NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
TECHNICAL REPORT NO. 38

A New Class of Double-Bridged Coordination Polymers Based On Chromium(III)

by

A. J. Saraceno and B. P. Block

Accepted by the Journal of the American Chemical Society

PENNSALT CHEMICALS CORPORATION
Research and Development Department
Wyndmoor, Pennsylvania

June 1963

Reproduction in whole or in part is permitted for any purpose of the United States Government
A New Class of Double-Bridged Coordination Polymers Based on Chromium(III)

Sir:

Earlier reports from this laboratory have concerned the preparation of coordination polymers of types which we write symbolically as \([M(AB)X_2]^n\) \(^{(1)}\) and \([MX_2]^n\) \(^{(2)}\) where AB represents a uninegative bidentate ligand and X represents a uninegative bridging group. We now wish to report a third class, \([M(a)(b)X_2]^n\), where a represents a neutral unidentate ligand and b a uninegative ligand. The preparation of this new class differs in method from that in the earlier series and appears to lead to polymers with substantially higher molecular weight than we have found for the other two types. The non-bridging ligands a and b are inorganic, so that this material is an example of a coordination polymer which in addition to its inorganic backbone has inorganic blocking groups in the repeating unit.

The synthesis is a two-step process in which chromium(II) acetate is treated with a potassium phosphinate (KOPR\(_2\)O) to yield the corresponding chromium(II) phosphinate (R=C\(_6\)H\(_5\), I). The latter is then oxidized with air in the presence of water to yield the composition Cr(H\(_2\)O)(OH)(OPR\(_2\)O)\(_2\) (R=C\(_6\)H\(_5\), II) which has polymeric properties. II has been prepared by these reactions under a variety of conditions, but here we will only describe a set of conditions which gives a product exhibiting a high intrinsic viscosity in chloroform.

A suspension of 2.7 g. of freshly prepared Cr(OAc)$_2$·H$_2$O in 125 ml. of deoxygenated water is refluxed under nitrogen with stirring for 1 hr. After the addition of a deoxygenated solution of KOP(C$_6$H$_5$)$_2$O (prepared by the exact neutralization of 8.0 g. of (C$_6$H$_5$)$_2$P(O)OH with 1 M. KOH) without exposure to air, the refluxing is continued for 2-3 hr. under nitrogen. The precipitated intermediate I is then separated by filtration at room temperature and washed several times with deoxygenated water, all operations being conducted under nitrogen. I is next dispersed in 500 ml. of water and oxidized to II by exposure to the atmosphere. After crude II has been removed by filtration, washed thoroughly with water, and dried at 100°, it is dissolved in benzene. The resulting solution is then separated from the small quantity of benzene insolubles (less than 0.3 g.) by filtration and evaporated at room temperature in a stream of nitrogen to yield II. Final drying is at 120°. Anal. Calcd. for C$_{12}$H$_{13}$CrO$_6$P$_2$: C, 55.25%; H, 4.43%; Cr, 10.0%; P, 11.88%. Found: C, 56.39%; H, 4.36%; Cr, 9.7%; P, 11.93%. Yields vary from 70 to 95%. The intrinsic viscosity of II prepared in this manner is 0.6 to 0.7 in chloroform. Less rigorously controlled conditions lead to polymers with intrinsic viscosities from 0.1 to 0.5. Even unfractiomed samples with intrinsic viscosities in the range 0.12 to 0.20 have number average molecular weights greater than 10,000 as determined by ebulliometry and vapor pressure osmometry in chloroform. Consequently the higher-viscosity samples certainly have molecular weights of at least several tens of thousands.
Although any of the groups present in II could serve as bridging groups, the most probable structure contains a double-bridged backbone similar to that suggested for Cr(AcCHAc)(OP(C₆H₅)₂O)₂¹ except that a cis configuration is not required. The infrared spectrum of II contains absorption peaks characteristic of PO₂ stretching with virtually the same frequency and absorption profile as found for polymeric Cr(AcCHAc)(OP(C₆H₅)₂O)₂¹. This is strong evidence that the diphenylphosphinate anion is functioning in the same way in both polymers. Furthermore, the hydroxyl group and the water O-H stretching vibrations can be identified separately at frequencies which suggest they are normally coordinated groups. Thus infrared indicates that the hydroxyl groups are not bridging groups. The solubility of II in benzene or chloroform accompanied by marked swelling and the high intrinsic viscosity values are good evidence for the presence of linear chains as the predominating species with cross-linking only of minor importance. The indications are, then, that the repeat unit is

\[
\begin{array}{c}
\text{H} \\
\text{O} \\
\text{Cr} \\
\text{O} \\
\text{H}_2 \\
\end{array}
\quad
\begin{array}{c}
\text{R}_2 \\
\text{P} \\
\text{O} \\
\text{P} \\
\text{R}_2 \\
\end{array}
\]

Thermogravimetric analysis of II shows initial weight loss at 375° with a step in the 410-430° region which corresponds to a 3-10% weight loss. No
polymer melt temperature has been observed up to or well beyond the decomposition point. Surprisingly the polymer shows remarkable resistance to hydrolysis and other chemical degradation. For example, no change in intrinsic viscosity is observed upon refluxing a suspension of the polymer in water for several hours. A cast film of high-viscosity plasticized with 30% Aroclor 1254 has a tensile strength of over 1900 p.s.i.

In addition to the diphenyl species described here we have also been able to prepare the analogues with phenylmethylphosphinate, dimethylphosphinate, and cacodylate bridging groups. The mechanism by which this kind of polymer forms is not clear. It would appear that the intermediate could be a polymer somewhat analogous to the phosphinate polymers involving zinc, beryllium, and cobalt. The oxidation step then may merely serve to increase the oxidation state of the chromium and introduce the additional ligands. Alternatively polymerization may be involved in the oxidation step.

Acknowledgment. This investigation was supported in part by the Office of Naval Research. We are indebted to several of our colleagues for assistance with various experiments. Analytical data were supplied by our Analytical Department.

Research and Development Department
Pennsalt Chemicals Corporation
Wyndmoor, Pennsylvania

A.J. Saraceno
B.P. Block
<table>
<thead>
<tr>
<th>Contract No.</th>
<th>NR 556-408</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Copies</td>
<td>No. of Copies</td>
</tr>
<tr>
<td>Commanding Officer</td>
<td>U.S. Army Chemical Research and Development Laboratories, Technical Library</td>
</tr>
<tr>
<td>Office of Naval Research Branch Off.</td>
<td>Army Chemical Center, Maryland</td>
</tr>
<tr>
<td>The John Crerar Library Building</td>
<td>Office of Technical Services</td>
</tr>
<tr>
<td>96 East Randolph Street</td>
<td>Department of Commerce</td>
</tr>
<tr>
<td>Chicago 1, Illinois (1)</td>
<td>Washington 25, D.C. (1)</td>
</tr>
<tr>
<td>Commanding Officer</td>
<td>Dr. P. A. Miller</td>
</tr>
<tr>
<td>346 Broadway</td>
<td>1000 Geary Street</td>
</tr>
<tr>
<td>New York 15, New York (1)</td>
<td>San Francisco 9, California (1)</td>
</tr>
<tr>
<td>Commanding Officer</td>
<td>Dr. G. Haber</td>
</tr>
<tr>
<td>Office of Naval Research Branch Off.</td>
<td>Naval Ordnance Laboratory</td>
</tr>
<tr>
<td>1025 E. Green Street</td>
<td>Corona, California (1)</td>
</tr>
<tr>
<td>Pasadena 1, California (1)</td>
<td>Commanding Officer</td>
</tr>
<tr>
<td>Office of Naval Research Branch Off.</td>
<td>Dr. Porter W. Erickson</td>
</tr>
<tr>
<td>Box 39 Navy 610 Fleet Post Office</td>
<td>Naval Ordnance Laboratory</td>
</tr>
<tr>
<td>New York, New York (7)</td>
<td>White Oak, Maryland (1)</td>
</tr>
<tr>
<td>Director, Naval Research Lab.</td>
<td>Dr. Albert Lighthipe</td>
</tr>
<tr>
<td>Washington 23, D.C.</td>
<td>Naval Ordnance Laboratory</td>
</tr>
<tr>
<td>Attn: Technical Information Officer</td>
<td>White Oak, Maryland (1)</td>
</tr>
<tr>
<td>Chemistry Division (8)</td>
<td>Commanding Officer and Director</td>
</tr>
<tr>
<td>Chief of Naval Research</td>
<td>U.S. Naval Civil Engineer Lab.</td>
</tr>
<tr>
<td>Department of the Navy</td>
<td>Port Hueneme, California</td>
</tr>
<tr>
<td>Washington 25, D.C.</td>
<td>Attn: Chemistry Division (1)</td>
</tr>
<tr>
<td>Technical Director</td>
<td>Department of Chemistry</td>
</tr>
<tr>
<td>Research & Eng’g. Division</td>
<td>University of California</td>
</tr>
<tr>
<td>Off. of the Quartermaster Gen’l</td>
<td>Berkeley, California (1)</td>
</tr>
<tr>
<td>Department of the Army</td>
<td>Director, Naval Research Lab.</td>
</tr>
<tr>
<td>Washington 25, D.C.</td>
<td>Washington 23, D.C.</td>
</tr>
<tr>
<td>Army Research and Development Laboratories</td>
<td>Attn: Dr. B. S. Fox</td>
</tr>
<tr>
<td>Technical Library</td>
<td>Washington 25, D.C.</td>
</tr>
<tr>
<td>Room 2G-128, The Pentagon</td>
<td>Attn: Dr. B. S. Fox</td>
</tr>
<tr>
<td>Washington 25, D.C. (1)</td>
<td>U.S. Army Research Laboratory, Code 6120</td>
</tr>
<tr>
<td>Research Director</td>
<td>Office of Naval Research</td>
</tr>
<tr>
<td>Clothing & Organic Materials Division</td>
<td>Wright-Patterson Air Force Base</td>
</tr>
<tr>
<td>Undergraduate Research & Engineering Command</td>
<td>Ohio (6)</td>
</tr>
<tr>
<td>U.S. Army</td>
<td>Director, Naval Research Lab.</td>
</tr>
<tr>
<td>Natick, Massachusetts</td>
<td>Washington 23, D.C.</td>
</tr>
<tr>
<td>Air Force</td>
<td>Attn: Dr. B. S. Fox</td>
</tr>
<tr>
<td>Off. of Scientific Res. (SRC-G)</td>
<td>U.S. Army Research Laboratory</td>
</tr>
<tr>
<td>Washington 25, D.C. (1)</td>
<td>Code 6120 (5)</td>
</tr>
<tr>
<td>Commanding Officer</td>
<td>Office of Naval Research</td>
</tr>
<tr>
<td>Diamond Ordnance Fuze Labs.</td>
<td>Wright-Patterson Air Force Base</td>
</tr>
<tr>
<td>Washington 23, D.C.</td>
<td>Ohio (6)</td>
</tr>
<tr>
<td>Attn Tech. Information Office</td>
<td>Director, Naval Research Lab.</td>
</tr>
<tr>
<td>Branch 612 (1)</td>
<td>Washington 23, D.C.</td>
</tr>
<tr>
<td>Office, Chief of Research & Development</td>
<td>Attn: Dr. E. G. Rochow</td>
</tr>
<tr>
<td>Department of the Army</td>
<td>Harvard University</td>
</tr>
<tr>
<td>Washington 25, D.C.</td>
<td>Cambridge 38, Massachusetts (1)</td>
</tr>
<tr>
<td>Attn Technical Library</td>
<td>Dr. H. T. Smyth</td>
</tr>
<tr>
<td>Code: REMA-3 (1)</td>
<td>School of Ceramics</td>
</tr>
<tr>
<td>Chief, Bureau of Ships</td>
<td>Rutgers - The State University</td>
</tr>
<tr>
<td>Department of the Navy</td>
<td>New Brunswick, New Jersey (1)</td>
</tr>
<tr>
<td>Washington 25, D.C.</td>
<td>Dr. John E. Latilier</td>
</tr>
<tr>
<td>Attn: Physical Sciences Division (1)</td>
<td>Chief, Office of Naval Research</td>
</tr>
<tr>
<td>Chief, Bureau of Ships</td>
<td>Department of Chemistry</td>
</tr>
<tr>
<td>Department of the Navy</td>
<td>Florida State University</td>
</tr>
<tr>
<td>Washington 25, D.C.</td>
<td>Tallahassee, Florida (1)</td>
</tr>
<tr>
<td>Attn: Code 6120</td>
<td>Dr. William N. Lissencourt</td>
</tr>
<tr>
<td>Chief of Naval Research</td>
<td>Department of Chemistry</td>
</tr>
<tr>
<td>Harvard University</td>
<td>Harvard University</td>
</tr>
<tr>
<td>Cambridge 38, Massachusetts (1)</td>
<td>Cambridge 36, Massachusetts (1)</td>
</tr>
<tr>
<td>Chief, Bureau of Weapons</td>
<td>Dr. T. S. Parsons</td>
</tr>
<tr>
<td>Department of the Navy</td>
<td>Department of Chemistry</td>
</tr>
<tr>
<td>Washington 25, D.C.</td>
<td>Oregon State College</td>
</tr>
<tr>
<td>Attn Technical Library</td>
<td>Corvallis, Oregon (1)</td>
</tr>
<tr>
<td>Code: REMA-3 (1)</td>
<td>Dr. L. F. Adams</td>
</tr>
<tr>
<td>Office of Naval Research</td>
<td>Princeton Plastic Laboratory</td>
</tr>
<tr>
<td>Wright-Patterson Air Force Base</td>
<td>Princeton University</td>
</tr>
<tr>
<td>Wright-Patterson Air Force Base</td>
<td>Princeton, New Jersey (1)</td>
</tr>
<tr>
<td>Ohio (6)</td>
<td>Dr. A. V. Shemyak</td>
</tr>
<tr>
<td>Chief of Naval Research</td>
<td>Department of Chemistry</td>
</tr>
<tr>
<td>Harvard University</td>
<td>Princeton University</td>
</tr>
<tr>
<td>Princeton, New Jersey (1)</td>
<td>Dr. R. S. Bube</td>
</tr>
<tr>
<td>Office of Naval Research</td>
<td>Department of Chemistry</td>
</tr>
<tr>
<td>University of Massachusetts</td>
<td>Amherst, Massachusetts (1)</td>
</tr>
<tr>
<td>Attn: Technical Information Officer</td>
<td>Department of Chemistry</td>
</tr>
<tr>
<td>Aeronautical Systems Division</td>
<td>Stanford University</td>
</tr>
<tr>
<td>AMCRP</td>
<td>Stanford, California (1)</td>
</tr>
</tbody>
</table>

Pennsalt Chemicals Corporation

Professor A.R. von Hippel
Department of Physics
Massachusetts Institute of Technology
Cambridge, Massachusetts (1)

Dr. L. J. Young, Jr.
Department of Chemistry
University of North Carolina
Chapel Hill, North Carolina (1)

Dr. T. C. Sallis, Jr.
Department of Chemistry
University of Illinois
Urbana, Illinois (2)

Dr. A. B. Burg
Department of Chemistry
University of Southern Calif.
Los Angeles 7, California (2)

Dr. L. F. Audrieth
Department of Chemistry
University of Illinois
Urbana, Illinois (2)

Dr. R. P. Tantky
Crystallographic Lab.
Department of Physics
Pennsylvania State University
University Park, Pennsylvania (1)

Dr. O. Williams
National Science Foundation
Washington 25, D.C. (1)

Dr. J. F. Pisk
Director of Mineral Technology
University of California
Berkeley, California (1)

Dr. A. T. Gwathmey
Department of Chemistry
University of Virginia
Charlottesville, Virginia (1)

Dr. J. B. Goldsmith
Department of Geology
University of Chicago
Chicago 35, Illinois (1)

Dr. D. S. Scheffler
Department of Chemistry
Indiana University
Bloomington, Indiana (1)

Dr. T. G. Fox
Director of Research
Mellon Institute
4400 Fifth Avenue
Pittsburgh 13, Pennsylvania (1)

Aircraft Industries Association
7640 Beverly Boulevard
Los Angeles 36, California
Attn: Mr. H. D. Moran (10)

Chief, Bureau of Ships
Department of the Navy
Washington 25, D.C.
Attn: Code 6600 (1)

Mr. C. J. Hryckiewicz
American Porcelain & Chemical Corp.
201 W. Washington Blvd.
Whitman, California (1)

Attn: Dr. W. B. Emerson (2)

U.S. Buron Research Corp.
Alexandria, California
Attn: Dr. Carl Randolph (1)

General Electric Company
Research Laboratory
Attn: Dr. J. R. Elliott
P.O. Box 1098
Schenevusdale, New York (2)

Dr. P. D. Copper
General Electric Company
General Engineering Laboratory
Schenevusdale, New York (2)

Boeing Airplane Company
Whitman 1, Kansas
Attn: Library (1)

Attn: Mr. B. Hansen
Department of Chemistry
Tulane University
New Orleans 15, Louisiana (1)

Dr. Henry Zundel
Department of Chemistry
Stanford University
Stanford, California (1)
<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pennsalt Chemicals Corporation</td>
</tr>
<tr>
<td>1</td>
<td>Contract No. Nonr 2687(00) NR 354-408</td>
</tr>
<tr>
<td>1</td>
<td>Atomic Energy Commission Division of Technical Information Extension Post Office Box 62 Oak Ridge, Tennessee</td>
</tr>
<tr>
<td>1</td>
<td>Picatinny Arsenal Dover, New Jersey</td>
</tr>
<tr>
<td>1</td>
<td>John J. Thompson & Co. 1118 32nd St., N.W. Washington, D.C. Attn: Mr. Carl A. Posey</td>
</tr>
<tr>
<td>1</td>
<td>Dr. M. S. Cohen, Chief Propellants Synthesis Section Reaction Motors Division Dover, New Jersey</td>
</tr>
<tr>
<td>1</td>
<td>Dr. M. J. S. Dow</td>
</tr>
<tr>
<td>1</td>
<td>Commanding Officer Ordnance Materials Res. Office Watertown Arsenal Watertown, Mass. Attn: RPD</td>
</tr>
<tr>
<td>1</td>
<td>Commanding Officer Rock Island Arsenal Rock Island, Illinois Attn: Mr. R. Shaw, Laboratory</td>
</tr>
<tr>
<td>1</td>
<td>Monsanto Research Corporation Everett Stetige Boston 49, Mass. Attn: Librarian</td>
</tr>
<tr>
<td>1</td>
<td>Dr. T. L. Heying Organics Division Olin Mathieson Chemical Corporation 275 Winchester Avenue New Haven, Connecticut</td>
</tr>
<tr>
<td>1</td>
<td>Dr. W. S. Fyle Department of Geology University of California Berkeley, California</td>
</tr>
<tr>
<td>1</td>
<td>New York Naval Shipyard Material Laboratory Brooklyn 1, N. Y. Attn: Mr. R. R. Stines</td>
</tr>
<tr>
<td>1</td>
<td>Professor R. S. Nyholm University College London, Department of Chemistry Gower St., WC1 London, England</td>
</tr>
<tr>
<td>1</td>
<td>Monsanto Research Corporation 1515 Nicholas Road Dayton, Ohio Attn: Librarian</td>
</tr>
<tr>
<td>1</td>
<td>Mr. G. W. Harding Materials Officer Defense Research Staff British Embassy 3190 Massachusetts Ave., N.W. Washington 8, D.C.</td>
</tr>
<tr>
<td>1</td>
<td>Dr. Roald Hoffman Department of Chemistry Harvard University Cambridge 38, Mass.</td>
</tr>
<tr>
<td>1</td>
<td>The Dow Chemical Co. ARPA Laboratory 1710 Building Midland, Michigan</td>
</tr>
<tr>
<td>1</td>
<td>Naval Ordnance Test Station China Lake, California Attn: Code 4544 (Dr. Kauflnn) Code 5557 (Mr. B. B. Hurzop Mr. R. J. Landry)</td>
</tr>
</tbody>
</table>