitting pooling of the veriances.

#% Calculstions for Pooling Veriance, Semple 1

@
U]

3(d.f.) x 0.54550 + 6(d.f.) x 1.11022 = 0.92198

'!T;é:(alf.)fff!"i’"‘”g

8 = 0,960




1.
2,
3.
L,

6. Reliebility Boundery Egqueat:

‘ Based on Y-KS where K = 5.414 for N = 156 =0 end for reliability
standards of 99.9% at 95% confidence.

3.678) + 1,89, + 2,33 - 0.36%,2
3.11% + 2.32K, + 2.12%,2 + 1.68x,2
3.45% + 1.98% + 2.93%, % + 0,808,
2.79%, + 1.26X, + 2.56%, % + 0.kkx.2
307, + 180X, + 1.21X 2 + 0,808,
35HK + 17X, + 2.9 2 # 1.50x2?
3,630 + 1.631, + 0.80x % + 0.2x°

3,1;13%_ + 1.76}{2 + 1.714){17 = 0.081(2
CaAdY 4 5 Shy 2 g &
3.48%) + 2.02K, + 3.2hxi +0.13%)

3.76x1 + 1.18x2 + 1.69xl + o.88x2

2 2
3.24X_ + 1.69X, + 2.13% + 0.94X
3.2 X +1 69,,2 2 ,3Xl + 0.9 A

ary Equation for Infinite Number of S

5:20 =10.00=<1.35

+ 0.09%, X, = 13.85
+ 1,20X;3 X5 = 15.24
+ 0.L1X X, = 15,02
* 0.26](1}{2 £ 15,02
+ 0.53)(1){2 13.8
+ 0.293(122
+ 1.19% X, = 13.55

4,94 =10.00= 0.30

= 4,99 -10.00= 0.03

< 5,14 =10.00=-0.12

]

- 6 .Oh «10,00=-2 .23

15.63 < 4.09 -10.00= 1.54

s 7.21 =10,00==3,66

13.33 = 4,52 aio.oo=ai.19

+ o.63xlXé = 14,08 « 4,92

+0.8x X
12
-10.00=-0.84

+1.03X X = 13.9% - 5.08 -10.00==1,14

12
nples

+ 0.h3xlX2 = lho6l - sohl 9100003-00&
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-3.37 =1.59 <0.68 <2,34 <1.35 15.23
..56 =0.60 =2,68 =0.56 1k.99

<3.49 | -1.69 =0.58 =1.38 -0.73 13.53
‘ -1.33 12 =2.35 ] -1.66 15.37
-3.66 | -1.66 | -0.96 -1.68 -0.63 14,35
-3.5k <l.92 | -0.77 -1.31 =0.05 13.15
-3.20 | -1.90 | -1.07 ~2.35 =0.71 14,52
2.18 -1.02 1k,56

O\0 O~ O\ Fw v -
‘ ] . i
2 .
| X n

=

U

]

.

W

W

o

=

n

i
]
(oY)
L ]
Y
[
e
o
] O\
o
(o.2]
\O

Fitted Equations

Y = 13.93 - 3.40X; - 1.66%p - 2.15% 2 + 0.0lXée 0.12% %,
Y =15.29 - 3.37Q - 2.05%, - 2.27X;% -1.82%p2 - 1.02%%,

3. Y =15.23 - 3.37%) - L.59% - 2.34%°% - 1.35%,2 - 0.68%%,
Y = 15,99 - 2.98%; - 1.56%, - 2.68%2 - 0.56X,% - 0.60X,%,
Y O'SBXlXZ
Y = 15.37 - 3.24% - 1.33%; - 2,35%,% - 1.66%,° - 0.12X X,

To ¥ =1h35 - 3.66%) - 1.66%; - 1.68%,2 - 0.63%,% - 0,9%6%,X,
) 2
Y

L} L} t

"
=t
w
*
R
W
]

3.49%, - 1.69%, - 1.38%% - 0.73%,2

¥ =13.15 - 3.54%) - 1.92%, - 1.31%,% - 0.05%,% - 0.TTX X,
14.52 - 3.20K) = 1.90%, - 2.35%,2 - 0.TIX,2 - 107X X,
10, Y = 1456 - 3.47%) - 1.36%y - 2,18%)% - 1.02X,2 - 0.89%,%,

L]
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2. Anslvsis of Variance
i [ ' Due to Due to
(3Y)< Linear Quadratic
0t »_ AW, !Y i ,dy,o,f.ﬁ, 9 ggf- _Terms 7da,£. ‘_T,e_ms»,,,, ;A d.f,o_,,
3,007.1095 |18 1 | 171.3063 | 2 18,5963 3
3,081,1029 |18 1 186.5927 | 2 42,0869 3
3,1k2.9013 |18 1 | 166.3861 | 2 | 32.8078 3
] 3,1L43.2496 118 1 | 135.5526 | 2 | 32.8778 3
2,847.5505 |18 1 ] 180.67T7 | 2 | 12.3622 3
I 3,093 2109 |18 1 jabr.eTro | 2 33.2T770 3
3,181,100 | 18 1 ] 1903.301 | 2 20.0812 3
2,915.4713 118 1 | 19k, 6092 2 J1n.68n | 3
3,027.2397 | 18 1 |a6s.8802 |2 |33.2798 | 3
2,989.31k0 | 18 1 | 166.8550 | 2 ] 29.4618 | 3
Experd- Lack Quadratic | Residusl
| | nental 1 of Mean Meai
Sarmlel Residual fd.f.] Brror Qd.f.f Fit  }d.f.1 Sqguare
1 0052 | 12 | %.3716 ) 0.2936 | & 6.199
2 9.5920 12 | 8.1818 & |i.ko2f & J1k.0290
3  ]10.6933 12 | 8.9%10 8 1.7523 | & }10.9659
L 9.2924 12 | 7.2773 8 2.0151 | 4+ [10.9593
5 7.2593 12 | 3.9212 8 3.3381 | & 4.1207
6 ]ik.2600 12 | 8.2075 8 6.0525-§ 4+ J1i.0923
7  111.8939 12 | 6.6664 | 8 ) 5,225 | 4 | 6.6937
8 10.6823 12 | 8.8568 8 1.8255 | 4 3.8064
9 J2k.8221 12 |18.7429 8 6.0792 | 4+ ]11.0933
10  J13.897k 12 | 7.7797 8 6.1177 | & 9.8206
— | Experimental
Lack of Fit Error
kSample F3 12 Ratio ] #*** | Mean Square | HMean Square Fh, 8 Ratio ad
1 15,94 Yes 0.073h 0.5465 0.13 No
2 17.55 Yes 0.3526 1.0227 0.3k No
3 12.31 Yes 0.4381 1,1176 0.39 No
L 14,15 Yes ©.5038 0.9097 0.55 No
5 6.81 Yes 0.8345 0.4902 1.70 No
6 9.33 § Y:s 1.5131 1.0259 1.47 No
7 6.75 | Yes 1.3069 0.8333 1.57 No
8 4,38 Yes O.hs6k 1.10T1 O.41 o
9 5.36 Yes 1.5198 2.3k%29 0.65 No
10 8,48 _ 1.5 1 __0.9725 1.57 No

*Linea.r Terms:

I =25

u

¥¥Are quadratic terms significant at the 95% level of significance?
To be significant the F3,12 ratio must exceed F .95 3,12 = 3.kg

#xIs the lack of fit term sig ,_fica.nt, at the &p level of significance

1 to th . .
n cagg:iego§ 9; Y g i peginental ggror? To [ficant the Fy 8 Tdtio

it S, o5 BN




3. _

I P 65 |
3) lh.oo
L) 13.77 |
5) 13.80

10) 1.36]

6) 13.39)
7) 15,00

8) 1h.18}|:

9) 13.83

Predicted Points from "B" Sample F

7] 9) .91

10) 12,18

TS |
7) 5.7

| 8 s.56
| 9
120

6.67

5.29
5.6l

I 1

1) 15.18
2) 16.39
3) 16.26
5) 156§k

6) 16.26|

Ry 13.93
2) 15,29

8) 15, 38—
[5) 153

9) 15.37|
10) 15??5\

3) 15,23

6) 15.37

7) 1h.35}

10) 1k.56

5) 8.66

, gs,m

9.78
7) 9.01
8) 8.30
9) 8.97

10) 8,91

1) 16,73
2) 15,60
3) 15.82
L) 15.69
5) 16.02

6) 15,81

1) 16,10

1) 15.60
2) 15,52

8) 16,L8
9) 15.L9
10) 15.30}

13) 15.L7

L) 15.99
5) s

6) 15.01]

2) 10,90

9) 15.71
10) 1h.90

8) 15.02p~=

3) 10.hh
L) 10.93
5) 10.20

1) 10.17

6) 9.57
7) 11.00
8) 10.94
9) 11.23
10) 10,1k

3

_®

—

o L3k
0.86

0.2h
003

- 16 9& 9 93 15.77 13.L0
__Li.7h 10,20 1h.83 1L.12
- 0.59

0,35

0,53
0.19

_8.38 13.65 12,28

_6.61

T7L 13.77 11.92
9.1 13.5L4 12,h48
0.67
0.76

0.12

- 0.36
0.11 0,20

6.61
6.7
0.00

0,13

0.92
1.16

0.Lo
0.08

0.59
0.L5

0.2L  0.96
1,25 1.82

0.42007 = 0,618

0.3k

0.57

0,02

0.15 0.18 0.60

VoEms,




0.31 0.29

1.13 0.50 0.53 O.lk 0.82 0.82 0.39 0.38
se JRBL | BT . 0.063
A 1

0.27 0.16 0.7h 1,40 0-39 0.63 O.Bh 1,70

S u o.8h325 0.918
8) (T-y) 0,33 142 0.7 0.97 0,53 040 0.07 1.00
0,54 0.18 0,35 0.28 1.09 o.1o o.hs 0.30

\0.66115 = 0.813

1.22 0,58 0,99 0.98 2.31 0,16 1,07

0.26

7 (I-y)

\/ 1.275’1;1‘ = 1,129

0.66 1,49

0.69

0.27 0.18 0,78 0.84

8) (T-y)

0.67

0062 0078
1.26 0.66

0.50 0.46 1.30 0.79
o.ho 0.u6 0,39 0,69

0.93

1.56

1L.17 1..13 o.5h 1.Lh9 0,29 0.09 1,01 0,36
S = 11.399 \/1.03631 - 1.018

oo 9,-'1‘31; = 0,972

0.32

1.58
1015 1.06

1.17
0.89

1.01
1,37

0.94 1,08
2, 65 1.77

0.52

017310 = 10,17,4

0.79 0.TL 1l.23
0.80 0.32 0.82

0.33 0.02 1,50
0.28 1.96 o.h3

1,12
Lok o

0,05 ¢




- std. [std. [ — .5 | Variance 5 )
Sample Erfer Dev. |(Std. Error) | (Std.Dev.)" | Ratio %* Sp ‘ Sp
1 [ 0.648 |0.887 | 0.42007 | 0.786L8 0.53 |No | 0.6185L | 0.786
2 ] 0.935 [0.989 | 0.87LL5 0.97779 | 0.89 |No | 0.930L3 | 0.965
3 | 0.983)0.665 | 0.96692 | o0.uh202 | 2,19 |No | 0.68260 ) 0.826
L | o0.918]1.021 | 0.84328 1.04261 | 0.81 |No | 0.9512k } 0.975 }
6 | 1.129)1.108 | 1.275h1 1.22775 1,0k %o | 1.2L959 | 1.118
8 | 0.972]0.830 | o0.9uk3k | 0.68952 1.37 |¥o | 0.80631 ] 0.898
9 | 1h7u]0.915 | 2.17310 0.8378kL 2,59 |No | 1.L4L983 | 1.20L
10 } 1.104]10,708 | 1.21991 | 0,50072 | 2.k o | 0.83035 | 0.911

# F Ratio Test for Comparison of Variance

Reject the hypothesis that the variances are equal, at the 95% level of
significance, if the variance ratio falls outside the region of 3.20 to

0.293 o e
P 978(11,23 a.z.) = 320> Py e Mo meeme

no significant difference, permitting pooling of the variances,

6. _"B" Sample Reliability Boundar

i Based on ¥ - XS where K = 4,171 for N = 30 = 6 = 2} and for relia-
\bility standards of 99.9% at 95% confidence.

Lo 3.L0K) + 1.66%p + 21582 - 0.01%,2 + 0.12%%, = 3.93 - 3.28 = 10,00=0.65
2. 3.3T% + 2,05%, + 2.27%% + 1.82K,% + 1,02, 2% =15.29 - L,03 = 10,00=1.26
3¢ 3.37%) + 159K, + 2.30K% + 1.35K,2 + 0.68K;%, =15.23 = 3.15 - 10.00=1,78
Ly 2,98, + 1.56X, + 2.66K 2 + 0,56%,° + 0.60K,X, =14.99 - 4.07 - 10.00=0.92
5.3wﬁ+15%2+Lwﬁz+&n%2+m%ag-n&sehm—1omuam
6. 3,20 + L,33%, + 2 35:5' + L6682 + 012X, =15.37 = .66 - 10.00:0.71
Te 3.66%) + 1.66Z5 + 1.68K)2 + 0.6352 + 0,96X3Xp =14.35 = .95 = 10.00s=0.60
8. 3.5U%; + 192X, + L3102 + 0,085, + 0.TTEX, =13.15 = 3,75 = 10.00m=0.60
9. 3.20K) + 190X, + : Jﬁf+0.'F+1&nﬂgﬂhﬂ-502-m&@ﬂ50

10. 3. h7x1 + 1.36x2 + 2.18z12 + 1o ozx2 + 0, 89x1x2 =1L.56 - 3,80 - 10.000,76
\\Blls ? :. 81y qusg :




10.

e

Fitted Equations

Y = 14,57 - 3.34%
Y = 15.02 - 3,34K;
= 14.88 - 3.18)(1
= 14,56 - 3.16X
= 14,13 - 3.40Xy
= 15.06 - 3.11%;
= 1k.75 = 3.53K

= 13,94 - 3.45%;
Y = 1467 - 3.16%

MHH

*4*4"4

]

L]

L]

1.69%, - 2.24x,2
1.84%, - 2.31%,°
1.66%, - 2.02%

2
l

- 1,66%; - 1.83xl2
1.k0%, - 2.15%2

- 1.62Xg - g,;g__;&?
- 1.8TXp - 1.55%;2

- 1l.72%p - 2.sox12
Y = 1461 - 3.30% - 146X - 2.17X;2

67

Sampl 2/3%Y
e ﬁ v i ‘r’”""’:'"’ i —— — L — L
11 =80.23 =40.56 30 2,15 305.72
| 2 =80.18 | -hk,16 ol 20k, ] =17.6€ 303.93
1 3 “T6.43 | =39.76 | 290.69 | 297.82 | = 7.05 hso 27 | 306.85

L <75.94 | =-38.61 | 288.26 | 302.47 | - 7.53 | L59. 29 306.19
5 =81.54 «39.81 280.58 | 287.01 s T.29 42,80 295,20
6 -T4.60 =33.54 287.32 293,30 = 0.79 456.76 304.51
7 84,72 | -38.78 | 286.46 | 294.98 | - 7.92 | 455.05 | 303.37
8 -82.79 | 4482 | 284.63 | 290.62 | - 7.02 | ub5.53 | 297.02
9 -75.80 ] -<41.27 | 280.56 | 294.83 =12,02 | 450.87 | 300.58
Lo | -19.21 | -35.14 ,2;8%_;2 29438 19-59 j 452.29 | 301.53
IXY éng £XXY | 5%,% - Sy|sx 2! r g - 2
1 -3.34 | -1. 69 - -0.15 -2.24 =0.51 1h 57
2 ‘3. 3,4' "l 8’* ‘1 010 -2J¢ 31 51.22 15 02
3 -3.18 | -1.66 =04k =2,02 ~1.13 1%.88
" «3.16 | -1.61 =0.47 -2,2h 0. 47 14,56
5 -3.40 ] -1.66 -0.46 | -1.83 -0.91 14.13
6 =3.11 [ -1.%0 =0.05 -2.15 <1.k0 15.06
7 -3.53 | -1.62 <0.50 2.1 -1.05 1k4.75
8 -3.45 | -1.87 -0, bk -1.55 -0.80 13.94
9 «3.16 | <1.72 ] ~0.75 =2.50 <0.72 1. 67
10 =3.30 ] -1.46 ~0.60 =2.17 =04 89 1%.61

- 0.51%,2
- 12gx22
- 1.13%,2
- o_.hm;a
- 0.91%,2
- 1.hox?
~ 1.05%,2
0.80%,2
- 0.723;2
- 0.89%2

]

- 0.15%%,

- o,bxrx-.l_x2
- 0.46X; X,

- O.OSX:LXZ
- 0.50x1x2

- 0, 75x]_-x2

' K :“‘%
il el



2. Predicted Points from "C" Sample Fitted Equations

% 1) 13.65 ] 6) 15.26] 1) 12.38
12) - 7) 1k.00f }2) 96

8) 13.62F=3) 1210
L) 48

5) 11.55

.88 | 9) 13.64
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1) 1s5.67 | 6) 16.01] 1
2) 16.04 | 7) 16.16] |2
IN\o/ |3) 16.06 | 8) 15.85=3
X, |4 15.59 | 9) 15.33] &
2 5) 15.70 |10) 15.74} |5
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~ ) 1555 | 1) 16| |2) sie| 7
|3) 16.15 | &) 16.68fk={3) 15.02] &
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Semple Standard Errors (contimied)
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o .‘6’4 1022

RYN

0009
0.38
0.06

0.98
2.61
0.94
0.1k

1.78
1.09

0.86 0.49

. 1.03
0.23 0.75
o1

0.18
1.82

84 0.13
37 1.00
33 o.k2

.
et bt ot eninn e -



oW

O o~ O\

10

sta.

0.805
0.356

0.891
0.838
1.183
1.031
0.916
1.202

0,866

1 0.926 |

iblée | Error | _
* — e ————

“(Sta. -

Variance | ,
_Ratio | * 1 Si

0.64T799
0.733L48

0.79388
0.70229
1.39791
1.06235
0.83843
1.44398

0.84991 -

~ 0.85766

0.97113
1.0T263
1.35407
0.7232h
0.84103

o.mon §

1.27
1.05
0.78
0.9L
0.72
1.30
0.78
1.16
1.72
lak

N6
Ko

- No

No

No |

No
No
No

Mo
So

}0.897

008’4‘5
0.984 |
o.mé

0.915
1.099
0.88%4
1.069

;
H
i
]

0.461
<(F'-975(27,27 a.f.) ¥ 2.7

* F Ratio Test for Comparison of Variance

7 Reject the hypothesis that the variances are equel, at the 95% level
of significence, 1f the variance ratio falls outside the region of 2.1T7 to

1l

F o15(27,27 a.£.)

71

= o.hsl))

No means no significent difference, permitting pooling of the variances.



5. "C" Semrle Relisbility Boundery Equations

A —

]

( Besed on Y-KS where K= 3.731 for N= 60 = 6
S .

: he 5l and”for relisbility
tandards of 99.9% et 95% eonfidence. '

14,57 = 2.8 =10.00= 1.73

1. 3.34X, + 1.69X + 2,24X * + 0.51X_ + 0.15% X_
334K 69: s s 5 A P 155

15,02 = 3.15 <10.00= 1.87

[
L]

D2, 3.34X 4+ 1.8MX o+ 2.31X T +1.22X © + 1.10X X
1 2 1 2 12

3.67 =10,00= 1.2

3. 38K + 1.66% + 208K © 4 113X 0 + 0K X = 14.88
1 2 1 2 12

n

. ) 2 2 . ] _ _ ' _
ke 36X+ 16X+ aiauxig * OUTE " + OHTL X = 14,56 « 3.38 -10.00= 118

2 12

14,13 = 3.k1 =20.00= 0.72

L]

C 5. 3.b50X + 1.66X + 1.833{72 * 0;91312 + 0.46X X_
1 2 1 2 12

6. 311X + 1.MOX + 2.15x12 + LIOL" + 0.05K X = 15.06 - h.15 +10.00= 0.91
D 1 2] 12

]
8

W

lho'-{s lth -1.0.00= 0065

T. 3.53% + 1.62X + 2,11X - + 1.05X © + 0.50X X_
1 2 1 2 12

n

8. 3.45% + L.8TK + 1.55X - + 0.80X 2 + 0.bkx X

13.9% = 3.30 -10.00= 0.64
1 2 1 2 12

14,67 - 3.39 -10.00= 0.68

9. 36X + 1.72X + 2.50X © + 0.T2X 2 + 0.75X X
1 2 1 2 12

2
10. 3.30X + 1.h6x2 + 2.17x1 +0.80x " + o.6ox1i2 14,61 - 3.35 -10.00= 1.26

"C" Sample Reliebility Boundery Equation for Infinite Number of Semples

3.2 + 1.69X + 2,13%X 2, o,ghx? +0.,43X X = 14,61 - 3,73 =10.00=0.88
1 2 1 2 12

[
et AR it e
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