NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
FLOW PAST A PARTIALLY CAVITATING CASCADE OF FLAT PLATE HYDROFOILS

by

R. B. Wade

Division of Engineering and Applied Science
CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

Report No. E-79-4

January 1963
FLOW PAST A PARTIALLY CAVITATING CASCADE
OF FLAT PLATE HYDROFOILS

by

R. B. Wade

Division of Engineering & Applied Science
California Institute of Technology
Pasadena, California

Report No. E-79-4
January 1963

Approved by:
A. J. Acosta
A, B, C - constants
a - modulus of \(\mathcal{J}_2 \), defined by equation (10)
c - chord length
\(\ell \) - length of cavity in \(\xi \)-plane
\(\ell_c \) - length of cavity in \(z \)-plane
c_p - pressure coefficient, equation (24)
C_L - lift coefficient, equation (24a)
i - \(\sqrt{-1} \)
K - cavitation number, equation (1)
p - pressure
t - semi-circle plane
u - velocity component in \(x \)-direction
v - velocity component in \(y \)-direction
V - modulus of velocity vector
w - \(u - iv \), complex velocity function
x, y - coordinates of physical plane
z - \(x + iy \)
\(\alpha \) - flow angle with respect to chord
\(\beta \) - stagger angle
\(\Psi \) - defined by equation (10)
\(\Psi_1, n_1 \) - defined by equation (18c)
\(\Psi_2, n_2 \) - defined by equation (19c)
\(\zeta \) - transformation plane
\(\sigma \) - solidity \(c/2\pi \)
()_1 - denotes upstream conditions
\((\cdot)_2 \) - denotes downstream conditions

\((\cdot)_m \) - mean conditions

\((\cdot)' \) - perturbation quantities

\((\cdot) \) - complex conjugate quantity
Flow Past a Partially Cavitating Cascade of Flat Plate Hydrofoils

1. Introduction

This report deals with the non-viscous, steady cavitating flow through a cascade of flat plate hydrofoils in two dimensions. The usual assumptions of incompressibility and irrotationality are made.

The motivation for this investigation is the present day interest in the high speed performance of lifting surfaces, such as in hydroplane boats and the behavior of propellers operating under cavitating conditions. A further area of interest is that of turbomachinery. The demand for smaller, more compact pumps and turbines, for any given performance, necessitates operation at higher speeds giving rise to cavitation conditions. Hence the problem at hand is not only of theoretical interest but is of practical importance.

The problem of the fully wetted cascade has been extensively treated, and can be found, for example, in a paper of Garrick (1)* and in standard texts such as Robinson and Laurmann (2). The case of cavitating flow through a cascade of flat plates with infinitely long cavities was first treated by Betz and Petersohn using the classical hodograph method for free streamline flow attributed to Helmholtz.

* Numbers in parentheses refer to the references at the end of the text.
In dealing with cavitating cascade flows, hodograph methods became somewhat unwieldy, and this has led to the use of linearized methods for solving these problems. This method, first used by Tulin\(^{(3)}\) assumes that the cavity-body system forms a slender body and that a perturbation technique similar to that used in thin airfoil theory may be used. The use of the linearized method leads to the solution of a mixed boundary value problem. The use and application of this method is well illustrated by Parkin.\(^{(4)}\)

The first published paper on linearized cavity flows through cascades, was by Cohen and Sutherland.\(^{(5)}\) They dealt with the problem of arbitrarily shaped hydrofoils with finite cavities, longer than the chord length. However, only results for the flat plate are presented in their paper. Subsequently, Acosta and Hollander\(^{(6)}\) dealt with the partial cavitation in a cascade of semi-infinite flat plates. This problem was recently treated using a hodograph method by Stripling and Acosta\(^{(7)}\) but no formal comparison was made between the two methods. Acosta\(^{(8)}\) also considered the case of the fully choked cascade of circular arc hydrofoils. A comparison was made with the results of the linearized method with those obtained by Betz and Petersohn: generally, a good agreement was found.

In the region where the cavity is less than the chord length, no results have been published to the knowledge of the author, for cascade flows. This case would provide a complete picture as to the behavior of these flows over the entire range from the fully wetted to the fully choked conditions.
II. Formulation of Problem

As illustrated in Figure 1, the cascade consists of an infinite array of flat plate hydrofoils having a stagger angle β. The chord length of each blade is c and the spacing of the hydrofoils in the direction of the stagger angle, is taken as 2π. Hence the solidity, $\sigma = c/2\pi$.

The flow approaches the cascade with velocity V_1 at an angle of attack α_1. The flow is turned by the cascade so that far downstream the flow velocity V_2 is at an angle α_2 to the blade chord. The cavities spring from the leading edge and terminate on the upper surface of each hydrofoil. In keeping with the linearized theory the thickness of the cavity is assumed small compared with the blade spacing 2π. The boundary conditions on the free streamline of the cavity are then applied along the real axis, as are the conditions on the wetted surface of the hydrofoils.

The velocity field is now considered as a perturbation about the velocity V_1. Although, in the neighborhood of the cascade a more natural characteristic velocity would be the vector mean velocity V_m, it is found more convenient to adopt V_1, as V_m is undetermined a priori, since it depends on V_2. In the calculation of the lift coefficient, however, the angle which the vector mean V_m makes with the blades, viz., α_m, is used so as to bring it in line with fully wetted cascade flows.

The governing parameter in cavity flows is the cavitation number K defined as

$$K = \frac{p_1 - p_c}{\frac{1}{2} \rho V_1^2}$$

(1)
where p_1 is the pressure at upstream infinity and p_c is the cavity pressure, which is a constant. Since the velocity is defined at any point as

$$V = (u, v) = (V_1 + u', v')$$

where u', v' are perturbation components assumed small, compared to V_1 we obtain by the use of Bernoulli's equation

$$\frac{V^2}{K} = \frac{V_1^2}{V_1} - 1$$

However, neglecting the squares of u', v' compared with V_1^2, this becomes

$$K = \frac{2u_c'}{V_1}$$

$$u_c' = \frac{KV_1}{2}$$

On the wetted portion of the hydrofoils, $v=0$, i.e., there is no flow through the blades. A further condition that has to be met, is the closure condition which requires that the cavity-body system form a closed body. This condition can be expressed as

$$\oint dy = 0$$

The above conditions, together with the requirement that the velocity be finite at the trailing edge, enable a unique solution for the problem to be determined.

Hence the conditions to be satisfied are:

(a) $v = 0$ on the wetted portion of hydrofoil

(b) $u_c = V_1(1+ \frac{K}{2})$ on the cavity

(c) $V = V_1e^{-i\alpha}$ at upstream infinity
(d) the closure condition, viz.,
\[\oint \text{body} \, dy = 0 \]

(e) \(V \) is finite at the trailing edge.

These conditions are sufficient to determine the velocity function at every point including the downstream conditions where \(V = V_2 e^{\alpha_2} \).

Before proceeding to solve the boundary value problem we derive the following simple relations from continuity considerations. The velocity triangle is as follows

From this diagram we obtain
\[V_m \sin(\alpha_m + \beta) = \frac{1}{2} \left[V_1 \sin(\alpha_1 + \beta) + V_2 \sin(\alpha_2 + \beta) \right] \]

\[V_m \cos(\alpha_m + \beta) = V_1 \cos(\alpha_1 + \beta) = V_2 \cos(\alpha_2 + \beta) \quad (4) \]

from which we get
\[\tan(\alpha_m + \beta) = \frac{1}{2} \left[\tan(\alpha_1 + \beta) + \tan(\alpha_2 + \beta) \right] \quad (5) \]
III. Transformation Functions

Consider the transformation function

\[z = e^{i\theta} \ln \frac{1 - \frac{1}{\zeta_1}}{1 - \frac{1}{\zeta_2}} + e^{i\theta} \ln \frac{1 - \frac{1}{\zeta_1}}{1 - \frac{1}{\zeta_2}} \]
(6)

This function maps the multiple-connected region in the \(z \)-plane onto the \(\zeta \)-plane, as shown in Figures 2 and 3. The function has branch points at \(\zeta_1 \) and \(\zeta_2 \) in the \(\zeta \)-plane, corresponding to the points \(z = \pm \infty \), respectively. There is a branch cut between \(\zeta_1 \) and \(\zeta_2 \). Hence when either point is encircled once, the argument of \(z \) changes by \(\pm 2\pi e^{i(\pi/2 - \theta)} \). The sign depends on whether the branch point is encircled clockwise or counter-clockwise. Each Riemann sheet of the \(\zeta \)-plane corresponds to the flow region over a different hydrofoil. Since the flow is periodic, however, the function is continuous across the cut.

The point \(\zeta = 0 \) corresponds to the point \(z = 0 \), as seen from equation (6). Further, when \(\zeta \) is real, \(z \) must also be real, as it consists of the sum of complex conjugates. When \(\zeta \) tends to infinity, we have

\[z \to e^{-i\theta} \ln \frac{\zeta_2}{\zeta_1} + e^{i\theta} \ln \frac{\zeta_2}{\zeta_1} \]
(7)

which is a real number.

Since \(\zeta = 0 \) is a singular point of the transformation, \(dz/d\zeta = 0 \) at \(\zeta = 0 \), i.e.,
If we require that the trailing edge of the hydrofoil map into the point at infinity, then we must have $dz/d\xi = 0$ at $\xi = \infty$. However,

$$\begin{align*}
\frac{dz}{d\xi} &= \frac{1}{\xi^3} \quad \text{at} \quad \xi \to \infty
\end{align*}$$

This condition therefore gives

$$e^{-i\beta} \left(\frac{\zeta_1 - \zeta_2}{\zeta_1 \zeta_2} \right) + e^{i\beta} \left(\frac{\bar{\zeta}_1 - \bar{\zeta}_2}{\zeta_1 \zeta_2} \right) = 0$$

(8)

Now let

$$
\zeta_1 = r_1 e^{i\phi_1} = r_1 e^{i\left(\frac{\pi}{2} - \phi_1\right)}
$$

$$
\zeta_2 = r_2 e^{i\phi_2} = r_2 e^{i\left(\frac{\pi}{2} - \phi_2\right)}
$$

so that

$$
\phi_1 + \phi_2 = \pi - (\phi_1 - \phi_2)
$$

$$
\phi_1 - \phi_2 = (\phi_1 + \phi_2)
$$

With this notation, equations (8) and (9) reduce to

$$
\frac{r_1}{r_2} = \frac{\cos\left(\frac{\pi}{2} + \beta + \phi_1\right)}{\cos\left(\frac{\pi}{2} - \beta - \phi_2\right)}
$$

(8a)

$$
\frac{r_1}{r_2} = \frac{\cos\left(\frac{\pi}{2} - \beta + \phi_2\right)}{\cos\left(\frac{\pi}{2} - \beta - \phi_1\right)}
$$

(9a)
For these two equations to be compatible, we take $\varphi_1 = \varphi_2 = \varphi$; hence

\[\begin{align*}
\varphi_1 + \varphi_2 &= \pi \\
\varphi_1 - \varphi_2 &= -2\varphi
\end{align*} \]

With these values, either equation (8a) or (9a) provides an equation for r_1/r_2. Since the ratio of the moduli is the unknown, we are free to fix one of the moduli arbitrarily. Hence, we let $|\zeta_1| = r_1 = 1$ and $\zeta_2 = r_2 = a$, where $a > 1$. Then from either (8a) or (9a), we get

\[\tan \varphi = \frac{a-1}{a+1} \tan \beta \tag{10} \]

The transformation is now completely specified.

Since the trailing edge corresponds to the point at infinity, we get from equation (7)

\[c = 2 \cos \beta \ln a + 4\varphi \sin \beta \tag{11} \]

and hence the solidity σ is given by

\[\sigma = \frac{1}{\pi} \cos \beta \ln a + \frac{2\varphi}{\pi} \sin \beta \tag{12} \]

The point $z = \ell_c$ corresponding to the end of the cavity is mapped into a point on the positive real axis in the ζ-plane, $\zeta = \ell$. Thus, using the above notation together with equation (6), we get

\[\ell_c = 4 \cos \beta \ln \left[\frac{n_1}{n_2} \right] + 2 \sin \beta \, \gamma \tag{13} \]

where

\[\begin{align*}
n_1^4 &= 1 + \ell^2 - 2\ell \sin \varphi \\
n_2^4 &= 1 + \frac{\ell^2}{a^2} + 2 \frac{\ell}{a} \sin \varphi \\
\gamma &= \tan^{-1} \left[\frac{(a-1)\ell \cos \varphi + \ell^2 \sin 2\varphi}{a-(a-1)\ell \sin \varphi + \ell^2 \cos 2\varphi} \right]
\end{align*} \]
We now transform the upper half \mathcal{S}-plane into the half circle t-plane, Figure 4. To achieve this, we use the well known Joukowski transformation in the following form

$$(\zeta - \frac{4}{t}) = \frac{4}{t} \left(t + \frac{1}{t} \right)$$

In the t-plane the semi unit circle represents the constant pressure cavity surface and the real axis outside the unit circle represents the wetted portions of the hydrofoil. The leading edge is at the point $t = -1$, and the trailing edge at $t = \infty$.

The t-plane is used, since the velocity function for the given boundary conditions shown in Figure 4 can be written down by inspection.

IV. Solution of the Boundary Value Problem

The velocity function

$$w = u - iv = \frac{A}{t+1} + \frac{B}{t-1} + C$$

where A, B, and C are real constants, satisfies the boundary conditions for suitable values of A, B and C. This function corresponds to sources (or sinks) placed at the leading edge and at the end of the cavity. We now apply conditions (a) - (d) from page 4.

On the cavity, viz., $t = e^{i\theta}$, $(u_c, v_c) = (V_1 + u_c', v_c')$, therefore

$$u_c - iv_c = \frac{A}{2} \left[1 - i \tan \frac{\theta}{2} \right] - i \frac{B}{2} \left[\cot \frac{\theta}{2} - i \right] + C$$

hence

$$u_c = \frac{A-B}{2} + C$$

but

$$u_c = V_1 (1 + \frac{K}{2})$$
thus

$$V_1(1 + \frac{K}{L}) = \frac{A-B}{2} + C \tag{16}$$

Condition (a) is satisfied by equation (15) since when t is real, $v=0$. Further, condition (e) is obviously satisfied.

To apply the remaining conditions, it is more convenient to transform equation (15) back into the ζ-plane, by use of the transformation function (14). Inverting equation (14) we get

$$t = \frac{2}{\xi} \left[(\zeta - \frac{A}{2}) + \sqrt{\zeta(z-\xi)} \right]$$

The positive root is taken because t tends to infinity as ζ tends to infinity. On substitution of this expression into equation (15), one obtains

$$w(\zeta) = \frac{A-B}{2} + C + \frac{B}{\xi} \sqrt{\frac{\zeta}{z-\xi}} - \frac{A}{2} \frac{\xi-z}{\xi} \tag{17}$$

Now

$$w(\xi) = V_1 e^{-i\alpha_1}$$

Applying this condition to equation (17) and separating the resulting expression into real and imaginary parts, gives

$$V_1 \cos \alpha_1 = \left[\frac{A-B}{2} + C \right] + \frac{\cos \frac{V_1}{2}}{2} \left[\frac{B}{n_1} - A n_1 \right] \tag{18a}$$

$$V_1 \sin \alpha_1 = \frac{\sin \frac{V_1}{2}}{2} \left[\frac{B}{n_1} + A n_1 \right] \tag{18b}$$

where

$$V_1 = \tan^{-1} \frac{L \cos \varphi}{1-L \sin \varphi} \tag{18c}$$

$$n_1^4 = 1 + \frac{L^2}{2} - 2L \sin \varphi$$

Now, applying the condition

$$w(\zeta_2) = V_2 e^{-i\alpha_2}$$
we get

\[V_2 \cos \alpha_2 = \left[\frac{A-B}{2} + C \right] + \frac{\cos \varphi_2}{2} \left[\frac{B}{n_2} + An_2 \right] \]
\[V_2 \sin \alpha_2 = \frac{\sin \varphi_2}{2} \left[\frac{B}{n_2} + An_2 \right] \]
(19a, 19b)

where

\[\varphi_2 = \tan^{-1} \left(\frac{L \cos \varphi}{a + L \sin \varphi} \right) \]
\[n_2^2 = 1 + \frac{L^2}{a^2} + 2L/a \sin \varphi \]
(19c)

We finally have the closure condition, viz.,

\[\oint_{\text{body}} dy = 0 \]

which reduces to

\[\text{Im} \left(\oint_{\text{body}} \frac{1}{V_1} \oint_{\text{body}} w(z) dz \right) = 0 \]

Since \(w(z) \) is an analytic function in the flow region around the hydrofoils, we can deform the contour in the \(z \)-plane to the contour \(\Gamma \) shown in Figure 5. Then, symbolically we have

\[\oint_{\Gamma} w(z) dz = \oint_{\text{body}} + \oint_A + \oint_E + \lim_{\varepsilon_1 \to 0} \oint_{\varepsilon_1} + \lim_{\varepsilon_2 \to 0} \oint_{\varepsilon_2} w dz = 0 \]

The contributions from the other parts of the contour cancel due to the periodicity of \(w(z) \), while the contributions from the last two integrals in the above expression, are zero. Now
\[\int_{H}^{A} w(z)dz = 2\pi V_1 ie^{-i(\alpha_1 + \beta)} \]

\[\int_{E}^{D} w(z)dz = -2\pi V_2 ie^{-i(\alpha_2 + \beta)} \]

\[
\text{Im pt } \frac{1}{V_1} \oint w(z)dz = 2\pi \frac{V}{V_1} \left[V_2 \cos(\alpha_2 + \beta) - V_1 \cos(\alpha_1 + \beta) \right] = 0
\]

hence

\[V_1 \cos(\alpha_1 + \beta) = V_2 \cos(\alpha_2 + \beta) \] (20)

This is the same result as already obtained by continuity considerations in equation (4). Finally we have the following equations to solve:

\[\frac{A-B}{2} + C = V_1(1 + \frac{K}{Z}) \]

\[V_1 \cos \alpha_1 = \frac{A-B}{2} + C + \frac{\cos \frac{\psi}{2}}{2} \left[\frac{B}{n_1} - An_1 \right] \]

\[V_1 \sin \alpha_1 = \frac{\sin \frac{\psi}{2}}{2} \left[\frac{B}{n_1} + An_1 \right] \]

\[V_2 \cos \alpha_2 = \frac{A-B}{2} + C + \frac{\cos \frac{\psi}{2}}{2} \left[\frac{B}{n_2} - An_2 \right] \]

\[V_2 \sin \alpha_2 = \frac{\sin \frac{\psi}{2}}{2} \left[\frac{B}{n_2} + An_2 \right] \]

\[V_1 \cos(\alpha_1 + \beta) = V_2 \cos(\alpha_2 + \beta) \]

After considerable manipulation these equations reduce to the following
\[(1 + \frac{K}{2}) = \cos \alpha_1 + \frac{F}{D} \sin \alpha_1 \tag{21} \]

\[
\tan \alpha_2 = \frac{E}{D(1 + \frac{K}{2})} + \frac{\sin \alpha_1}{\sin \alpha_2} \tag{22} \]

\[
\frac{V_2}{V_1} = \frac{E}{D} \frac{\sin \alpha_1}{\sin \alpha_2} \tag{23} \]

where
\[D = \left[\frac{n_1}{n_2} + \frac{n_2}{n_1} \right] \sin \frac{\gamma_1}{2} \cos \frac{\gamma_2}{2} - \sin \gamma_1 \left[\frac{n_1}{n_2} - \frac{n_2}{n_1} \right] \sin \frac{\gamma_1}{2} \sin \frac{\gamma_2}{2} \tan \beta \]

\[E = \sin \gamma_2 \left[\frac{n_1}{n_2} + \frac{n_2}{n_1} \right] \cos \frac{\gamma_1}{2} \sin \frac{\gamma_2}{2} - \left[\frac{n_1}{n_2} - \frac{n_2}{n_1} \right] \sin \frac{\gamma_1}{2} \sin \frac{\gamma_2}{2} \tan \beta \]

\[F = \cos \gamma_1 \left[\frac{n_1}{n_2} - \frac{n_2}{n_1} \right] \cos \frac{\gamma_1}{2} \cos \frac{\gamma_2}{2} + \sin \gamma_1 \tan \beta \left[\frac{n_1}{n_2} + \frac{n_2}{n_1} \right] \cos \frac{\gamma_1}{2} \sin \frac{\gamma_2}{2} \tan \beta \]

\[G = \sin \gamma_2 \tan \beta \left[\frac{n_1}{n_2} - \frac{n_2}{n_1} \right] \cos \frac{\gamma_1}{2} \cos \frac{\gamma_2}{2} - \left[\frac{n_1}{n_2} + \frac{n_2}{n_1} \right] \sin \frac{\gamma_1}{2} \cos \frac{\gamma_2}{2} \tan \beta \]

Equation (21) gives us a relation between the cavitation number and the cavity length \(L_C\). If we consider the limit as the solidity tends to infinity, this equation reduces to the expression obtained by Acosta and Hollander, \(^6\) for the case of semi-infinite flat plates. Further details are given in Appendix 1.

We now calculate the lift force acting on the hydrofoil. As mentioned previously, we will here adopt a slightly different perturbation procedure, so that a comparison may be made with the fully wetted case. We use the vector mean velocity \(V_m\) as reference velocity.

The element of force acting on the blade is
\[dF = (p-p_m)dx \]

\[\therefore \quad F = \int_{\text{body}} (p-p_m)dx \]

Defining the pressure coefficient \(c_p \) as

\[c_p = \frac{p-p_m}{\frac{1}{2} \rho V_m^2} \]

and the lift coefficient as

\[C_L = \frac{F}{\frac{1}{2} \rho V_m^2} \]

we obtain

\[C_L = \frac{1}{c} \int_{\text{body}} c_p \, dx \]

Using Bernoulli's equation this becomes

\[C_L = -\frac{1}{c} \int_{\text{body}} \frac{2}{V_m} (u-V_m) \, dx \]

which reduces to

\[C_L = -\frac{2}{c V_m} \text{Re} \, pt \int_{\text{body}} w(z) \, dz \]

on the body. Carrying out the indicated procedure in an identical way as previously performed for the closure condition we obtain

\[C_L = \frac{2}{c V_m} \left[V_1 \sin(\alpha_1 + \phi) - V_2 \sin(\alpha_2 + \phi) \right] \]

By the use of equations (5), (20) and (23), we can eliminate \(\alpha_1 \) and \(\alpha_2 \) in the above expression, and deduce the following:

\[C_L = \frac{4}{c} \frac{1}{\cos \phi} \left[\frac{D}{E - 1} \right] \sin \alpha_m \]

(25)
As \(D, E \) are functions of \(\ell \), the cavity length in the \(\gamma \)-plane, this expression can be used to obtain the limiting case for the fully wetted cascade, i.e., when \(\ell \) tends to zero. This is carried out in Appendix II. The result reduces to that of the well known, fully wetted solution, viz.,

\[
C_L = \frac{4}{\sigma} \frac{1}{\cos \beta} \left[\frac{a-1}{a+1} \right] \sin \alpha_m
\]

(26)

A further limiting assumption in the linearized theory is that the angle of attack \(\alpha_1 \), is small. If second order powers of \(\alpha \) are neglected, equations (21), (22), (23), and (24) reduce to

\[
\frac{K}{2\alpha_1} = \frac{F}{D}
\]

(21a)

\[
\alpha_2 = \frac{E}{G + \frac{D}{\alpha_1} (1 + \frac{K}{2})}
\]

(22a)

\[
V_2/V_1 = \frac{E}{D} \cdot \frac{\alpha_1}{\alpha_2}
\]

(23a)

\[
C_L = \frac{4}{\sigma} \frac{1}{\cos \beta} \left[\frac{\frac{D}{E} - 1}{\frac{D}{E} + 1} \right] \alpha_m
\]

(25a)

From these equations, the results shown in Figures 6 - 28 were obtained.

V. Computational Procedure

The numerical calculations were conducted on a computer and the general method of computation is outlined below.

For a given cascade geometry, viz., \(\sigma \) and \(\beta \), the value of \(a \) and \(\sigma \) were determined by the simultaneous numerical solution of equations (10) and (12). With these values, the functions \(D, E, F, \) and \(G \) were evaluated, for values of \(\ell \), ranging from zero to
approximately two hundred; this latter figure giving a value of 0.99 for L_c/c. The ratio L_c/c can be found from equation (13). Having determined these quantities, the values of $K/2\alpha_1$, α_2, V_2/V_1 and C_L are found for various angles of attack α_1. The process is repeated for various stagger angles β, holding σ constant. This final parameter σ is then varied and the above procedure repeated. The range of values considered is given below in Table 1.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solidity</td>
<td>0.25 to 1.25</td>
</tr>
<tr>
<td>Stagger angle</td>
<td>-75° to +75°</td>
</tr>
<tr>
<td>Angle of attack</td>
<td>1° to 6°</td>
</tr>
</tbody>
</table>

Table 1

The Fortran program used in the computation of the results is given in Appendix III. This program is incorporated so that, if required, the data may be extended for other values of the parameters.

The data cards for the program have a format as given by statements 14 and 15. Statements 133 through 100 give the numerical method adopted for the simultaneous solution of equations (10) and (12) to obtain a and ϕ. The remainder of the program deals with the evaluation of the required data.

It should be noted that for the case of $\beta = 0$, the numerical solution adopted for the solution of equations (10) and (12) breaks down, and the program has to be slightly modified to accommodate this case. For $\beta = 0$, the above equations can be solved explicitly, hence statements 133 through 100 may be omitted. The remainder of the program is essentially the same though somewhat simplified.
VI. Discussion of Results

Figures 6 - 10 illustrate the relation between the cavity length and the cavitation number, for various geometries. The case of the isolated, partially cavitating flat plate is also shown on each graph. The values for this case were obtained from reference (9). It is of interest to note that a feature of the linearized theory is the fact that after a certain value of \(\ell_c/c \) the theory predicts two different cavity lengths for each cavitation number. This is apparent from figures 6 - 10. Since, in any case, the linearized assumption that the cavity-hydrofoil system forms a slender body would not be met for large values of \(\ell_c/c \), it is assumed that the validity of the theory only holds good for values of \(\ell_c/c < \ell_c/c \) minimum.

This behavior is to be expected due to the cavity model chosen, which places a singularity at the end of the cavity. However, comparing the results with that of the isolated hydrofoil, we see that this range of validity is increased in the case of the cascade. It would seem that the cascade effect has the property of reducing the strength of the singular behavior at the cavity end. This is further illustrated by the fact that as the solidity increases the range is extended, until at solidities greater than 0.75, a single valued function is obtained over almost the entire chord length for positive values of stagger angle. In the case of negative stagger angles, corresponding to the case of a turbine, as distinct from positive values of \(\beta \) which correspond to a pump, we see that there is still a region where the function is double valued. Physically, this is to be expected, since the effect of the neighboring blades is now no longer as effective near the cavity end.
It is seen that there is a large difference between the cavity geometry in cascade, compared with that of the isolated case, even for small solidities. However, this comparison is not entirely justified as the value of $K/2\alpha_1$ is based on the upstream angle of incidence. In the case of the cascade, a more natural angle to adopt is that of the mean velocity vector V_m.

Further, the curves at first glance seem to indicate that the cavity length for a given cavitation number at negative stagger angles is less than that of an isolated hydrofoil, even at low solidity. This surprising effect, however, is due once again to the choice of the upstream conditions as a reference. If the mean conditions are taken as reference, the curves for negative stagger angles will be raised above that for the isolated case and those corresponding to positive stagger angles remain below it as would be expected. If the curves are based on this angle, therefore, a better comparison is achieved. This is clearly illustrated in Figures 11 and 12 where the cavitation number is referred to the mean angle α_m.

There is still a significant difference for all values of β having solidities of 0.5 and greater. It therefore seems that the cascade effect is not very pronounced for solidities up to 0.5 provided the stagger angle is within the range -30° to $+60^\circ$.

Figures 13 and 14 illustrate a further representation. Here the value of $K_m/2\alpha_m$ is plotted against ℓ_c/c, where K_m is defined as

$$K_m = \frac{P_m - P_c}{\frac{1}{2} \rho V_m^2}$$
which to first order, reduces to

\[K_m = K + (1+K)(\alpha_1 - \alpha_2)\tan \beta \]

with the help of Bernoulli's equation.

It is seen from these graphs, that for low solidity the curves lie very close to that of the isolated case, for all values of \(\beta \). This representation, however, indicates the opposite effect to that using \(K/2\alpha_1 \), viz., that cavity lengths, for constant cavitation number, are longer for positive stagger angles than the isolated hydrofoil, even at low solidity. Consequently, it seems that the parameter \(K/2\alpha_m \) is the most natural one to use.

A disadvantage of using these alternative forms is the fact that they depend on \(\alpha_1 \), whereas the value of \(K/2\alpha_1 \) is independent of the angle of attack \(\alpha_1 \) and thus facilitates presentation immensely.

Figures 15 to 22 show the variation of force coefficient with cavitation number for varying cascade geometry. It is significant that the force coefficient is little changed over the range \(-30^\circ \leq \beta \leq +30^\circ\) for a constant solidity. Since the linearized theory breaks down for large stagger angles, this effect is to be expected. The breakdown of the linearized theory is due largely to the fact that at large stagger angles the assumption that the cavity thickness is small compared with blade spacing can no longer be expected to hold, except for very small angles of attack. As shown in the curve, the force coefficient for the isolated hydrofoil is approached as the solidity decreases. However, once again, we see that for solidities of 0.5 and larger, the cascade effect is prominent.
The curves as plotted, are terminated at the points where $\frac{L_c}{c}$ is a minimum. Here again, the point is illustrated that the mean conditions seem to be the natural choice for reference.

In the remaining curves, Figures 23 to 28, the behavior of the downstream conditions is illustrated. Here again, the curves are terminated at the point of minimum $\frac{L_c}{c}$. It may be pointed out that at $\beta = 0^\circ$ the theory gives $\frac{V_2}{V_1}$ as unity, but shows that α_2 is still variable and not equal to α_1. This apparently is a violation of the continuity equation which would necessitate $\alpha_1 = \alpha_2$. This discrepancy is due to the linearization procedure which neglects quadratic terms.

VII. Conclusion

A linearized theory has been presented for the partial cavitation in a cascade of flat plates. The results have been presented in such a way that they may be useful as a guide in the design of turbo-machines and other applications. From the results, it is possible to determine the cavity length, lift coefficient and downstream conditions for any desired cavitation condition for a given specific cascade geometry and initial upstream conditions.

The limitations of the theory are stressed and it is shown that the cascade effect diminishes the singular behavior at the end of the cavity. In the case of the isolated foil the theory holds good up to a ratio of cavity length to chord length of approximately 0.74, whereas in the cascade flow this ratio varies from about 0.8 for small solidities up to 0.95 for larger solidities.
It is further shown that for solidities of 0.5 and over, the cascade effect is appreciable and cascade interference effects cannot be neglected in this range. However, for solidities smaller than 0.5 the cascade effect is relatively small and the isolated case may be used as a fairly good approximation provided that the mean conditions are taken as reference quantities.
Appendix I

From equations (10) and (12) we get

\[
\tan \phi = \frac{a-1}{a+1} \tan \beta
\]

\[
\sigma = \frac{1}{\pi} \cos \beta \ln(a + \frac{2q}{\pi} \sin \beta)
\]

hence

\[
\frac{\sigma \pi}{\cos \beta} = -2q \tan \beta
\]

for

\[
\sigma \to \infty, \quad a \to \infty, \quad \phi \to \beta
\]

hence

\[
n_1 \to \left[1 + \ell^2 - 2\ell \sin \beta\right]^{1/4}
\]

\[
\tan \gamma_1 = \frac{\ell \cos \beta}{1 - \ell \sin \beta}
\]

\[
n_2 \to 1
\]

\[
\gamma_2 \to 0
\]

Therefore we get that

\[
\sin \gamma_1 = \frac{\ell \cos \beta}{n_1}
\]

\[
\cos \gamma_1 = \frac{1 - \ell \sin \beta}{n_1}
\]

and

\[
\sin \frac{\gamma_1}{2} = \frac{\sqrt{n_1^2 - \ell \cos \beta}}{\sqrt{2} n_1}
\]

\[
\cos \frac{\gamma_1}{2} = \frac{\sqrt{n_1^2 + \ell \sin \beta}}{\sqrt{2} n_1}
\]

Substituting in (21) gives
\[
(1 + \frac{K}{2}) = \cos \alpha_1 + \sin \alpha_1 \frac{(n_1^2 - 1)}{(n_1^2 + 1)} \sqrt{\frac{n_1^2 - 1 + l \sin \beta}{n_1^2 - 1 + l \sin \beta}} + \frac{2 \sqrt{2} l \sin \beta}{\sqrt{\frac{n_1^2 - 1 + l \sin \beta}{n_1^2 - 1 + l \sin \beta}}}
\]

If we now change notation to that of Acosta and Hollander, we get

\[
n_1 \equiv \ell \quad \ell \equiv b: \quad \beta \equiv \gamma: \quad \alpha_1 \equiv \alpha
\]

and we further replace

\[
(1 + \frac{K}{2}) \text{ by } \sqrt{1 + K}
\]

then

\[
\sqrt{1 + K} = \cos \alpha - \sin \alpha \frac{1 - l^2}{1 - l^2} \sqrt{\frac{l^2 + 1 - b \sin \gamma}{l^2 + 1 - b \sin \gamma}} - \frac{2 b \sin \gamma}{\sqrt{\frac{l^2 + 1 - b \sin \gamma}{l^2 + 1 - b \sin \gamma}}}
\]

After some manipulation, this reduces to

\[
\sqrt{1 + K} = \cos \alpha - \sin \alpha \frac{b \cos \gamma}{l^2 - l^2 + b \sin \gamma} \frac{(1 - l^2) \cos \gamma - \sqrt{2} l \sqrt{1 - \frac{l^2 - 1 - b \sin \gamma}{l^2}} \sin \gamma}{(1 + l^2) \cos \gamma - \sqrt{2} l \sqrt{1 + \frac{l^2 - 1 - b \sin \gamma}{l^2}} \cos \gamma}
\]

which is the expression given by Acosta and Hollander.

Further, we see from equation (22) that since \(E \to 0 \) as \(\sigma \to \infty \) we get \(\alpha_2 \equiv 0 \) for all \(\alpha_1 \).
Appendix II

In the expressions for D and E we expand each term in powers of L, for small L, retaining powers up to and including $O(L^3)$

\[
\left[\frac{n_1 + \frac{n_2}{2}}{n_2} \right] \sim 2 + \left(\frac{1}{4} + \frac{1}{2a} + \frac{1}{4a} \right) \sin^2 \phi L^2 + O(L^4)
\]

\[
\left[\frac{n_1 - \frac{n_2}{2}}{n_2} \right] \sim -(1 + \frac{1}{a}) \sin \phi L + \left(\frac{1}{2} - \sin^2 \phi \right)(1 - \frac{1}{a}) L^2 + O(L^3)
\]

\[
\sin \psi_1 \sim \cos \phi L + \sin \phi \cos \phi L^2 - \left(\frac{\cos^2 \phi}{2} - \sin^2 \phi \right) \cos \phi L^3 + O(L^4)
\]

\[
\sin \psi_2 \sim \frac{\cos \phi}{a} L - \frac{\sin \phi \cos \phi}{a} L^2 - \left(\frac{\cos^2 \phi}{2} - \sin^2 \phi \right) \cos \phi L^3 + O(L^4)
\]

\[
\frac{\sin \psi_1}{2} \cos \frac{\psi_2}{2} \sim \frac{\cos \phi}{2} L + \frac{\sin \phi \cos \phi}{2} L^2 + \left(\sin^2 \phi - \frac{3}{8} \cos^2 \phi - \frac{3}{8a} \right) \cos \phi L^3 + O(L^4)
\]

\[
\frac{\sin \psi_2}{2} \sin \frac{\psi_2}{2} \sim \frac{\cos \phi}{4a} L^2 + \left(1 - \frac{1}{a} \right) \sin \phi \cos \phi \frac{\cos \phi}{4a} L^3 + O(L^4)
\]

\[
\sin \psi_2 \frac{1}{2} \sim \frac{\cos \phi}{2a} L - \frac{\sin \phi \cos \phi}{2a} L^2 - \left(\frac{\cos^2 \phi}{8} + \frac{3 \cos^2 \phi}{8a} - \frac{\sin^2 \phi}{a} \right) \cos \phi L^3 + O(L^4)
\]

Utilizing these expressions we obtain

\[
D = \left[\left(\frac{1}{8} + \frac{1}{4a} \right) \sin^2 \phi \cos \phi + \left(\frac{1}{8} - \frac{1}{8a} \right) \cos^3 \phi + \left(1 + \frac{1}{a} \right) \frac{1}{4a} \sin \phi \cos^2 \phi \tan \beta \right] L^3 + O(L^4)
\]

\[
E = \left[-\left(\frac{1}{8a} + \frac{1}{4a} \right) \sin^2 \phi \cos \phi + \left(\frac{1}{8a} - \frac{1}{8a^3} \right) \cos^3 \phi + \left(1 + \frac{1}{a} \right) \frac{1}{4a} \sin \phi \cos^2 \phi \tan \beta \right] L^3 + O(L^4)
\]

hence

\[
\frac{D}{E} \sim a \left[\left(\frac{1}{8} + \frac{1}{4a} + \frac{1}{8a} \right) \sin^2 \phi \cos \phi + \left(\frac{1}{8} - \frac{1}{2a} \right) \cos^3 \phi + \left(1 + \frac{1}{a} \right) \frac{1}{4a} \sin \phi \cos^2 \phi \tan \beta \right] L^3 + O(L^4)
\]

\[
-\left(\frac{1}{8} + \frac{1}{4a} + \frac{1}{8a} \right) \sin^2 \phi \cos \phi + \left(\frac{1}{8} - \frac{1}{2a} \right) \cos^3 \phi + \left(1 + \frac{1}{a} \right) \frac{1}{4a} \sin \phi \cos^2 \phi \tan \beta \right] L^3 + O(L^4)
\]
Now substituting for \(\tan \beta = \frac{a-1}{a+1} \tan \psi \) in above, gives

\[
\frac{D}{E} \sim a + O(\ell) \quad \text{as} \quad \ell \to 0
\]

thus

\[
C_L = \frac{4}{\sigma} \frac{1}{\cos \beta} \left[\frac{a-1}{a+1} \right] \sin \alpha \quad \text{as} \quad \ell \to 0
\]

which is the classical fully wetted cascade flow result. Now, when \(\beta = 0, a = e^{\sigma \pi} \) then

\[
C_L = 2\pi \frac{\tanh(\sigma \pi/2)}{(\sigma \pi/2)} \sin \alpha
\]

for the isolated hydrofoil \(\sigma \to 0 \) this reduces to

\[
C_L = 2\pi \alpha_m
\]
Appendix III

We present here the Fortran Source Program as used in the computation of the results presented in this report. The notation used is self evident from the program.
DIMENSION FLCP(500), ELCP(500), AP(500), AN(500),
XB1(500), XA(500), CP(500), CN(500), DP(500), DN(500)

5 FORMAT(1H)
14 FORMAT(113, F16.6)
15 FORMAT(4113, F8.3)
16 FORMAT(6113, F16.6)
20 FORMAT(1H, SIGMA=E16.6, 7H RFTA=E16.8,
X3H A=E16.8, 3H PHI=(E16.8, 7H ALPHI=E16.8))
30 FORMAT(1H 5, F9.3, F12.4, F8.4)
22 FORMAT(6X, 1HL, 1X, 1HK, 7X, 8HIK/2ALPH1, 6X, 4HALF2,
X9X, 6HALF3/1, 6X, 5HV2/VI, 9X, 2HCL, 6X, 9HCL/DALFM,
X8X, 2HLC, 4X, 4HLC/C)
133 FORMAT(1H, 1D12.4)

PAM1F(A, h1, h2) = W1 = W2 = LOGF(A)

PAM2F(A, h1) = ATANF((A-1.) * W3 / (A+1.))

READ 14, NSI, WET, NAL, VEL, CONST

READ 15, SIGMA, WET, NIG, BET, DBC1, ALPHD, DAL, AO, DAU, EL0, DEL

SIGMA=SIGMT

DU 5000 SIG=1, NSIG

DICK=3.1415926 * SIGMA*0.5

RFTA=WRIA

DO 400 WIC=1, NSIG

1 W=WICK / SINH (WETA)

W3=SINH (WIA)/ COSH (WIA)

W2=0.5 / W3

A=AU

CA=DAU

40 Y1=PAM1F(A, h1, h2)

Y2=PAM2F(A, h3)

Y3=(Y1-Y2) / (Y1+Y2)

Y4=ARSF(Y3)

IF(Y3) 5, 1, 6;

50 IF(Y4=0.0) 110, 100, 55

55 A=A-DA

DA=DA/10.

A=A+DA

GU TO 40

60 A=A+DA

GU TO 4C

100 PHI=91

L=0

DO 3000 IEL=1, NEL

F1=IEL*IEL

EL=F1*DEL

F1=1. + EL*EL

F2=(1. + (EL/EL)*2))

F3=2. * EL*SINF(PHI)

ENP14=F1-F3

ENP24=F2+F1/A

ENN14=F1+F3

ENN24=F2-(F1/A)

HAP=ENP14/ENP24

HAN=ENN14/ENN24

F1=EL*COSF(PHI) * (A-1.)

F2=EL*EL*SINF(2.* PHI)

F3=AECL*FL*COSF(2.* PHI)
F4=(A-1.)*L*SIN F(PHI)

CPHA=(F1+F2)/(F3-F4)

GPHHA=(F1-F2)/(F3+F4)

IF(PIH=0.75)3010,3010,3020

3010 GAMP=ATANF(CPHA)

GAMN=ATANF(CPHA)

GO TO 3050

3020 IF(GPHHA)3031,3021,3022

3021 GAMP=ATANF(CPHA)

GO TO 3050

3022 GAMP=ATANF(GPHHA)-3.1415926

3028 IF(GPHHA)3030,3030,3029

3029 L=1

3030 IF(L)3031,3011,3040

3031 GAMP=ATANF(CPHA)

GO TO 3050

3040 IF(GPHHA)3045,3042,3042

3042 GAMP=ATANF(CPHA)

GO TO 3050

3045 GAMP=ATANF(CPHA)+3.1415926

3050 ELCPE(I1L)=COSF(BETA)*LCGF(HAP)=2.*SINF(BETA)*GAMP

ELCN(I1L)=COSF(BETA)*LCGF(HAP)+2.*SINF(BETA)*GAMP

F1=SQR(FI+P14)

ENP1=SQR(FP14)

F1=SQR(FI+P24)

ENP2=SQR(FP24)

F1=SQR(FI+EN14)

EN1=SQR(FN14)

F1=SQR(FI+EN24)

EN2=SQR(FN24)

F1=EL*COSF(PH1)

F2=EL*SINF(PH1)

TP1=F1/(L-F2)

TP2=F1/(A+F2)

TN1=F1/(L+F2)

TN2=F1/(A-F2)

FP1=1./SQR(F1+F1*TP1)

FP2=1./SQR(F1+F1*TP2)

FN1=1./SQR(F1+FN1*TN1)

FN2=1./SQR(F1+FN2*TN2)

SP1=ABSF(TP1*FP1)

SP2=ABSF(TP2*FP2)

SN1=TN1*FN1

SN2=ABSF(TN2*FN1)

CP1=SIGN(FP1,TP1)

CP2=FP2

CN1=FN1

CN2=SIGN(FN2,TN2)

SPH1=SQR(F1+5.*(1.-CP1))

SPH2=SQR(F1+5.*(1.-CP2))

SNH1=SQR(F1+5.*(1.-CN1))

SNH2=SQR(F1+5.*(1.-CN2))

CPH1=SQR(F1+5.*(1.+CP1))

CPH2=SQR(F1+5.*(1.+CP2))

CNH1=SQR(F1+5.*(1.+CN1))

CNH2=SQR(F1+5.*(1.+CN2))
FP1 = ENP1/ENP2
FP2 = 1./FP1
FN1 = CWN1/FN2
FN2 = 1./FN1
F0 = SINF(F(I+1A))/COSF(BETA)
F1 = FP1+FP2
F2 = FP1-FP2
F3 = SPH1*SPH2=F2*FU
F4 = F1*FU
F5 = F2*CPH1*CPH2
AP(I+1L) = F1*SPH1*CPH2+SP1-F3
RP(I+1L) = SP2-F1*SPH2*CPH1-F3
CP(I+1L) = F5+SP1*FU+F1*CPH1*SPH2*F0
DP(I+1L) = SP2*FU-F5-F1*SPH1*CPH2*F0
F0 = -F0
F1 = FN1+FP2
F2 = FN1-FP2
F3 = SNH1*SNH2=F2*FU
F4 = F1*FU
F5 = F2*CNH1*CNH2
AN(I+1L) = F1*SNH1*CNH2=SN1-F3
BN(I+1L) = SN2-F1*SNH2*CNH1-F3
CN(I+1L) = F5+SN1*FU-F1*CNH1*SNH2*F0
3000 DN(I+1L) = SN2*FU-F5-F1*SNH1*CNH2*F0
ALPH1 = ALPH1
DU 3500 IAL=1,NAL
PRINT 5
PRINT 20,SUMA,BETA,A,PHI,ALPH1
PRINT 5
PRINT 22
PRINT 5
DU 3150 ILL=1,NLL
F1 = IEL*IEL
CL = F1*DCL
CAP = CP(I+1L)/AP(I+1L)
CAPA = 2.*ALPH1*CAP
ALPH2 = AP(I+1L)/((AP(I+1L)+(AP(I+1L)+1.*CAPA)*0.5)/ALPH1)
ALPH21 = ALPH12/ALPH1
V2V1 = BP(I+1L)/(AP(I+1L)*ALPH21)
F1 = AP(I+1L)/RP(I+1L)
DCL = 4.*(F1-1.)/(F1+1.)*SUMA*COSF(BETA)
F2 = ALPH1*BETA
F4 = SINF(F2)/COSF(F2)
F2 = ALPH2*BETA
F5 = SINF(F2)/COSF(F2)
F3 = 0.5*(F4+F5)
IF(F3) = 3105,
3110 ALPHM = ATANF(F3)-BETA*3.1415926
GO TO 3115
3115 CLL = DCL*ALPHM
F1 = ELCP(I+1L)/(4.*DICK)
3150 PRINT 50,FL,CAPA,CAP0,ALPH2,ALPH21,V2V1,CLL,DCL,
X(CLCP(I+1L)),F1
PRINT 5
F1=HETA
F2=PHI
PRINT 26, SIGMA, F1, A, F2, ALPHI
PRINT 5
PRINT 22
PRINT 5
DO 3250 ILL=1, NEL
F1=ILL*IEL
CL=F1*DCL
CAPD=CN(TFLF)/AN(IEL)
CAPA=2.*CAPD*ALPHI
ALPH2=HAT(IEL)/(DN(IEL)+(AN(IEL)*(L.*CAPA.0.5)/
XALPHI))
ALPH2=ALPH2/ALPHI
V2V1=HN(IFL)/(AN(TFLF)*ALPH2))
F1=AN(TFL)/HN(IEL)
DCL=4.*((F1-1.)/((F1+1.)*SIGMA*CUSH(ETA)))
F7=ALPH1-HETA
F4=SIGN(F2)/CUSH(F2)
F2=ALPH2-HETA
F5=SIGN(F2)/CUSH(F2)
F3=0.5.*(F4+F5)
IF(F3)3210, 3210, 3205
3205 ALPHM=41ANF(F3)+HETA=.1..1.1.2.6
GO TO 3215
3210 ALPHM=1ANF(F3)+HETA
3215 CLL=DCL*ALPHM
F1=ELC(IEL)/4.*DICK)
3250 PRINT 50, EL, CAPA, CAPD, ALPH2, ALPH2, V2V1, CLL, DCL,
XELC(IEL), F1
3500 ALPHI=ALPHI+DAL
4000 HETA=BETA+DUET
5000 SIGMA=SIGMA+DSIG
CALL EXIT
END
REFERENCES

Fig. 1 Partially cavitating cascade of flat plates.

Fig. 2 Linearized boundary conditions in physical z-plane.
Fig. 3 Auxiliary ξ-plane.

Fig. 4 Auxiliary t-plane.

Fig. 5 Integration contour in z-plane.
Fig. 6 Ratio of cavitation number to twice inlet angle vs. cavity length to chord length ratio for various stagger angles β, at a constant solidity, $\sigma = 0.25$.
Fig. 7 Ratio of cavitation number to twice inlet angle versus cavity length to chord length ratio for various stagger angles β, at a constant solidity, \(\sigma = 0.50 \).
Fig. 8 Ratio of cavitation number to twice inlet angle vs. cavity length to chord length ratio for various stagger angles β, at a constant solidity, $\sigma = 0.75$.
Fig. 9 Ratio of cavitation number to twice inlet angle vs. cavity length to chord length ratio for various stagger angles β, at a constant solidity, $\sigma = 1.00$.
Fig. 10 Ratio of cavitation number to time inlet angle vs. cavity length to chord length ratio for various stagger angles β, at a constant solidity, $\sigma = 1.25$.
Fig. 11 Ratio of cavitation number to twice the mean flow angle vs. cavity length to chord length ratio for various stagger angles β, at a constant solidity $\sigma = 0.25$ and inlet angle of 6°.

\[\frac{K}{2\alpha_m} \]

\[\frac{L_C}{c} \]

\[\sigma = 0.25 \]

\[\alpha_1 = 6^\circ \]

\[-75^\circ \]

\[-60^\circ \]

\[-30^\circ \]

\[0^\circ \]

\[+30^\circ \]

\[+60^\circ \]

\[+75^\circ \]

ISOLATED HYDROFOIL

\[+ve \beta \]

\[-ve \beta \]
Fig. 12 Ratio of cavitation number to twice the mean flow angle vs. cavity length to chord length ratio for various stagger angles β, at a constant solidity $\sigma = 1.00$ and inlet angle of 6°.
Fig. 13 Ratio of mean cavitation number to twice mean flow angle vs. cavity length to chord length ratio for various stagger angles β, at a constant solidity $\sigma = 0.25$ and inlet angle of 60°.
Fig. 14 Ratio of mean cavitation number to twice mean flow angle vs. cavity length to chord length ratio for various stagger angles β, at a constant solidity $\sigma = 1.00$ and inlet angle of 6°.
Fig. 15 Ratio of lift coefficient to mean flow angle vs. ratio of cavitation number to twice inlet angle for various solidities at a given stagger angle $\beta = -60^\circ$.
Fig. 16 Ratio of lift coefficient to mean flow angle vs. ratio of cavitation number to twice inlet angle for various solidities at a given stagger angle $\beta = -30^\circ$.
Fig. 17 Ratio of lift coefficient to mean flow angle vs. ratio of cavitation number to twice inlet angle for various solidities at a given stagger angle $\beta = 0^\circ$.
Fig. 18 Ratio of lift coefficient to mean flow angle vs. ratio of cavitation number to twice inlet angle for various solidities at a given stagger angle $\beta = 15^\circ$.
Fig. 19 Ratio of lift coefficient to mean flow angle vs. ratio of cavitation number to twice inlet angle for various solidities at a given stagger angle $\beta = 30^\circ$.
Fig. 20 Ratio of lift coefficient to mean flow angle vs. ratio of cavitation number to twice inlet angle for various solidities at a given stagger angle $\beta = 45^\circ$.
Fig. 21 Ratio of lift coefficient to mean flow angle vs. ratio of cavitation number to twice inlet angle for various solidities at a given stagger angle $\beta = 60^\circ$.
Fig. 22 Ratio of lift coefficient to mean flow angle vs. ratio of cavitation number to twice inlet angle for various solidities at a given stagger angle $\beta = 75^\circ$.
Fig. 23 Outlet flow angle vs. ratio of cavitation number to twice inlet angle for different inlet angles, at constant stagger angle.
Fig. 23 Outlet flow angle vs. ratio of cavitation number to twice inlet angle for different inlet angles, at constant stagger angle.
Fig. 24 Ratio of downstream velocity to upstream velocity vs. ratio of cavitation number to twice inlet angle for different inlet angles, at constant stagger angle.
Fig. 24 Ratio of downstream velocity to upstream velocity vs. ratio of cavitation number to twice inlet angle for different inlet angles, at constant stagger angle.
Fig. 25 Outlet flow angle vs. ratio of cavitation number to twice inlet angle for different inlet angles, at constant stagger angle.
Fig. 25 Outlet flow angle vs. ratio of cavitation number to twice inlet angle for different inlet angles, at constant stagger angle.
Fig. 26 Ratio of downstream velocity to upstream velocity vs. ratio of cavitation number to twice inlet angle for different inlet angles, at constant stagger angle.
Fig. 26 Ratio of downstream velocity to upstream velocity vs. ratio of cavitation number to twice inlet angle for different inlet angles, at constant stagger angle.
Fig. 27 Outlet flow angle vs. ratio of cavitation number to twice inlet angle for different inlet angles, at constant stagger angle.
Outlet flow angle vs. ratio of cavitation number to twice inlet angle for different inlet angles, at constant stagger angle.
Fig. 28 Ratio of downstream velocity to upstream velocity vs. ratio of cavitation number to twice inlet angle for different inlet angles, at constant stagger angle.
Fig. 28 Ratio of downstream velocity to upstream velocity vs. ratio of cavitation number to twice inlet angle for different inlet angles, at constant stagger angle.
DISTRIBUTION LIST FOR UNCLASSIFIED REPORTS AND PREPRINTS ISSUED UNDER CONTRACT Nonr (22024) (NR 062-010)

Chief of Naval Research
Department of the Navy
Washington 25, D.C.
Attn: Codes:
 429 (1)
 460 (1)
 438 (3)

Commanding Officer
Office of Naval Research
Branch Office
The John Crerar Library Building
86 East Randolph Street
Chicago 1, Illinois (1)

Commanding Officer
Office of Naval Research
Branch Office
346 Broadway
New York 13, New York (1)

Commanding Officer
Office of Naval Research
Branch Office
1030 East Green Street
Pasadena, California (1)

Commanding Officer
Office of Naval Research
Navy No. 100, Fleet Post Office
New York, New York (25)

Director
Naval Research Laboratory
Washington 25, D.C.
Attn: Code 2021 (6)

Chief, Bureau of Aeronautics
Department of the Navy
Washington 25, D.C.
Attn: Code RS-3 (Mr. F.W.S. Locke) (1)

Chief, Bureau of Ordnance
Department of the Navy
Washington 25, D.C.
Attn: Codes:
 RS-3 (Mr. J.D. Nicolaides) (1)
 ReU1 (Mr. J.D. Nicolaides) (1)

Chief, Bureau of Ships
Department of the Navy
Washington 25, D.C.
Attn: Codes:
 300 (R.A. A.M. Morgan) (1)
 421 (Mr. J. Neidermair) (1)
 440 (Mr. R.B. Couch) (1)
 532 (1)
 549 (1)

Commanding Officer
Office of Naval Research
Branch Office
1030 East Green Street
Pasadena, California

Commanding Officer
Office of Naval Research
Navy No. 100, Fleet Post Office
New York, New York

Commanding Officer
Naval Ordnance Laboratory
White Oak, Maryland (1)

Commander
Naval Ordnance Test Station
3202 E. Foothill Blvd.
Pasadena, California
Attn: Head, Underwater Ordnance Dept. (1)
Head, Propulsion Division (1)

Commanding Officer
Naval Underwater Ordnance Station
Newport, Rhode Island (1)

Commanding Officer and Director
U.S. Naval Engineering Experiment Station
Annapolis, Maryland (1)

Superintendent
U.S. Naval Postgraduate School
Monterey, California (1)

Commanding Officer and Director
U.S. Naval Civil Engineering Laboratory
Port Hueneme, California
Attn: Code L54 (1)

Director of Research
NASA
1512 H Street, N.W.
Washington 25, D.C. (1)
Director
Langley Aeronautical Laboratory
NASA
Langley Field, Virginia
Attn: Mr. J.B. Parkinson,
Hydrodynamics Division (1)

Director
Lewis Flight Propulsion Laboratory
NASA
21000 Brookpark Road
Cleveland 11, Ohio (1)

Commander
Air Force Office of Scientific Res.
Tempo T, 14th and Constitution
Washington 25, D.C.
Attn: Mechanics Division (1)

Director
Waterways Experiment Station
Box 631
Vicksburg, Mississippi (1)

Beach Erosion Board
U.S. Army Corps of Engineers
5200 Little Falls Road
Washington 26, D.C. (1)

Office of Ordnance Research
Department of the Army
Washington 25, D.C. (1)

Major General P.F. Yount
Chief of Transportation
Department of the Army
Washington 25, D.C. (1)

Commissioner
Bureau of Reclamation
Washington 25, D.C. (1)

Dr. J.H. McMillen, Director
National Science Foundation
1520 H. Street, N.W.
Washington, D.C. (5)

Director
National Bureau of Standards
Washington 25, D.C.
Attn: Fluid Mechanics Division
Dr. G.B. Schubauer (1)
Dr. G.H. Keulegan (1)

Mr. C.G. Morse, Chairman
Maritime Administration
441 G Street, N.W.
Washington, D.C. (1)

ASTIA
Document Service Center
Arlington Hall Station
Arlington 12, Virginia (5)

Office of Technical Services
Department of Commerce
Washington, D.C. (1)

Polytechnic Institute of Brooklyn
Department of Aeronautical Engineering
and Applied Mechanics
99 Livingston Street
Brooklyn 2, New York
Attn: Professor A. Ferri (1)

Brown University
Providence, Rhode Island
Attn: Division of Applied Mathematics
Professor L.M. Milne-Thomson (1)
Division of Engineering
Professor D. Drucker (1)

California Institute of Technology
Pasadena, California
Attn: Dean F. Lindvall (1)
GALCIT
Professor C.B. Millikan (1)
Professor D. Rannie (1)
Professor M.S. Plesset (1)

University of California
Berkeley 4, California
Attn: Department of Engineering
Professor A. Schade (1)
Professor H. Einstein (1)

Carnegie Institute of Technology
Pittsburgh, Pennsylvania
Attn: Dean B. Teare, Jr. (1)
Department of Mathematics (1)

Case Institute of Technology
Cleveland, Ohio
Attn: Department of Mech. Engineering
Professor G. Kuerti (1)

Colorado A and M
Fort Collins, Colorado
Attn: Department of Civil Engineering
Professor M. Albertson (1)
Worcester Polytechnic Institute
Worcester, Massachusetts
Attn: Alden Hydraulic Laboratory
Professor J. Hooper, Dir. (1)

Worcester Polytechnic Institute
Worcester, Massachusetts
Attn: Alden Hydraulic Laboratory
Professor J. Hooper, Dir. (1)

Republic Aviation Corporation
Farmingdale, Long Island, N.Y. (1)

EDO Corporation
College Point, New York
Attn: Mr. S. Fenn (1)

General Electric Company
Pittsfield, Massachusetts
Attn: Mr. R.H. Wahlberger (1)

Philco Corporation
4700 Wissahickon Avenue
Philadelphia, Pennsylvania
Attn: Mr. M. Arsove (1)

Vitro Corporation of America
942 Wayne Avenue
Silver Spring, Maryland
Attn: Mr. V. Setterholm (1)

Westinghouse Electric Corporation
Sharon, Pennsylvania
Attn: Mr. M.E. Fagan (1)

AVCO Manufacturing Corporation
Stamford, Connecticut (1)

Boeing Airplane Company
Scientific Research Laboratories
P.O. Box 3981
Seattle 24, Washington (1)

Gibbs and Cox
21 West Street
New York 6, New York
Attn: Dr. S. Hoerner (1)

Hughes Aircraft Company
Florence and Teale
Culver City, California (1)

Bethlehem Steel Company
Shipbuilding Division
Quincy 69, Massachusetts
Attn: Mr. H. deLuce (1)

Douglas Aircraft Company, Inc.
El Segundo, California (1)

General Dynamics Corporation
Electric Boat Division
Groton, Connecticut
Attn: R.A. A.I. McKee, USN (ret.) (1)

Bell Aircraft Corporation
P.O. Box No. 1
Buffalo 5, New York (1)

International Business Machines Corp.
112 East Post Road
White Plains, New York
Attn: Dr. H. Cohen (1)

McDonnell Aircraft Corporation
P.O. Box No. 516
St. Louis 3, Missouri (1)

Dynamic Developments Corporation
St. Marks Lane
Islip, Long Island, New York
Attn: Mr. W. Carl (1)

Northrop Aircraft, Inc.
Northrop Field
Hawthorne, California (1)

Miami Shipbuilding Corporation
615 S.W. Second Avenue
Miami 36, Florida
Attn: Mr. W. Carl (1)

Grunnman Aircraft Eng. Corp.
Bethpage, Long Island, N.Y. (1)

Grumman Aircraft Eng. Corp.
Bethpage, Long Island, N.Y. (1)
<table>
<thead>
<tr>
<th>Company</th>
<th>Address</th>
<th>Attn:</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baker Manufacturing Company</td>
<td>Evansville, Wisconsin</td>
<td>Mr. J. Baker</td>
<td>(1)</td>
</tr>
<tr>
<td>Hydronautics, Incorporated</td>
<td>Pindell School Road</td>
<td>Howard County</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Laurel, Maryland</td>
<td></td>
</tr>
<tr>
<td>Eastern Research Group</td>
<td>215 Montague Street</td>
<td>Dr. L. Meyerhoff</td>
<td>(1)</td>
</tr>
<tr>
<td></td>
<td>Brooklyn 1, New York</td>
<td>Mr. Phillip Eisenberg</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mr. Marshall P. Tulin</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aircraft Gas Turbine Division</td>
<td>General Electric Company</td>
<td>Dr. M.L. Ghai</td>
<td>(1)</td>
</tr>
<tr>
<td></td>
<td>Cincinnati 15, Ohio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aircraft Gas Turbine Development Dept.</td>
<td>Malta Test Station</td>
<td>Mr. Fred F. Antunes</td>
<td>(1)</td>
</tr>
<tr>
<td></td>
<td>Ballston Spa, New York</td>
<td>Hydraulic Engineer</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rocketdyne</td>
<td>6633 Canoga Avenue</td>
<td>Mr. Kurt Berman</td>
<td>(1)</td>
</tr>
<tr>
<td></td>
<td>Canoga Park, California</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mr. Paul Kaplan, President</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monsanto Chemical Company</td>
<td>800 N. Lindberg Blvd.</td>
<td>Mr. R. Dean</td>
<td>(1)</td>
</tr>
<tr>
<td></td>
<td>St. Louis 66, Missouri</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technical Research Group, Inc.</td>
<td>2, Aerial Way</td>
<td>Dr. J. Kotik</td>
<td>(1)</td>
</tr>
<tr>
<td></td>
<td>Syosset, New York</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Professor H.G. Flynn</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Department of Electrical Engineering</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>University of Rochester</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>College of Engineering</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>River Campus Station</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rochester 20, New York</td>
<td>(1)</td>
</tr>
</tbody>
</table>