NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
NOTES ON DEVELOPMENT TYPE MATERIEL FUZE, PIBD, T278E8

Louis Richmond

15 April 1963

HARRY DIAMOND LABORATORIES
FORMERLY: DIAMOND ORDNANCE FUZE LABORATORIES
ARMY MATERIEL COMMAND
WASHINGTON 25, D.C.
MISSION

The mission of the Harry Diamond Laboratories is:

(1) To perform research and engineering on systems for detecting, locating, and evaluating targets; for accomplishing safing, arming, and munition control functions; and for providing initiation signals: these systems include, but are not limited to, radio and non-radio proximity fuzes, predictor-computer fuzes, electronic timers, electrically-initiated fuzes, and related items.

(2) To perform research and engineering in fluid amplification and fluid-actuated control systems.

(3) To perform research and engineering in instrumentation and measurement in support of the above.

(4) To perform research and engineering in order to achieve maximum immunity of systems to adverse influences, including countermeasures, nuclear radiation, battlefield conditions, and high-altitude and space environments.

(5) To perform research and engineering on materials, components, and subsystems in support of above.

(6) To conduct basic research in the physical sciences in support of the above.

(7) To provide consultative services to other Government agencies when requested.

(8) To carry out special projects lying within installation competence upon approval by the Director of Research and Development, Army Materiel Command.

(9) To maintain a high degree of competence in the application of the physical sciences to the solution of military problems.

The findings in this report are not to be construed as an official Department of the Army position.
NOTES ON DEVELOPMENT TYPE MATERIEL
FUZE, PIBD, T278E8

Louis Richmond

FOR THE COMMANDER:
Approved by

R. S. Hoff
Chief, Laboratory 400

These notes do not contain any copyrighted matter.
Qualified requesters may obtain copies of this report from ASTIA.
CONTENTS

ABSTRACT ... 5

1. INTRODUCTION .. 5

2. GENERAL DESCRIPTION ... 5
 2.1 Components .. 6
 2.1.1 Release Mechanism and Rotor Assembly 6
 2.1.2 Rotor Housing Assembly 6
 2.1.3 Aluminum Shield Assembly 7
 2.2 Method of Operation 7
 2.3 Characteristics .. 8

3. PREPARATION FOR USE ... 9

4. PRECAUTION IN USE, HANDLING AND STORAGE 9

5. REFERENCES .. 9
ABSTRACT

Fuze, Point Initiated, Base Detonating, T278E8 (M530A1) is described. The fuze is a modified M530 (T278E7), and is intended for use in the M371 90-mm recoilless HEAT cartridge. The T278E8 was developed to provide a minimum arming range of 30 feet for the M371 cartridge, as required by the military characteristics. The arming range provided by the M530 fuze is about 16 feet. The T278E8 fuze has been standardized as Fuze, PIBD, M530A1, Standard A for the M371 Cartridge.

1. INTRODUCTION

The development of Fuze, PIBD, T278E8 was initiated by a letter dated 1 June 1959 from Picatinny Arsenal to the Diamond Ordnance Fuze Laboratories. The objective of this development program was to increase the arming range of the M530 (T278E7) fuze from about 16 ft. to a minimum of 30 ft. when fired in the M371 90-mm recoilless HEAT cartridge. The 30-ft minimum arming range was specified in the OTCM for this cartridge (ref 1).

The M530 is an electromechanical base-mounted PIBD fuze (ref 2) that was standardized for use in the M371 in 1959. It consists essentially of a mechanical acceleration-sensitive arming system, an electrically initiated explosive train, and a mechanical graze-initiation mechanism. The fuze is electrically connected to a piezoelectric (lucky) power source mounted in the nose of the shell. (This piezoelectric element is not part of the fuze.) Upon nose impact, the piezoelectric element develops electrical energy to fire the electric detonator in the fuze. Upon grazing impact, an inertia-operated firing pin overcomes a creep spring and initiates a stab primer, which in turn initiates the electric detonator. The only essential difference between the M530 and the T278E8 (fig. 4) is in the delayed arming feature, which has been incorporated in the latter fuze.

The T278E8 fuze was developed specifically for use in the M371 cartridge whose 700-fps muzzle velocity is the lowest of its class of HEAT artillery ammunition. The fuze has not been tested in any other round. However, it should perform satisfactorily in similar HEAT ammunition, where the drag deceleration of the round does not exceed about 20 g. At higher levels of drag, frictional forces prevent reliable rotor arming.

The T278E8 fuze has been standardized as Fuze, PIBD, M530A1, Standard A for the M371 Cartridge per AMTC 642 dated 21 March 1963.

2. GENERAL DESCRIPTION

The T278E8 fuze (fig. 1 through 8), i.e., the base element, consists of three major subassemblies: (1) a release (arming) mechanism and rotor assembly, (2) a rotor housing assembly, and (3) an aluminum shield assembly. The rotor housing provides a mounting base for both the release mechanism and rotor assembly, and the aluminum shield assembly. The former
The electrical circuit consists of an insulated contact bushing with a screw connection to the piezoelectric lead wire on the fuze base, and a contact surface in the rotor cavity (fig. 6). Also included is a bleeder resistor (between the lead wire connection and rotor housing), which prevents accumulation of electrical energy in the otherwise open piezoelectric circuit.

2.1.3 Aluminum Shield Assembly

The aluminum shield is shown in figures 1 and 6. The shield provides for fuze detonator safety by confining the explosion of the detonator and primer if either is initiated when the fuze is unarmed, protects the fuze mechanism from contamination by foreign matter, and provides a housing for the tetryl lead and booster pellet in the forward end of the fuze.

2.2 Method of Operation

When the fuze is safe (unarmed), the rotor is restrained in a position such that the electric detonator is 90° out of line with the tetryl lead and booster in the shield assembly (fig. 7). In this position, the detonator is also out of line with the stab primer in the rotor housing. The electric detonator is electrically isolated from the piezoelectric power source, and is short-circuited by the metal rotor housing. The graze plunger is locked in the safe position by the boss on the rotor.

When the round is fired, sustained acceleration creates setback forces that act on the sequential-leaf setback release mechanism. With a minimum acceleration of 2500 to 3400 g sustained for a minimum of 3 milliseconds, the pivoted leaves are sequentially displaced by the setback forces. The third leaf on reaching its rearmost position is locked by the antireset spring latch, which prevents the leaf from bouncing back to the locking position.

Setback of the third leaf releases the rotor locking pin, thereby freeing the rotor. However, the rotor cannot begin to rotate toward the armed position until the firing acceleration has fallen to 25 to 50 g. At higher accelerations, the rotor seats in the rotor cavity and frictional forces between the rotor and cavity surfaces prevent rotation.

When the firing acceleration has fallen sufficiently, the rotor torsion spring turns the rotor until the rotor locking pin butts against the end of a slot in the inner bearing plate (approximately 270°). With the rotor in this position (fig. 6), the detonator is in the armed position in line with the tetryl lead and booster, and the blow-through hole in the rotor is aligned with the stab primer. Also, the spring-loaded contact plunger within the rotor makes contact with the insulated contact bushing in the rotor housing. This removes the detonator short-circuit and completes the electrical circuit to the piezoelectric element in the nose of the shell. The locking pin on the graze plunger becomes aligned with a slot in the rotor boss, and the plunger is then free to move forward in response to any shell
deceleration sufficiently large to overcome the 20- to 30-g creep spring. Alignment of the rotor thus mechanically and electrically arms the fuze.

Rotation of the rotor to the armed position is retarded by the arming delay mechanism. The time required for the rotor to turn from the safe to the armed position is dependent to some extent on the external ballistics (drag, spin) and temperature of the round. The average static rotor arming time, about 50 milliseconds, provides delayed arming of about 40 ft in the M371 round.

With the fuze armed and on nose impact with the target, the piezoelectric element generates an electrical impulse that is conducted to the T74 electric detonator through the insulated circuit. This impulse initiates the detonator, which in turn initiates the tetryl lead and booster. Upon grazing impact, deceleration of the round causes the graze plunger to compress the creep spring and initiate the stab primer. The primer detonation initiates the T74 detonator via the blow-through hole.

2.3 Characteristics

The Fuze, PIBD, T278E8 is a point-initiated, base-detonating fuze containing a graze-sensitive mechanism. The fuze is intended for use in the M371 fin-stabilized HEAT cartridge and has the following characteristics:

a. The fuze provides mechanical safety by maintaining the electric detonator in an out-of-line position in relation to the booster lead cup assembly until the fuze has armed.

b. The fuze provides electrical safety by maintaining an open circuit from the piezoelectric element to the detonator and by short-circuiting the detonator until the fuze has armed. Fuze electrical initiation on arming is prevented by a bleeder resistor that drains off any electrical energy generated in the piezoelectric circuit prior to or during firing of the round.

c. The fuze is jolt safe when tested in accordance with MIL-STD-300.

d. The fuze is jumble safe when tested in accordance with MIL-STD-301.

e. The fuze is drop safe when tested in accordance with MIL-STD-302 and MIL-STD-358.

f. The fuze is safe and operable when tested in accordance with MIL-STD-303 (Transportation-Vibration).

g. The fuze is detonator safe when tested in accordance with MIL-STD-315.

h. The fuze does not begin to arm until subjected to a setback force of at least 2500 g but will begin arming before setback forces reach
3400 g. The fuze does not complete arming as long as the firing acceleration is greater than 25 to 50 g. (The arming cycle may not be completed if drag deceleration is greater than about 25 g.)

i. The fuze when used in the M371 shell arms after the projectile has traveled about 35 to 50 ft from the muzzle of the M67 gun.

j. The fuze is not damaged when subjected to firing accelerations as high as 40,000 g.

k. The fuze contains 0.97 grains of tetryl in the lead charge and 114.5 grains of tetryl in the booster pellet.

l. The fuze is 1.963 in. (max) in length and 1.35 in. (max) in diameter.

3. PREPARATION FOR USE

The fuze is assembled to the round of ammunition prior to shipping for field use. No preparation of the fuze is necessary in the field.

4. PRECAUTION IN USE, HANDLING AND STORAGE

All precautions normally followed in the storage, shipment, handling, and use of high-explosive ammunition should be followed.

The ICC classification for the fuze when packed for interplant shipment is "Detonating Fuzes—Handle Carefully." The fuze should be stored in accordance with Ordnance Safety Manual, ORD M7-224.

The ICC classification and precautions in handling and storage of the fuze when assembled in a complete round are given in Notes on Development Type Materiel for the appropriate complete round.

5. REFERENCES

(1) OTCM 35040 dated 5 Nov 1952

Figure 1. T278E8 fuze, fully assembled.
Figure 2. ES lute (without shield).
Figure 3. T278E8 fuze, with arming delay mechanism removed.
Figure 5. T278E8 Fuze (exploded view)
Figure 6. Fuze, PIID, T278E8 (armed).
SECTION A-A

Figure 7. Rotor housing and release assembly (unarmed).
Figure 8. Sequential leaf setback release mechanism.
FUZE (BASE ELEMENT)

SHELL NOSE

Figure 9. Circuit diagram for fuze, FIBD, T278E8.
<table>
<thead>
<tr>
<th>IDENTITY</th>
<th>DWG.</th>
<th>DATE</th>
<th>COLUMN 1</th>
<th>DWG.</th>
<th>DATE</th>
<th>COLUMN 2</th>
<th>DWG.</th>
<th>DATE</th>
<th>COLUMN 3</th>
<th>DWG.</th>
<th>DATE</th>
<th>COLUMN 4</th>
<th>DWG.</th>
<th>DATE</th>
<th>COLUMN 5</th>
<th>DWG.</th>
<th>DATE</th>
<th>COLUMN 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A10404109</td>
<td>109040409</td>
<td>B10404099</td>
<td>109040405</td>
<td>C10904061</td>
<td>F-85443</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>A10404110</td>
<td>109040409</td>
<td>B10404099</td>
<td>109040405</td>
<td>C10904061</td>
<td>F-85443</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>B10404101</td>
<td>109040409</td>
<td>B10404099</td>
<td>109040405</td>
<td>C10904061</td>
<td>F-85443</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>A10404112</td>
<td>109040409</td>
<td>B10404099</td>
<td>109040405</td>
<td>C10904061</td>
<td>F-85443</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>A10404113</td>
<td>109040409</td>
<td>B10404099</td>
<td>109040405</td>
<td>C10904061</td>
<td>F-85443</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>A10404114</td>
<td>109040409</td>
<td>B10404099</td>
<td>109040405</td>
<td>C10904061</td>
<td>F-85443</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>A10404115</td>
<td>109040409</td>
<td>B10404099</td>
<td>109040405</td>
<td>C10904061</td>
<td>F-85443</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>A10404116</td>
<td>109040409</td>
<td>B10404099</td>
<td>109040405</td>
<td>C10904061</td>
<td>F-85443</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>A10404117</td>
<td>109040409</td>
<td>B10404099</td>
<td>109040405</td>
<td>C10904061</td>
<td>F-85443</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>A10404118</td>
<td>109040409</td>
<td>B10404099</td>
<td>109040405</td>
<td>C10904061</td>
<td>F-85443</td>
<td></td>
</tr>
</tbody>
</table>

Figure 10. List of drawings, T278E8 fuze.
Figure 10. List of drawings, T278E8 fuze.
<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>NOMENCLATURE - DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>10404075</td>
<td>COVER, BOOSTER</td>
</tr>
<tr>
<td>10404077</td>
<td>PELLET, BOOSTER</td>
</tr>
<tr>
<td>10404070</td>
<td>LEAD CUP ASSEMBLY</td>
</tr>
<tr>
<td>10404073</td>
<td>COP, LEAD</td>
</tr>
<tr>
<td>10404011</td>
<td>CHARGE</td>
</tr>
<tr>
<td>10980594</td>
<td>MOTOR HOUSING AND SHIELD ASSEMBLY</td>
</tr>
<tr>
<td>10404107</td>
<td>SHIELD (MACHINED)</td>
</tr>
<tr>
<td>10404106</td>
<td>SHIELD, BLANK</td>
</tr>
<tr>
<td>10980592</td>
<td>ROTOR HOUSING AND RELEASE ASSEMBLY</td>
</tr>
<tr>
<td>10404091</td>
<td>SCREW</td>
</tr>
<tr>
<td>10404112</td>
<td>LOCTITE</td>
</tr>
<tr>
<td>10980597</td>
<td>HOUSING ASSEMBLY</td>
</tr>
<tr>
<td>10404089</td>
<td>RESISTOR, BLEEDER</td>
</tr>
<tr>
<td>10404091</td>
<td>INSULATOR, RESISTOR</td>
</tr>
<tr>
<td>10404097</td>
<td>WASHER, CONDUCTING</td>
</tr>
<tr>
<td>10980599</td>
<td>HOUSING CONTACT AND PIN ASSEMBLY</td>
</tr>
<tr>
<td>10404088</td>
<td>HOUSING CONTACT ASSEMBLY</td>
</tr>
<tr>
<td>10404100</td>
<td>BUSHING, CONTACT</td>
</tr>
<tr>
<td>10980599</td>
<td>HOUSING, MOTOR</td>
</tr>
<tr>
<td>10404084</td>
<td>ROLL PIN</td>
</tr>
<tr>
<td>10404105</td>
<td>SCREW, TERMINAL</td>
</tr>
<tr>
<td>10404069</td>
<td>GRAZE PLUNGER ASSEMBLY</td>
</tr>
<tr>
<td>10404082</td>
<td>PLUNGER</td>
</tr>
<tr>
<td>10404083</td>
<td>PIN, GRAZE</td>
</tr>
<tr>
<td>10404094</td>
<td>SPRING, CHEEK</td>
</tr>
<tr>
<td>02000</td>
<td>PLUNGER</td>
</tr>
<tr>
<td>10404099</td>
<td>SPACER, BACKUP</td>
</tr>
<tr>
<td>10404074</td>
<td>CLIP, SPEED</td>
</tr>
<tr>
<td>10980591</td>
<td>RELEASE MECHANISM AND ROTOR ASSEMBLY</td>
</tr>
<tr>
<td>10980598</td>
<td>MOTOR ASSEMBLY</td>
</tr>
<tr>
<td>10980596</td>
<td>MOTOR AND PIN ASSEMBLY</td>
</tr>
<tr>
<td>10404058</td>
<td>PIN, MOTOR</td>
</tr>
<tr>
<td>10980590</td>
<td>ROTOR</td>
</tr>
<tr>
<td>10404067</td>
<td>DETONATOR AND CONTACT ASSEMBLY</td>
</tr>
<tr>
<td>85443</td>
<td>7/4 DETONATOR</td>
</tr>
<tr>
<td>10404077</td>
<td>HOUSING, CONTACT</td>
</tr>
<tr>
<td>10404018</td>
<td>INSULATOR, CONTACT</td>
</tr>
<tr>
<td>10404101</td>
<td>CONTACT</td>
</tr>
<tr>
<td>10404093</td>
<td>SPRING, CONTACT</td>
</tr>
<tr>
<td>10404078</td>
<td>SPEED NUT</td>
</tr>
<tr>
<td>10980593</td>
<td>RELEASE MECHANISM ASSEMBLY</td>
</tr>
</tbody>
</table>

Figure 11. List of parts, T278E8 fuze.
Figure 12. List of parts, T27888 fuze.
DISTRIBUTION

Commanding General
U.S. Army Materiel Command
Washington 25, D. C.
Attn: AMCRD-DE (2 copies)
Attn: AMCPP-PP (2 copies)
Attn: AMCMR-RE (2 copies)

Commanding General
U.S. Army Munitions Command
Dover, New Jersey
Attn: AMSMU-AS (2 copies)
AMSMU-LC
AMCMU-LM

Commanding Officer
Plentinly Arsenal
Dover, New Jersey
Attn: SMUPA-DD
Attn: SMUPA-DR2
Attn: SMUPA-DR3 (5 copies)
Attn: SMUPA-DP
Attn: SMUPA-DC3 (2 copies)
Attn: SMUPA-DC9 (2 copies)
Attn: SMUPA-DC8
Attn: SMUPA-VAS (3 copies)
Attn: SMUPA-C
Attn: SMUPA-N (2 copies)
Attn: SMUPA-W (3 copies)

Commanding Officer
Frankford Arsenal
Philadelphia, Pennsylvania
Attn: SMUPA (2 copies)

Commanding Officer
U.S. Army Ammunition Procurement & Supply Agency
Joliet, Illinois
Attn: SMUPA-X (5 copies)

Commanding General
U.S. Army Test and Evaluation Command
Aberdeen Proving Ground, Maryland
Attn: AMSTE (3 copies)

Commanding Officer
Aberdeen Proving Ground
Aberdeen, Maryland
Attn: Development Proof Service, STEAP (3 copies)
Technical Library, Bldg. 315
President
U.S. Army Arctic Test Board
Fort Greely, Alaska
 Attn: STEBE

President
U.S. Army Armor Board
Fort Knox, Kentucky
 Attn: STEBB

President
U.S. Army Artillery Board
Fort Sill, Oklahoma
 Attn: STEBA

President
U.S. Army Infantry Board
Fort Benning, Georgia
 Attn: STEBC (3 copies)

Commanding Officer
Yuma Test Station
Yuma Test Station, Arizona
 Attn: STEYT

Commanding General
U.S. Army Weapons Command
Rock Island, Illinois
 Attn: AMSWE

Commanding Officer
Raritan Arsenal
Metuchen, New Jersey
 Attn: SSMRA (2 copies)

Commanding Officer
Savanna Ordnance Depot
Savanna, Illinois
 Attn: Director, Ammo Inspector's School

Chairman
U.S. Army Maintenance Board
Fort Knox, Kentucky
 Attn: SSAMB

Commanding Officer
Rossford Army Depot
Toledo, Ohio
 Attn: SSMRO
U.S. Naval Ordnance Disposal Facility
U.S. Naval Propellant Plant
Indian Head, Maryland
Attn: Technical Assistance and Liaison Branch

U.S. Naval Explosive Ordnance Disposal School
U.S. Naval Propellant Plant
Indian Head, Maryland
Attn: U.S. Army Liaison Officer

Armed Services Explosives Safety Board
Department of Defense
Room 2075, Bldg. T7 Gravely Point
Washington 25, D. C.

Armed Services Technical Information Agency
Arlington Hall Station
Arlington 12, Virginia
Attn: TIPDR (10 copies)

University of Pittsburgh
Ordnance Research Staff
620 Dupont Circle Bldg
1346 Connecticut Avenue, N. W.
Washington 6, D. C.
Attn: Mr. Henry Rosenthal

Horton, B. M./McEvoy, R. W., Lt. Col
Apstein, M./Gerwin, H. L./Guarino, P. A./Kalmus, H. P.
Spates, J. E./Schwenk, C. C.
Hardin, C. D., Lab 100
Sommer, H., Lab 200
Hatcher, R. D., Lab 300
Hoff, R. S., Lab 400
Nilsen, H. M., Lab 500
Flyer, I. N., Lab 600
Campagna, J. H./Apolenis, C. J., Div 700
DeMassi, R., Div 800
Landis, P. E., Lab 900
Seaton, J. W., 260
Richmond, L., 420
Fisher, E., 420
Piper, W., 450
Tokarcik, J. W., 710
DeWaal, W. R., 710
Technical Reports Unit, 800
HDL Library (5 copies)

(Two pages of abstract cards follow.)
REMOVAL OF EACH CARD WILL BE NOTED ON INSIDE BACK COVER, AND REMOVED CARDS WILL BE TREATED AS REQUIRED BY THEIR SECURITY CLASSIFICATION.