NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
NMR Identification of Substitutional Isomers in Chelated Polycyclic Aromatic Systems

by
A. L. Porte and H. S. Gutowsky

Prepared for Publication in the Journal of Organic Chemistry

University of Illinois
Department of Chemistry and Chemical Engineering
Urbana, Illinois

June 1, 1963

Reproduction in whole or in part is permitted for any purpose of the United States Government
NMR IDENTIFICATION OF SUBSTITUTIONAL ISOMERS IN CHELATED POLYCYCLIC AROMATIC SYSTEMS

A. L. Porte and H. S. Gutowsky

Noyes Chemical Laboratory, University of Illinois, Urbana, Illinois

(1) Acknowledgment is made to the donors of The Petroleum Research Fund, administered by the American Chemical Society, for partial support of this research. Also, this work was supported by the Office of Naval Research.

(2) Now at Chemistry Department, The University, Glasgow, Scotland.

Some time ago we made a study of chemical shifts in chelated phenols which contain the structure I, where $Y = -H, -\text{CH}_3$ and $-\text{OCH}_3$, and from the results obtained,\(^3\) it seems likely that magnetic resonance methods may be useful in distinguishing between isomers of phenols with chelating substituents.

The arguments which we will employ can easily be extended to other systems. The results exhibit two aspects by means of which the isomers may be distinguished on the basis of their high-resolution proton magnetic resonance spectra: (a) From the $-\text{OH}$ proton chemical shift. In aromatic systems, the shift of a chelated $-\text{OH}$ proton relative to the $-\text{OH}$ peak in the corresponding parent phenol is quite large. We have found that this chemical shift is a linear function of the bond order of bond $\sigma = 2C$, with the slope depending somewhat upon the substituent Y.\(^3\) If the shift is measured, then that part of the aromatic nucleus spanned by the chelated structure can be identified.

(b) From the chemical shift of the protons in Y. A large part of the chemical shift of a proton, which is situated near an aromatic system, arises from the \(\pi\)-electronic ring currents induced in the aromatic system when the molecule is placed in a magnetic field.\(^4\)\(^5\) It is this effect which leads to the other

method of assigning the substituent position in polynuclear aromatic systems.

\[\text{Method (a) is straightforward, direct, and requires little amplification.} \]

\[\text{Method (b) we will discuss in more detail. To a first approximation, the} \]

\[\text{\(\pi\)-electron currents induced in each six-membered ring can be replaced by} \]

\[\text{an elementary dipole situated at the center of the ring. Each dipole exerts} \]

\[\text{a secondary magnetic field at Y, which is inversely proportional to the third} \]

\[\text{power of the distance between the dipole and Y. This secondary field is in} \]

\[\text{the same direction as the applied magnetic field, provided Y lies in the same} \]

\[\text{plane as the aromatic system. If Y does not lie in this plane, then the effective} \]

\[\text{field is reduced until, eventually, the applied field may be opposed} \]

\[\text{by a secondary field. The maximum opposition to the applied field occurs when} \]

\[\text{Y lies on the perpendicular drawn through the center of the dipole.} \]
It is quite easy to show\(^{4,5}\) that when \(Y\) does lie in the same plane as the aromatic system, then each secondary field causes a chemical shift of about \(27.58/r^3\) parts per million if \(r\), the distance from the protons or other magnetic nuclei in \(Y\) to the \(\pi\)-electronic dipole, is expressed in Angstrom units. Hence, if the dimensions of the molecule are known, the approximate relative chemical shifts of \(Y\) may be predicted for a series of similar compounds. These predicted shifts will be only approximately correct, because the \(\pi\)-electron systems are perturbed to different extents by interaction with the substituents, and this interaction, in its turn, modifies the diamagnetic circulations induced in the substituents. However, these effects are less important than the geometrical considerations outlined above, and they do not affect the qualitative arguments that are used.

The ring current shifts will be modified by solvent interactions, and so our arguments apply to solutions in which the solvent interactions are either negligible or very similar for the solutes in question.

\[\text{II} \quad \text{III} \quad \text{IV} \]
\[\text{V} \quad \text{VI}\]
With this qualification, one predicts that the downfield, ring-current shifts in compounds of types II to VI of the $Y = H$ proton absorption peaks should be about 0.175 p.p.m. on going from II to III, somewhat less on going from II to IV, and about 0.55 p.p.m. on going from II and III to V and VI. These predictions are in reasonable agreement with the observed shifts which in τ units are

<table>
<thead>
<tr>
<th></th>
<th>II</th>
<th>III</th>
<th>V</th>
<th>VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Y = H$</td>
<td>0.04</td>
<td>-0.09</td>
<td>-0.71</td>
<td>-0.57</td>
</tr>
</tbody>
</table>

Here, negative values are downfield with respect to positive. These, and the other measurements given below, were made on dilute solutions in carbon tetrachloride using cyclohexane as an internal reference. The shifts were converted to the tetramethylsilane τ scale by using a τ value of 8.51 for cyclohexane.

In the case of the corresponding ketones, $Y = CH_3$, prediction of the ring current shifts is complicated by rotation about the $C-CH_3$ bond, but similar principles hold. The relative chemical shifts, however, will be smaller within this series than in the case of the aldehydes because the protons of the $-CH_3$ group are further away from the elementary induced dipoles and they do not lie in the same plane as the aromatic system. The observed shifts of the $-CH_3$ absorption peaks in τ units are

<table>
<thead>
<tr>
<th></th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>VI</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Y = CH_3$</td>
<td>7.35</td>
<td>7.21</td>
<td>7.23</td>
<td>7.14</td>
<td>7.19</td>
</tr>
</tbody>
</table>

in qualitative agreement with the above arguments.

As an example of the use of these methods in structural determination, consider the position to be assigned to the $-CyO$ groups in an hydroxyanthraldehyde (A) and in an hydroxy-anthryl-methyl ketone (B) which melt at 167°C.
and 116°C respectively. The -OH proton line of A occurs at $\delta = -3.64$. This position is about 8.75 p.p.m. down-field from that expected3 for the -OH position in either 1-hydroxy, or 2-hydroxyanthracene ($\delta \approx 5.1$) and is at the position expected for the chelated system VII.

![VII](image)

in which the mobile bond order of the C=C bond is 0.74.3 Hence, it follows that the -OH and aldehyde group are chelated and that the chelated system must span the 1-2 bond in the anthracene nucleus. It can not span the 2-3 position, i.e. A is either VIII or IX.

![VIII](image) ![IX](image)

The ring current effects enable us to distinguish between these two structures. The observed position of the -CHO absorption peak, $\tau' = -0.87$, is in the range predicted for structure VIII. For structure IX, the -CHO τ' value is predicted to be about -0.1, which differs so greatly from experiment that VIII must be the correct structure. This conclusion supports a structural determination based upon chemical arguments.6,7

In a similar way, the \(-\text{OH}\) and \(-\text{CH}_3\) chemical shifts, \(\delta = -4.37\) and \(7.18\) p.p.m. respectively, show\(^3\) that \(B\) is \(X\).

![Chemical Structure]

Experimental

The samples and experimental procedure, with one exception, were the same in these experiments as described in an earlier report.\(^3\) The exception is the hydroxyanthraldehyde (\(A\)), the synthesis of which has been described elsewhere.\(^6,7\) Furthermore, we are indebted to Professor I. Moyer Hunsberger for furnishing the samples.
<table>
<thead>
<tr>
<th>No. Copies</th>
<th>Commanding Officer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Office of Naval Research Branch Office (Air Force)</td>
</tr>
<tr>
<td>1</td>
<td>Office of Scientific Research (SRC-E)</td>
</tr>
<tr>
<td>1</td>
<td>Branch Office (Commanding Officer)</td>
</tr>
<tr>
<td>1</td>
<td>Office of Naval Research Branch Office (Diamond Ordnance Fuze Laboratories)</td>
</tr>
<tr>
<td>1</td>
<td>Washington 25, D.C. (Attn: Technical Information Office Branch 012)</td>
</tr>
<tr>
<td>1</td>
<td>Office, Chief of Research and Development (Attn: Physical Sciences Division)</td>
</tr>
<tr>
<td>1</td>
<td>Office of Naval Research Branch Office (Chief, Bureau of Ships)</td>
</tr>
<tr>
<td>1</td>
<td>Department of the Navy (Attn: Code 342C)</td>
</tr>
<tr>
<td>2</td>
<td>Department of the Navy (Attn: Code 342C)</td>
</tr>
<tr>
<td>2</td>
<td>Code 425 (Chief of Naval Research)</td>
</tr>
<tr>
<td>1</td>
<td>Code 421 (Chief of Naval Research)</td>
</tr>
<tr>
<td>1</td>
<td>DDRandE Technical Library (ASTIA)</td>
</tr>
<tr>
<td>1</td>
<td>Arlington Hall Station (Attn: Code RRMA-3)</td>
</tr>
<tr>
<td>1</td>
<td>Arlington 12, Virginia</td>
</tr>
<tr>
<td>1</td>
<td>Department of the Army (Director of Research)</td>
</tr>
<tr>
<td>1</td>
<td>U. S. Army Signal Research and Development Laboratory (Fort Monmouth, New Jersey)</td>
</tr>
<tr>
<td>1</td>
<td>Naval Radiological Defense Laboratory (San Francisco 24, California)</td>
</tr>
<tr>
<td>1</td>
<td>Naval Ordnance Test Station (China Lake, California)</td>
</tr>
<tr>
<td>1</td>
<td>Commanding Officer (Attn: Head, Chemistry Division)</td>
</tr>
<tr>
<td>1</td>
<td>Army Research Office (Attn: Scientific Synthesis Office)</td>
</tr>
</tbody>
</table>

University of Illinois

Contract Nonr 1834(13)

NR 051-215
TECHNICAL REPORT DISTRIBUTION LIST

Brookhaven National Laboratory
Chemistry Department
Upton, New York (1)

Dr. H. E. Torrey
Department of Physics
Rutgers University
New Brunswick, New Jersey (1)

Atomic Energy Commission
Division of Research
Chemistry Programs
Washington 25, D.C. (1)

Dr. F. Bitter
Department of Physics
Massachusetts Institute of Technology
Cambridge 39, Massachusetts (1)

Atomic Energy Commission
Division of Technical Information
Extension
Post Office Box 62
Oak Ridge, Tennessee (1)

ONR Resident Representative
University of Illinois
605 S. Goodwin
Urbana, Illinois

U. S. Army Chemical Research and Development Laboratories
Technical Library
Army Chemical Center, Maryland (1)

Dr. M. S. Newman
Department of Chemistry
Ohio State University
Columbus, Ohio (1)

Office of Technical Services
Department of Commerce
Washington 25, D.C. (1)

Dr. Paul Bartlett
Department of Chemistry
Harvard University
Cambridge 38, Massachusetts (1)

Dr. S. Young Tyree, Jr.
Department of Chemistry
University of North Carolina
Chapel Hill, North Carolina (1)

Dr. Saul Winstein
Department of Chemistry
University of California
Los Angeles, California (1)

Dr. G. B. Kistiakowsky
Department of Chemistry
Harvard University
Cambridge 38, Massachusetts (1)

Dr. L. F. Hammett
Department of Chemistry
Columbia University
New York 27, New York (1)

Dr. G. E. Pake
Department of Physics
Stanford University
Palo Alto, California (1)

Dr. H. C. Brown
Department of Chemistry
Purdue University Research Foundation
Lafayette, Indiana (1)

Dr. E. M. Purcell
Department of Physics
Harvard University
Cambridge 38, Massachusetts (1)

Dr. J. D. Roberts
Department of Chemistry
California Institute of Technology
Pasadena, California (1)

Dr. F. Block
Department of Physics
Stanford University
Palo Alto, California (1)

Dr. R. W. Taft, Jr.
Department of Chemistry
Pennsylvania State University
University Park, Pennsylvania (1)

Dr. C. P. Slichter
Department of Physics
University of Illinois
Urbana, Illinois (1)

Commanding Officer
ONR Branch Office
495 Summer Street
Boston 10, Massachusetts
Attn: Dr. A. L. Powell (1)
TECHNICAL REPORT DISTRIBUTION LIST

Page 3

Dr. G. Barth-Wehrenalp, Director
Inorganic Research Department
Pennsalt Chemicals Corporation
Post Office Box 4388
Philadelphia 18, Pennsylvania

Dr. T. L. Heying
Olin Mathisson Chemical Corporation
275 Winchester Avenue
New Haven, Connecticut (1)

Dr. Dudley Williams
Department of Physics
Ohio State University
Columbus, Ohio (1)

Dr. Henry Freiser
Department of Chemistry
University of Arizona
Tucson, Arizona (1)

Dr. M. J. S. Dewar
Department of Chemistry
University of Chicago
Chicago 37, Illinois (1)

Dr. W. O. Milligan
Rice Institute
Post Office Box 189
Houston 1, Texas (1)

Dr. M. S. Cohen, Chief
Propellants Synthesis Section
Reaction Motors Division
Denville, New Jersey (1)

Dr. Roald Hoffman
Department of Chemistry
Harvard University
Cambridge 38, Massachusetts (1)

Dr. D. A. Brown
Department of Chemistry
University College
Dublin, Ireland (1)

Dr. Joyce J. Kaufman
RIAS
7212 Bellona Avenue
Baltimore 12, Maryland (1)

Monsanto Research Corporation
Everett Station
Boston 49, Massachusetts
Attn: Mr. K. Warren Easley (1)

Dr. B. B. Anex
Department of Chemistry
Yale University
New Haven, Connecticut (1)

Dr. A. M. Zwickel
Department of Chemistry
Clark University
Worcester, Massachusetts (1)

Dr. T. P. Onak
Department of Chemistry
Los Angeles State College
Los Angeles, California (1)