<table>
<thead>
<tr>
<th>AD NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD424023</td>
</tr>
</tbody>
</table>

NEW LIMITATION CHANGE

TO

Approved for public release, distribution unlimited

FROM

Distribution authorized to U.S. Gov’t. agencies and their contractors; Administrative/Operational Use; SEP 1963. Other requests shall be referred to Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD.

AUTHORITY

USAARADCOM ltr, 24 Feb 1981

THIS PAGE IS UNCLASSIFIED
THIS REPORT HAS BEEN DELIMITED AND CLEARED FOR PUBLIC RELEASE UNDER IOD DIRECTIVE 5200.20 AND NO RESTRICTIONS ARE IMPOSED UPON ITS USE AND DISCLOSURE.

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
A DYNAMIC PROGRAMMING SOLUTION OF A MISSILE ALLOCATION PROBLEM

William Sacco
DDC AVAILABILITY NOTICE

Qualified requesters may obtain copies of this report from DDC.

Foreign announcement and dissemination of this report by DDC is not authorized.

The findings in this report are not to be construed as an official Department of the Army position.
A DYNAMIC PROGRAMMING SOLUTION OF A MISSILE ALLOCATION PROBLEM

William Sacco

Computing Laboratory

RD & E Project No. 1M010501A003 and 1M025201A098

ABERDEEN PROVING GROUND, MARYLAND
A DYNAMIC PROGRAMMING SOLUTION OF A MISSILE ALLOCATION PROBLEM

ABSTRACT

A generalization of a missile allocation problem proposed by Piccariello is formulated using dynamic programming techniques. The formulation leads to an efficient algorithm for computing integer solutions to the discrete problem.
INTRODUCTION

H. Piccarielo has considered the following interesting missile allocation problem. Consider a target complex consisting of N missile launch sites and M control centers. It is assumed that if one (or more) control center survives an attack, then all surviving missiles can be launched and if all control centers are destroyed then none of the surviving missiles can be launched. Furthermore the assumption is made that each of the $N + M$ missile sites and control centers presents a separate target to an enemy missile attack. This is equivalent to the assumption that an enemy missile can destroy no target other than the one against which it is directed. The problem is to find an allocation of T identical missiles that when attacking the target complex will minimize the expected number of missiles capable of being launched.

Piccarielo gives a solution to the problem when it is considered in its continuous form (allocations are not restricted to integer values). He also investigates the discrete form of the problem and shows by example, that, in general, the solution in the continuous case is not a solution for the discrete case. He then derives a necessary condition for the existence of a solution for the discrete case to differ from the continuous case.

In this paper a generalization of Piccarielo's problem is formulated using dynamic programming techniques. The formulation leads to an efficient algorithm for computing integer solutions to the discrete problem.

THE FORMULATION OF THE PROBLEM

We shall use the following notations and definitions:

- P_i: probability of survival of missile site i; $i = 1, 2, \ldots, N$, when attacked by a single incoming missile,
- P_j: probability of survival of control center j; $j = 1, 2, \ldots, M$ when attacked by a single incoming missile,
- a_i: number of missiles at missile site i,
- T: total number of attacking missiles;
- $E(X,Y)$: expected number of surviving missiles after an attack by T missiles, where $Y = T - X$ missiles are allocated to the control centers and X missiles are allocated to the missile sites.
The following expression for $E(X,Y)$ can be given:

$$E(X,Y) = \sum_{i=1}^{N} a_i p_i^{x_i} \left[\prod_{j=1}^{M} (1 - p_j^{y_j}) \right], \quad (1)$$

where x_i is the number of missiles allocated to the ith launcher site, y_j is the number of missiles allocated to the jth control center and

$$\sum_{i=1}^{N} x_i = X \quad (a)$$
$$\sum_{j=1}^{M} y_j = T - X \quad (b)$$

The objective is to find the minimum values of $E(X,Y)$ subject to the constraints (a) and (b) where each x_i and each y_j is an integer.

The above problem reduces to the Piccariello problem when $a_1 = a_2 = \ldots = a_N = 1, \ p_1 = p_2 = \ldots = p_M, \ \text{and} \ \bar{p}_1 = \bar{p}_2 = \ldots = \bar{p}_M$.

DYNAMIC PROGRAMMING FORMULATION

An examination of equation (1), subject to the constraints (a) and (b) indicates that we are faced with an $N + M$ dimensional problem. In order to circumvent this dimensional difficulty, we will reformulate the problem as a multi-stage problem and apply the techniques of dynamic programming to obtain a feasible computational scheme. Let us define:

- $\xi_k(X)$ = the minimum expected number of surviving missiles for an allocation of X attacking missiles to k missile sites,

- $\xi_k(X)$ = the minimum expected number of surviving missiles for an allocation of X attacking missiles to k missile sites,

and

- $f_{I}(Y)$ = the minimum value of the probability of the survival of at least one control center for an allocation of Y attacking missiles to l control centers.
Then we have
\[
\min E(X,Y) = \min_{X,Y} \ g_n(X) f_M(Y)
\]
subject to the constraint \(X + Y = T\), where
\[
g_n(X) = \min_{x_1} \sum_{i=1}^{N} a_i p_i; x_1 + x_2 + \ldots + x_N = X,
\]
and
\[
f_M(Y) = \min_{y_j} \left(1 - \prod_{j=1}^{M} (1 - \hat{p}_j) \right) \text{ subject to the condition } y_1 + y_2 + \ldots + y_M = Y.
\]

Using the Principle of Optimality, we can express the \(g_n\) recursively as
\[
g_k(X) = M \mu \left[a_k x_k + g_{k-1}(X-x_k) \right], \quad k = 2, 3, \ldots, N, \text{ where } x_k \text{ is permitted}
\]
to vary over the set \(\{0, 1, 2, \ldots, X\}\). For \(k = 1\) we have
\[
g_1(X) = a_1 p_1^X.
\]

To obtain \(f_M(Y)\) we first observe that \(f_M(Y) = 1 - h_M(Y)\), where \(h_M(Y) = \max_{j=1}^{M} (1 - \hat{p}_j Y_j)\).

Employing the Optimality Principle once again, we obtain
\[
h_{\ell}(Y) = \max_{y_{\ell}} \left[(1 - \hat{p}_\ell y_{\ell}) \cdot h_{\ell-1}(Y-y_{\ell}) \right], \quad \ell = 2, 3, \ldots, M \text{ where } y_{\ell} \in \{0, 1, 2, \ldots, Y\}\] and
\[
\ell.
\]
The value Y is also permitted to range over the set of integers $\{0, 1, 2, \ldots, T\}$.

\textbf{COMPUTATIONAL PROCEDURE}

The dynamic programming formulation imbeds the original problem within a family of analogous problems in which the basic parameters $N, M,$ and T assume sets of values which permit us to obtain, in the course of the computation, the solution to a variety of sub-problems. Because of the structure of the process we are able to use the information obtained from sub-problems of the original problem to obtain the solution of the original problem. The input information that is required is the knowledge of $N, M,$ and T and the values of the P_i's, \bar{P}_j's, and a_1's.

We begin the computation by obtaining the sequences $\{g_k(X)\}$ and $\{x_k(X)\}$ from equations (5) and (6), and the sequences $\{h_k(Y)\}$ and $\{y_k(Y)\}$ from equations (7) and (8). Given this information, we are then prepared to use equation (2) to compute $\min E(X, x')$.

\textbf{NUMERICAL EXAMPLE}

Let $N = 3, M = 2, T = 5, P_1 = .50, P_2 = .30, P_3 = .60, a_1 = 10, a_2 = 8, a_3 = 12, \bar{P}_1 = .60, \bar{P}_2 = .50$. From equations 5, 6, 7, and 8, we obtain the relations:

\begin{align*}
g_2(X) &= a_1 x_1^c, \\
g_3(X) &= \min_{x_2} \left\{ a_2 x_2 + g_1(x - x_2) \right\}; \\
g_4(X) &= \min_{x_3} \left\{ a_3 x_3 + g_2(x - x_3) \right\}; \\
\end{align*}

\begin{align*}
h_1(Y) &= (1 - P_1)^Y, \\
and \quad h_2(Y) &= \max_{y_2} \left\{ (1 - \bar{P}_2)^y h_1(y - y_2) \right\}. \\
\end{align*}
Using the previous relations we obtain the values,

\[
\begin{align*}
\varepsilon_1(0) &= 10 \\
\varepsilon_1(1) &= 5 \\
\varepsilon_1(2) &= 2.5 \\
\varepsilon_1(3) &= 1.25 \\
\varepsilon_1(4) &= 0.625 \\
\varepsilon_1(5) &= 0.3125 \\
\varepsilon_2(0) &= a_2 + \varepsilon_1(0) = 8 + 10 = 18 \\
\varepsilon_2(1) &= \text{Min} \left\{ \begin{array}{c}
3(1.5)^0 + \varepsilon_1(1) = 3 + 5 = 8 \\
3(1.5)^1 + \varepsilon_1(0) = 4.5 + 10 = 14.5
\end{array} \right\} = 12.4 \\
\varepsilon_2(2) &= \text{Min} \left\{ \begin{array}{c}
8 + \varepsilon_1(2) = 10.5 \\
2.5 + \varepsilon_1(1) = 7.4 \\
0.72 + \varepsilon_1(0) = 10.72
\end{array} \right\} = 7.4 \\
\varepsilon_2(3) &= \text{Min} \left\{ \begin{array}{c}
8 + \varepsilon_1(3) = 9.25 \\
2.5 + \varepsilon_1(2) = 4.9 \\
0.72 + \varepsilon_1(1) = 5.72 \\
0.216 + \varepsilon_1(0) = 10.216
\end{array} \right\} = 4.9 \\
\varepsilon_2(4) &= \text{Min} \left\{ \begin{array}{c}
8 + \varepsilon_1(4) = 8.625 \\
2.5 + \varepsilon_1(3) = 5.65 \\
0.72 + \varepsilon_1(2) = 5.52 \\
0.216 + \varepsilon_1(1) = 6.0216 \\
0.0848 + \varepsilon_1(0) = 10.0848
\end{array} \right\} = 5.52
\end{align*}
\]
\[\begin{aligned}
g_2(5) &= \text{Min} \begin{cases}
3 + g_1(5) = 8.3125 \\
2.4 + g_1(4) = 5.025 \\
0.72 + g_1(3) = 1.97 \\
0.216 + g_1(2) = 2.716 \\
0.0648 + g_1(1) = 5.0648 \\
0.01944 + g_1(0) = 10.01944
\end{cases} \end{aligned} = 1.97
\]

\[g_3(0) = \left[\begin{array}
12 + 10 + 3
\end{array} \right] = 35 \]

\[\begin{aligned}
g_3(1) &= \text{Min} \begin{cases}
12 + g_2(1) = 24.4 \\
7.2 + g_2(0) = 25.2
\end{cases} \end{aligned} = 24.4
\]

\[\begin{aligned}
g_3(2) &= \text{Min} \begin{cases}
12 + 7.4 = 19.4 \\
7.2 + 12.4 = 19.6 \\
4.32 + 18 = 22.32
\end{cases} \end{aligned} = 19.4
\]

\[\begin{aligned}
g_3(3) &= \text{Min} \begin{cases}
12 + 4.9 = 16.9 \\
7.2 + 7.4 = 14.6 \\
4.32 + 12.4 = 16.72 \\
2.592 + 18 = 20.592
\end{cases} \end{aligned} = 14.6
\]

\[\begin{aligned}
g_3(4) &= \text{Min} \begin{cases}
12 + 3.52 = 15.52 \\
7.2 + 4.9 = 12.1 \\
4.32 + 7.4 = 11.72 \\
2.592 + 12.4 = 14.992 \\
1.5552 + 18 = 19.5552
\end{cases} \end{aligned} = 11.72
\]
\[\begin{align*}
\varepsilon_2(5) &= \min \left\{ 12 + 1.97 = 13.97, \\
7.2 + 5.52 = 10.72, \\
4.32 + 4.9 = 9.22, \\
2.592 + 7.4 = 9.992, \\
1.5552 + 12.4 = 13.9552, \\
0.9531 + 18 = 18.95312 \right\} = 9.22 \\
\end{align*} \]

\[\begin{align*}
h_1(0) &= 0, \\
h_1(1) &= .40, \\
h_1(2) &= .64, \\
h_1(3) &= .784, \\
h_1(4) &= .8804, \\
h_1(5) &= .92224 \\
h_2(0) &= 0, \\
h_2(1) &= \max \left\{ \begin{array}{c} 0 \\ 0 \end{array} \right\} = 0, \\
h_2(2) &= \max \left\{ \begin{array}{c} (.50)(.40) = .20 \\ 0 \end{array} \right\} = .20 \\
\end{align*} \]

\[\begin{align*}
h_2(3) &= \max \left\{ \begin{array}{c} 0 \\ (.50)(.64) = .32 \\ (.75)(.40) = .30 \\ 0 \end{array} \right\} = .32 \\
\end{align*} \]

\[\begin{align*}
h_2(4) &= \max \left\{ \begin{array}{c} 0 \\ (.50)(.784) = .392 \\ (.75)(.64) = .48 \\ (.875)(.40) = .35 \\ 0 \end{array} \right\} = .48 \\
\end{align*} \]
We are finally ready to make use of eq. (2)

\[
\text{Min } E(Y, X) = \text{Min } \sum_{i=1}^{X} g_{ii}(X) f_{M}(Y)
\]

where

\[
\tau_{i}(Y) = 1 - h_{i}(Y),
\]

and

\[
X + Y = T.
\]

For our example \(N = 3, M = 2 \) so that

\[
\text{Min } E(Y, X) = \text{Min } \sum_{i=1}^{X} g_{ii}(X) f_{2}(Y) \quad \text{i.e.,}
\]

\[
\begin{align*}
\text{Min } E(Y, X) &= \text{Min } \left\{ g_{2}(0) f_{2}(5) = (30)(.412) = 12.36 \\
g_{2}(1) f_{2}(4) = (24.4)(.52) = 12.688 \\
g_{2}(2) f_{2}(3) = (14.6)(.68) = 13.192 \right. \\
&\left. g_{2}(3) f_{2}(2) = (11.72)(1) = 11.72 \\
g_{2}(4) f_{2}(1) = (9.22)(1) = 9.22 \right\}
\end{align*}
\]

The minimum value is 9.22. The allocation of missiles which yields the minimum value is \(X = 3, Y = 0 \). What remains is the determination of the
optimal values of the x_i: $i = 1, 2, 3$:

$$x_3 = x_3(x) = x_3(5) = 2,$$

$$x_2 = x_2(x-x_3) = x_2(7) = 1,$$

$$x_1 = x_1(x-x_3 - 2, - 1) = 2.$$

Therefore, the optimal allocation policy is given by

$$(x_1, x_2, x_3, y_1, y_2) = (2, 1, 2, 0, 0).$$

DISCUSSION

The author is grateful to Mr. J. L. Merritt for many helpful discussions during the formulation and solution of this problem. Mr. Merritt has pointed out to the author several problem areas of interest in which this procedure would have direct application. For instance, it would be possible by utilizing these methods to decide upon an optimum ratio of control center to missile sites. It would also be possible to use this methodology to determine whether it is desirable to harden ICBM sites, or to utilize the additional money planned to be spent on active or passive defense by building more undefended launching sites.

William Sacco

WILLIAM SACCO
BIBLIOGRAPHY

<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>Commander</td>
</tr>
<tr>
<td></td>
<td>Defense Document Center</td>
</tr>
<tr>
<td></td>
<td>ATTN: TTPCV</td>
</tr>
<tr>
<td></td>
<td>Cameron Station</td>
</tr>
<tr>
<td></td>
<td>Alexandria, Virginia 22314</td>
</tr>
</tbody>
</table>

1	Director
	Advanced Research Projects Agency
	Department of Defense
	Washington, D.C. 20501

1	Director
	IDA/Weapon Systems Evaluation Group
	Room 1ES75, The Pentagon
	Washington, D.C. 20501

1	Commanding General
	U.S. Army Materiel Command
	ATTN: AMCCD-RP-E
	Washington, D.C. 20515

1	Commanding General
	U.S. Army Materiel Command
	ATTN: AMCCD-DS
	Washington, D.C. 20515

1	Redstone Scientific Information Center
	ATTN: Chief, Documents Section
	U.S. Army Missile Command
	Redstone Arsenal, Alabama 35809

1	Commanding General
	U.S. Army Missile Command
	Redstone Arsenal, Alabama 35809

1	Commanding Officer
	Picatinny Arsenal
	ATTN: Feltman Research and Engineering Laboratories
	Dover, New Jersey

1	Commanding Officer
	Harry Diamond Laboratories
	ATTN: Technical Information Office, Branch 012
	Washington, D.C. 20438

1	President
	U.S. Army Air Defense Board
	Fort Bliss, Texas

1	Chief of Research and Development
	Army Research Office
	Department of the Army
	Washington, D.C. 20310

3	Chief, Bureau of Naval Weapons
	ATTN: DIS-35
	Department of the Navy
	Washington, D.C. 20560

1	Commander
	Naval Ordnance Laboratory
	White Oak
	Silver Spring 19, Maryland

1	Commander
	U.S. Naval Ordnance Test Station
	ATTN: Technical Library
	China Lake, California 93557

1	Chief of Naval Operations
	ATTN: Opr03EG
	Department of the Navy
	Washington, D.C. 20360

1	Director
	U.S. Naval Research Laboratory
	ATTN: Technical Information Division
	Washington, D.C. 20390

1	APOC (POAPT)
	Eglin Air Force Base
	Florida 32548
DISTRIBUTION LIST

<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Organization</th>
</tr>
</thead>
</table>
| 1 | Director, Project RAND
 ATTN: Librarian
 Department of the Air Force
 1700 Main Street
 Santa Monica, California |
| 1 | SSD (SSRTW)
 AF Unit Post Office
 Los Angeles 45, California |
| 1 | SSD (BSF)
 Norton Air Force Base
 California |
| 1 | Director
 National Aeronautics and
 Space Administration
 Ames Research Center
 Moffett Field, California |
| 1 | Central Intelligence Agency
 2430 E. Street, N.W.
 Washington 25, D.C. |
| 1 | Aerojet General Corporation
 11711 South Woodruff Avenue
 Downey, California |
| 1 | AVCO Manufacturing Corporation
 Research and Development Division
 201 Lowell Street
 Wilmington, Massachusetts |
| 1 | Battelle Memorial Institute
 ATTN: Battelle - Defender
 505 King Street
 Columbus 1, Ohio |
| 1 | Boeing Airplane Company
 Aerospace Division
 Seattle 24, Washington |
| 1 | General Electric Company
 Missile & Space Vehicles Department
 3198 Chester Street
 Philadelphia, Pennsylvania |
| 1 | Institute for Defense Analyses
 Research & Engineering Support Division
 ATTN: Technical Information Office
 1025 Connecticut Avenue, N.W.
 Washington, D.C. |
| 1 | The Martin Company
 Orlando, Florida |
| 1 | United Aircraft Corporation
 Missiles and Space Division
 400 Main Street
 East Hartford 6, Connecticut |
| 1 | Applied Physics Laboratory
 The Johns Hopkins University
 8621 Georgia Avenue
 Silver Spring, Maryland |
| 1 | Stanford Research Institute
 ATTN: Dr. Irving Yabroff
 Menlo Park, California |
| 4 | Australian Group
 c/o Military Attaché
 Australian Embassy
 2001 Connecticut Avenue, N.W.
 Washington, D.C. |
| 10 | The Scientific Information Officer
 Defence Research Staff
 British Embassy
 3100 Massachusetts Avenue, N.W.
 Washington 8, D.C. |
| 4 | Defence Research Member
 Canadian Joint Staff
 2450 Massachusetts Avenue, N.W.
 Washington 8, D.C. |
A generalization of a missile allocation problem proposed by Piccardello \(^3\) is formulated using dynamic programming techniques. The formulation leads to an efficient algorithm for computing integer solutions to the discrete problem.