<table>
<thead>
<tr>
<th>UNCLASSIFIED</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD NUMBER</td>
</tr>
<tr>
<td>AD374683</td>
</tr>
<tr>
<td>CLASSIFICATION CHANGES</td>
</tr>
<tr>
<td>TO:</td>
</tr>
<tr>
<td>FROM:</td>
</tr>
<tr>
<td>LIMITATION CHANGES</td>
</tr>
<tr>
<td>TO:</td>
</tr>
<tr>
<td>FROM:</td>
</tr>
<tr>
<td>AUTHORITY</td>
</tr>
<tr>
<td>31 Jul 1978, Group-4, DoDD 5200.10; ONR ltr, 4 May 1977</td>
</tr>
</tbody>
</table>

THIS PAGE IS UNCLASSIFIED
This material contains information affecting the national defense of the United States within the meaning of the Espionage laws, Title 18 U.S.C., Sections 793 and 794, the transmission or revelation of which in any manner to an unauthorized person is prohibited by law.
NOTICE

UNITED STATES PATENT OFFICE SECRECY ORDER

A patent application has been filed in the U.S. Patent Office by North American Aviation, Inc. based upon subject matter included herein or related hereto, and the Secrecy Order appended hereto has been issued thereon pursuant to Title 35, United States Code (1952) Sections 181-186. Further dissemination of said subject matter is prohibited except in strict compliance with said order. The recipient of this document is requested to notify all persons who will have access to this material of the Secrecy Order. Penalties for violation of a Secrecy Order include a fine of up to $10,000 or imprisonment for not more than two years, or both.

DEPARTMENT OF COMMERCE
United States Patent Office
Washington

SECRECY ORDER

NOTICE: To the applicant above named, his heirs, and any and all his assigns, attorneys and agents, hereinafter designated principals:

You are hereby notified that your application as above identified has been found to contain subject matter, the unauthorized disclosure of which must be detrimental to the public safety or defense, and you are ordered not to disclose the invention or any material information with respect thereto, including但却 unpublished details of the subject matter of said application, to any person not constant of the invention prior to the date of the order, including any employee of the principals, but to keep the same secret except by written permission first obtained of the Commissioner of Patents, under the penalties of 35 U.S.C. (1952) 152, 156.

Any other application which contains any significant part of the subject matter of the above identified application falls within the scope of this order. If such other application does not stand under a secrecy order, it and the common subject matter should be brought to the attention of the Patent Security Division, Patent Office.

If prior to the issuance of the secrecy order any significant part of the subject matter has been revealed to any person, the principals shall promptly inform such person of the secrecy order and the penalties for improper disclosure.

This order should not be construed in any way to mean that the Government has adopted or contemplates adoption of the alleged invention disclosed in this application, nor is it any indication of the value of such invention.

DEPARTMENT OF COMMERCE
United States Patent Office
Washington

PERMIT A

An order of secrecy having been issued in the above-entitled application by the Commissioner of Patents, the principals as designated in said order are authorized to disclose the subject matter to any person of the classes hereinafter included if such person is known to the principals disclosing to be concerned directly in an official capacity with the subject matter, providing that all reasonable safeguards are taken to otherwise protect the invention from unauthorized disclosure. The specified classes are:

(a) Any officer or employee of any department, independent agency or bureau of the Government of the United States, or by his duly authorized subordinate, as a proper individual to receive the disclosure of the above indicated application.

(b) Any person designated specifically by the head of any department, independent agency or bureau of the Government of the United States, or by his duly authorized subordinate, as a proper individual to receive the disclosure of the above indicated application.

The principals under the secrecy order are further authorized to disclose the subject matter of this application to the minimum necessary number of persons of known loyalty and discretion, employed by or working with the principals or their licensees and whose duties involve cooperation in the development, manufacture or sale of the subject matter disclosed, or for the Government of the United States, or by the Government of the United States, or by his duly authorized subordinate, as a proper individual to receive the disclosure of the above indicated application.

The principals under the secrecy order are further authorized to disclose the subject matter of this application to the minimum necessary number of persons of known loyalty and discretion, employed by or working with the principals or their licensees and whose duties involve cooperation in the development, manufacture or sale of the subject matter disclosed, or for the Government of the United States, or by the Government of the United States, or by his duly authorized subordinate, as a proper individual to receive the disclosure of the above indicated application.

First Assistant Commissioner
FOREWORD

The research reported herein was supported by the Advanced Research Projects Agency through the Office of Naval Research, Power Branch, Code 429, with Mr. Richard L. Hanson as Scientific Officer. This report was prepared in compliance with Section H of Nonr 4428(00) under ARPA Order No. 23, and covers the period 29 May 1965 through 28 May 1966. This work was carried out in the Synthetic Chemistry Group with Dr. J. Pilipovich, Principal Scientist of the Fluorine Chemistry Unit, as the Responsible Scientist. Full-time associates connected with the technical effort were Dr. H. F. Bauer, Dr. C. J. Schack, and Dr. C. B. Lindahl.
Oxychlorine trifluoride (ClF₃O) has been synthesized by several methods. Excellent yields were obtained by the fluorination of either Cl₂O or ClINO₃, both alone or in the presence of an alkali metal fluoride. Lesser amounts of ClF₃O resulted from electric discharge fluorination of solid Cl₂O and the simple fluorination of NaClO₂, and of a mercury salt-Cl₂O complex.

Basic physical properties and analytical data for ClF₃O were determined. The compound has a boiling point of 29.4 ± 1.0 °C and a melting point of -66 ± 1.0 °C with a density of 1.90 ± 0.05 g/cc at 25.5 °C. The vapor pressure/temperature equation from -22 to 32 °C is described by $\log_{10} p(\text{mm}) = 8.433 - 1680/T$. In addition, ClF₃O showed good thermal stability in Monel.

Unlike other pentavalent chlorine fluorides, ClF₃O exhibits marked complexing ability with both acidic and basic fluorides. Among the latter, complexes with CsF, KF, FNO, and FNO₂ were investigated. Acid fluorides studied included AsF₅, BF₃, PF₅, and SiF₄.

On several occasions, pyrolysis of the solids from fluorination of the CsF-Cl₂O complex yielded traces of an unknown species (Compound C) which may be FC1O. Alternate syntheses were sought to achieve enhanced yields of Compound C. These included metathetical displacements on the unpyrolyzed solids using ClF₃, and fluorination of the CsF-Cl₂O complex under milder conditions. Thermal degradation and chemical reduction of ClF₃O were also checked as potential routes to Compound C.
Alkali metal fluorides were found to complex with Cl₂O. These represent a new class of compounds. The most thorough investigation was with CsF where a stoichiometry of CsF·1.5Cl₂O was established. Possible bonding schemes are discussed.

The preparation of ClF₅O was attempted by reaction of F₂ with ClF₃O in the presence and absence of CsF and also by reaction of KrF₂ with ClF₅O. No new compounds were observed.

A new procedure was developed for the synthesis of Cl₂O. This method uses simple, static conditions rather than flow conditions. Maximum conversion of the starting materials results according to the equation:

\[2\text{Cl}_2 + \text{HgO} \rightarrow \text{Cl}_2\text{O} + \text{HgCl}_2 \]

Improved techniques were developed for the formation of BrNO₃. Bromine nitrate and Br₂O were employed as precursors in attempts to produce oxybromine fluorides.

The reaction of Cl₂O and AsF₅ was examined and found not to proceed as indicated in the literature. Oxidation and reduction of the Cl₂O occurs giving Cl₂ and probably ClO₂⁻AsF₆⁻.

(Confidential Abstract)
CONTENTS

Foreword ... iii
Abstract ... iv
Discussion ... 1
 Florox Studies ... 1
 Possible Syntheses of Chlorosyl Fluoride 14
 Alkali Metal Fluoride - Cl$_2$O Complexes 21
 Attempted Synthesis of Oxychlorine Pentafluoride 24
 A New Synthesis of Cl$_2$O .. 25
 Fluorination of Br-0-X Compounds 28
 Reaction of AsF$_5$ and Cl$_2$O 30
Experimental Details .. 33
 Synthesis of Florox ... 33
 Preparation of Cl$_2$O .. 36
 Preparation of ClNO$_3$... 37
 Low-Temperature Infrared Cell 37
 Preparation of KrF$_2$... 39
 Preparation of BrNO$_3$... 39
 Reaction of Cl$_2$O and AsF$_5$ 39
References .. 41
1. Compound C + SO₂F₂

TABLES

1. Synthesis of Florox
2. Preliminary Properties of ClF₅O
3. Thermal Stability of ClF₅O
4. Infrared Absorptions in the FNO-ClF₅O System
5. Pyrolysis of ClF₅O
6. Conversion of Cl₂ to Cl₂O Based on 2HgO +
 2Cl₂ = Cl₂O + HgO·HgCl₂
7. Conversion of HgO to Cl₂O Based on HgO +
 2Cl₂ = Cl₂O + HgCl₂
8. Vapor Pressure-Temperature Data For ClF₅O
9. Dissociation Pressure-Temperature Data For FNO·ClF₅O
10. Dissociation Pressure-Temperature Data For SiF₄·2ClF₅O
DISCUSSION

FLOROX STUDIES

The preliminary characterization of Florox has been completed and entailed the determination of the chemical composition, some spectral data, several physical properties, thermal stability and some chemical attributes. In addition, its synthesis from several starting materials was uncovered.

Preparation of Florox

Synthesis from ClO. Oxychlorine trifluoride was first synthesized by fluorination of Cl₂O (Ref. 1) both in the presence and absence of added alkali metal fluoride. The results of additional preparative runs are presented in Table 1. (A complete description is found in the Experimental Details of this report.)

<table>
<thead>
<tr>
<th>Alkali Metal Fluoride</th>
<th>Percent Yield</th>
<th>Side Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>CsF</td>
<td>82</td>
<td>FCl₂, CIF₃</td>
</tr>
<tr>
<td>RbF</td>
<td>≥25</td>
<td>FCl₂, CIF₃</td>
</tr>
<tr>
<td>KF</td>
<td>45, 29</td>
<td>FCl₂, CIF₃, CIF</td>
</tr>
<tr>
<td>NaF</td>
<td>73, 81</td>
<td>FCl₂, CIF</td>
</tr>
<tr>
<td>None</td>
<td>39, 63</td>
<td>FCl₂, CIF, CIF₃</td>
</tr>
</tbody>
</table>

*Unclassified designation for ClF₃O.
The variation in yields caused by different added alkali metal fluorides is not necessarily significant because of the difference in yields in apparently identical preparations (particularly during CsF experiments where the most data have been gained).

Fluorination of Chlorine Nitrate. After Cl₂O, the best characterized XOCI compound is chlorine nitrate (ClONO₂). Preparation of ClNO₂ is accomplished by reaction of Cl₂O with either N₂O₄ or N₂O₅ (Ref. 2). Low-temperature fluorinations were conducted on both the cesium fluoride-chlorine nitrate complex and on uncomplexed chlorine nitrate.

On exposure of chlorine nitrate to cesium fluoride at -80°C, a slow lowering of the vapor pressure was observed indicating some complex formation. The reaction was reversible because chlorine nitrate could be removed by warming and pumping. The CsF-ClNO₂ complex was treated with excess fluorine at -80°C for several days.

After removal of the excess F₂ at -196°C, the products volatile at ambient temperature were principally FNO₂ and some FCIO₂ with one case of HNO₃ and N₂O₃ contamination. No further volatiles were evolved even after 4 weeks. Because not all of the starting material was accounted for, the residues were heated to drive off any complexed CIF compounds, in a manner analogous to that used for obtaining pure CIF₃ from KF-KClIF₄ (Ref. 3). Colorless gases were evolved and these were found to be composed principally of CIF₃O. Much smaller amounts of FNO₂, FCIO₂, and CIF were also obtained. The yield of CIF₃O based on chlorine nitrate, ranged from 36 to 95% percent except in one reaction wherein previously used CsF was employed and no CIF₃O was found. Complexing of ClNO₂ with CsF at -18°C prior to a -80°C fluorination was
also tried successfully. In high-yield reactions, nitryl fluoride was the only by-product, thus confirming the postulated reaction sequence:

\[
\begin{align*}
\text{ClO}_2N + \text{CsF} & \quad \text{at} \quad -80 \text{ to } -18^\circ \text{C} \quad \rightarrow \quad \text{CsF} \cdot \text{ClO}_2N \\
\text{CsF} \cdot \text{ClO}_2N + 2\text{F}_2 & \quad \text{at} \quad -80 \text{ C} \quad \rightarrow \quad \text{CsClF}_4 \cdot 0 + \text{FN}_2 \\
\text{CsClF}_4 \cdot 0 & \quad \Delta \quad \rightarrow \quad \text{ClF}_3 \cdot 0 + \text{CsF}
\end{align*}
\]

It is also noteworthy that the ClNO\textsubscript{3} employed in the highest yield reaction was contaminated with NO\textsubscript{2}. The NO\textsubscript{2} impurity had no detrimental effect other than to consume fluorine in being converted to FN\textsubscript{2}.

It was also of interest to utilize chlorine nitrate as an intermediate for the preparation of FC1O. Accordingly, a reaction was attempted using uncomplexed ClNO\textsubscript{3} and F\textsubscript{2} at -30 C. After several days it was found that Florox was formed in 84-percent yield:

\[
\begin{align*}
\text{ClO}_2N + 2\text{F}_2 & \quad \rightarrow \quad \text{ClF}_3 \cdot 0 + \text{FN}_2
\end{align*}
\]

Thus, while no FC1O was obtained, it has been demonstrated that the use of CsF is not essential for the formation of ClF\textsubscript{3} and two steps of the previous reaction sequence, complexing and pyrolysis, to liberate ClF\textsubscript{3} were eliminated. The necessity of alkali metal fluoride catalysis in the Cl\textsubscript{2}O fluorination has also been disproved as shown in Table 1. However in both these preparations of ClF\textsubscript{3}, the possible catalytic effect of "bomb fluorides" has not as yet been excluded.
Fluorination of Mercury Salt Cl_2O Complex. The synthesis of ClF_3O from Cl_2O generally requires the separation of pure Cl_2O prior to fluorination and in this state Cl_2O has on two occasions exploded. A possible alternate procedure to bypass this step was attempted. The "static" method of preparing Cl_2O indicated the formation of a complex between the Cl_2O and the residual mercury salts. A decrease in the vapor pressure of Cl_2O was observed as well as incomplete Cl_2O removal from the salts at -80 °C. Proceeding by broad analogy with the CsF$\cdot\text{Cl}_2\text{O}$ complex (discussed elsewhere in this report), the preparation of ClF_3O or other new F-Cl-O species was attempted by fluorination.

\[
\text{HgCl}_2\cdot\text{Cl}_2\text{O} + \text{F}_2 \longrightarrow \text{ClF}_3\text{O} + \text{ClF}_3
\]

It has been found that this fluorination gives ClF_3O in poor yields. The principal products are ClF_3 and FCIO_2, with some ClF_5 and occasionally some of the suspected FCIO_3. In addition, the formation of ClF_3O was not reproducible. Early during these experiments it was suspected that moisture originally present in the HgO might have had a deleterious effect on the desired reaction. However, vacuum drying of the HgO before chlorination and fluorination did not change the results other than to eliminate HF as a product.

Electric Discharge Fluorination of Solid Cl_2O. Early during this program (Ref. 1), the use of electric-discharge-activated fluorine was attempted in reactions with solid Cl_2O at -196 °C to synthesize ClF_3O. At that time it was observed that some ClF_3 was found but no ClF_3O. This reaction was re-examined using recirculated fluorine in a closed-loop system at low pressures rather than the simple flow-through method. As expected, a much more efficient fluorination was achieved. The yield of ClF_3 was approximately 45 percent (based on 2ClF_3 for each Cl_2O). In addition, small quantities of ClF_5O were found along with some ClF_3 and much FCIO_2.
Confidential

Therefore, with the incorporation of this improved technique, the general utility of the electric discharge fluorination process has been improved and made much more efficient. Also, it is expected that this activated gas-solid reaction method might now be employed to demonstrate the synthesis of other highly fluorinated species, in particular ClF₃O.

\[\text{ClF}_3\text{O} + F_2^* \overset{-196 \degree C}{\longrightarrow} \text{ClF}_3\text{O} \]

Fluorination of Sodium Chlorite. In an attempt to synthesize oxychlorine fluorides, the static fluorination of sodium chlorite \((\text{NaClO}_2)\) has been studied. Although preliminary experiments gave as products small amounts of ClF₃O and Compound C subsequent runs gave neither of these products. Other products from the fluorination are Cl₂, ClF, ClF₃, FC1O₂, and O₂. Oxygen, Cl₂, and FC1O₂ are the principal products suggesting the following two reactions:

\[\text{NaClO}_2 + F_2 \rightarrow \text{NaF} + \text{FC1O}_2 \]

\[2\text{NaClO}_2 - F_2 \rightarrow 2\text{NaF} - \text{Cl}_2 - 2\text{O}_2 \]

The fluorination is vigorously exothermic both with liquid fluorine at \(-196 \degree C\) and with gaseous fluorine at \(-78 \degree C\), accounting for the variety of products and the reduction of chlorite to chlorine despite a strongly oxidizing fluorine atmosphere. Because of the original synthesis of ClF₃O and Compound C by fluorination of NaClO₂, the fluorination of potassium perchlorate (KClO₄) have been studied. In both cases, FC1O₂ and FC1O₃ were formed instead of the desired products.
Physical Properties

Preliminary physical characteristics of CIF$_3$O were reported previously (Ref. 1). Current data are shown in Table 2.

TABLE 2

<table>
<thead>
<tr>
<th>PRELIMINARY PROPERTIES OF CIF$_3$O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melting Point, $\degree C$</td>
</tr>
<tr>
<td>Boiling Point, $\degree C$</td>
</tr>
<tr>
<td>Molecular Weight</td>
</tr>
<tr>
<td>Found (Vapor Density)</td>
</tr>
<tr>
<td>Calculated</td>
</tr>
<tr>
<td>Vapor Pressure Equation</td>
</tr>
<tr>
<td>Molar Heat of Vaporization, kcal</td>
</tr>
<tr>
<td>Trouton Constant</td>
</tr>
<tr>
<td>Density, g/cc at 25.5 $\degree C$</td>
</tr>
</tbody>
</table>

Vapor Pressure/Temperature Relation. The vapor pressure/temperature equation of oxychlorine trifluoride was determined from -22 to 32 $\degree C$ at nine temperatures. A least-squares fit yielded the equation $\log_{10} P(\text{mm}) = 8.433 - 1680/T$. The normal boiling point of 29.4 $\degree C$, the heat of vaporization of 7.7 kcal/mole and the high trouton constant indicate a fairly associated liquid.

Density Measurements. The density of oxychlorine trifluoride was determined in two ways using a Kel-F pycnometer. A known volume of liquid was weighed and gave densities of 1.89 and 1.91 g/cc at 25.5 ±1.0 $\degree C$. The
A quantity of gas from a known liquid volume was determined and converted to ClF₃₀ weight, using 108.5 as the molecular weight. This weight corresponded to a liquid density of 1.95 g cc at 23 °C and 2.00 g cc at 18 °C. The direct method not only gave more reproducible data than the gas volume method but allowed calculation of the sample purity by molecular weight as well (105 vs 108.5 theory). Insufficient data were obtained to establish a quantitative dependence of density on temperature.

Thermal Stability of Oxychlorine Trifluoride. Samples of ClF₃₀ were heated in stainless steel and Monel for periods of 16 hours. Cesium fluoride was added to the stainless-steel cylinders. The runs in Monel were carried out in the presence and absence of fluorine. The data presented in Table 3 show the percent of ClF₃₀ recovered.

TABLE 3

<table>
<thead>
<tr>
<th>Container</th>
<th>Duration, hours</th>
<th>Temperature, °C</th>
<th>Other Material Present</th>
<th>Recovery of ClF₃₀ percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stainless Steel</td>
<td>16</td>
<td>200</td>
<td>CsF</td>
<td>0</td>
</tr>
<tr>
<td>(five runs)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monel</td>
<td>16</td>
<td>70</td>
<td>F₂</td>
<td>41</td>
</tr>
<tr>
<td>Monel</td>
<td>16</td>
<td>100</td>
<td>F₂</td>
<td>87</td>
</tr>
<tr>
<td>Monel</td>
<td>16</td>
<td>200</td>
<td>F₂</td>
<td>63</td>
</tr>
<tr>
<td>Monel</td>
<td>16</td>
<td>200</td>
<td>F₂</td>
<td>66</td>
</tr>
<tr>
<td>Monel</td>
<td>16</td>
<td>284</td>
<td>F₂</td>
<td>70</td>
</tr>
<tr>
<td>Monel</td>
<td>16</td>
<td>290</td>
<td>None</td>
<td>63</td>
</tr>
<tr>
<td>Monel</td>
<td>16</td>
<td>200</td>
<td>None</td>
<td>67</td>
</tr>
</tbody>
</table>
The absence of monotonic results indicates reaction with the container to be more important than thermal degradation. There was no evidence for equilibrium reactions involving ClF₃₀.

Elemental Analysis of Oxychlorine Trifluoride

The combustion of ClF₃₀ and anhydrous ammonia in glass gave nonreproducible results. Metal Teflon reactors were more successful and the following analytical results were obtained: Calculated for ClF₃₀: Cl, 32.7 percent; F, 52.5 percent; found: Cl, 30.8 percent; F, 49.5 percent. The low results were attributed to 88- and 94-percent material recovery based on initial ClF₃₀ gas volumes. The fluorine-to-chlorine ratios for the recovered material were 2.97 and 2.99, respectively.

The determination of oxygen in ClF₃₀ was attempted directly by the reaction:

\[4\text{Hg} + 2\text{ClF}_3 = \text{HgCl}_2 + 3\text{HgF}_2 + O_2 \]

Incomplete oxygen release was observed so an indirect method was tried using sodium chloride:

\[2\text{ClF}_3 + 6\text{NaCl} = 6\text{NaF} + O_2 + 4\text{Cl}_2 \]

Although the theoretical ratio of chlorine to oxygen was four, ratios from two to eight were obtained by gas/liquid chromatography. More satisfactory results were obtained when NaCl was reacted at 200°C and the oxygen volume was obtained by pumping the oxygen gas at -196°C with a Toepfer pump. The following analytical results were obtained: calculated for ClF₃₀: O, 14.7 percent; found: O, 12.3 percent.
Another method of chlorine and oxygen analysis became available when it was observed that oxychlorine trifluoride reacts with the inside surface of a stainless-steel cylinder at 200°C to give a gas mixture containing only chlorine and oxygen:

\[
2\text{ClF}_3\,\text{O} + \text{nM} \rightarrow \text{Cl}_2 + \text{O}_2 + \text{nMF}_6/\text{n}
\]

During four runs, ClF₃O was heated to 200°C in the presence of CsF for a minimum of 16 hours. The condensible gas was measured and compared to the amount of reacted ClF₃O on a molar basis.

The following analytical results were obtained: calculated for Cl₂/ClF₃O: 0.50; found: 0.50, 0.59, 0.48, and 0.49.

The nature of the reaction was confirmed by mass spectrometric analysis of the volatile products of a fifth reaction: Cl₂, 59.9 mole percent; O₂, 40.1 mole percent. The relatively low oxygen content was not unexpected because of the possibility of oxide formation from ClF₃O at 200°C.

In summary, it has been shown that ClF₃O is monomeric in the vapor phase while somewhat associated as a liquid. The molecule has been demonstrated to have a fluorine/chlorine ratio of three and a chlorine oxygen ratio of one and only one chlorine per molecule. Together these and other physico-chemical data presented herein establish the material as ClF₃O.
Stability of Florox in Hydrogen Fluoride

At least two instances of nonexplosive decomposition of ClF$_3$O have occurred at Rocketdyne in loading stainless-steel lines which, except for possible HF contamination, were considered passive to ClF$_3$O. Therefore, the possibility of hydrogen fluoride catalyzed decomposition or reaction with the metal was examined by adding substantially anhydrous HF to ClF$_3$O in stainless steel and in Kel-F containers. No loss of ClF$_3$O was observed by infrared analysis in the gas phase, no other compounds being observed besides the ClF$_3$O and HF even with a tenfold excess of HF at room temperature. Consequently, ClF$_3$O is stable in HF and the observed decompositions have been attributed to nonpassive line connections.

The Amphoteric Behavior of Oxychlorine Trifluoride

Oxychlorine trifluoride has been found to complex with both acidic fluorides and basic fluorides. It is markedly different in this regard from the other two pentavalent chlorine fluorides, FCIO$_2$ and ClF$_5$, which appear to have little if any affinity for cesium fluoride (Ref. 4 and 5), although workers at Pennsalt (Ref. 5 and 6) report FCIO$_2$ and ClF$_5$ complexes with the less basic fluoride, FNO$_2$.

Reaction with Fluoride Bases. The acidic behavior of oxychlorine trifluoride has been demonstrated by its complex formation with CsF, KF, FNO, and FNO$_2$. The ClF$_3$O-FNO complex has been investigated by low-temperature infrared, n.m.r., and vapor pressure-temperature studies. The ClF$_3$O-FNO$_2$ system showed a definite reduction in vapor pressure but has not been studied quantitatively. The evidence obtained from a low-temperature
infrared investigation of the FN0-CIF₃₀ solid complex presented in Table 4 supports an essentially covalent structure involving a fluorine bridge.

TABLE 4

<table>
<thead>
<tr>
<th>Sample</th>
<th>Temperature, C</th>
<th>Vibration, cm⁻¹</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CIF₃₀</td>
<td>Ambient</td>
<td>674</td>
<td>1225</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>FN0</td>
<td>Ambient</td>
<td>--</td>
<td>--</td>
<td>3750</td>
<td>765</td>
</tr>
<tr>
<td>CIF₃₀-FN0</td>
<td>Ambient</td>
<td>670</td>
<td>1225</td>
<td>1970</td>
<td>765</td>
</tr>
<tr>
<td>CIF₃₀</td>
<td>-196</td>
<td>685</td>
<td>1230</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>FN0</td>
<td>-196</td>
<td>--</td>
<td>--</td>
<td>1990</td>
<td>?</td>
</tr>
<tr>
<td>FN0-CIF₃₀</td>
<td>-196</td>
<td>Broad</td>
<td>1230</td>
<td>2070</td>
<td>?</td>
</tr>
</tbody>
</table>

The CIF₃₀-FN0 complex was formed by adding a slight excess of FN0 to CIF₃₀, cycling the mixture between -80 and 0 C, and removing excess FN0 by successive expansions at -80 C. A vapor pressure-temperature curve was obtained for the complex from -80 to 0 C: \(\log_{10} p(\text{mm}) = 8.47 - 1025 T \). From the above equation and the heats of vaporization of the separate liquid constituents a heat of reaction between FN0(1) and CIF₃₀(1) was calculated as approximately -5 kcal mole of complex. This low negative enthalpy of reaction suggested a weak complex in agreement with the infrared data of the solid complex. After the complex was pumped on at -80 C for
1 hour, an infrared examination of its volatile components suggested a
1:2 complex FNO-2ClF$_3$O. However, prolonged pumping at -80 C resulted in
the loss of additional FNO.

The stretching frequencies for NO and ClO in solid FNO and solid ClF$_3$O,
respectively, each increased compared to the frequencies observed in their
gas-phase spectra. This suggested that contributions from species such as
NO$^-F^-$ were increased slightly. On formation of the solid complex, the ClO
frequency was decreased and broadened. These observations suggested a
partial transfer of the fluoride of FNO to ClF$_3$O thus increasing the NO
bond order while reducing that of the ClO bond. The N-F band in the solid
was either past the instrument range of 15.0 microns or too weak to be
observed.

The 1H n.m.r. of the FNO-ClF$_3$O system at 26 C and at -77 C showed only a
single broad line 40 ppm downfield from ClF$_3$O itself. Addition of a fluo-
ride to ClF$_3$O would be expected to shift the 1H resonance to higher fields
because of increased shielding in ClF$_4$O$^-$. The observed result, while not
inconsistent with a contribution from ClF$_4$O$^-$, shows that exchange between
the NF and ClF fluorines prevents a meaningful interpretation.

Evolution of ClF$_3$O from CsF-containing solids was achieved by pyrolysis
and suggested the presence of the salt Cs$^-ClF_4$O$^-$. The complex CsF:ClF$_3$O
may be formulated as Cs$^-ClF_4$O$^-$ by virtue of its relative thermal stability
and analogy with other alkali metal fluoride-interhalogen fluoride salts
(Ref. 7). This salt represents the first example of a stable pentavalent
fluorinated chlorocentro anion. While the formation of the CsF:ClF$_3$O com-
plex in situ was established during the course of the reaction of ClNO$_3$,
it was not known whether it could be prepared directly from ClF$_3$O and CsF.
Exposure of ClF_3O to fused and freshly powdered CsF at ambient temperature overnight resulted in almost complete complexing ClF_3O with only small amounts remaining in the gas phase. Pyrolysis of the solids led to evolution of ClF_3O of good purity, demonstrating the reversible reaction:

\[
\text{ClF}_3O + \text{CsF} \xrightarrow{\Delta} \text{Cs}^+\text{ClF}_3O^-
\]

The stoichiometry of the complex was indicated by an experiment using carefully measured amounts of CsF and ClF_3O. With an excess of the latter, an experimental composition \(\text{CsF}_{1.15}\text{ClF}_3O \) was obtained. This composition is reasonable close to a 1:1 complex, especially considering the problem of solid/liquid contact.

Further studies of the CsClF_3O complex showed that ClF_3O could be displaced from the complex by using another acid. Addition of ClF_3 to CsClF_3O at ambient temperature liberated ClF_3O according to the equation:

\[
\text{ClF}_3(g) + \text{Cs}^+\text{ClF}_3O^-(s) \rightarrow \text{Cs}^+\text{ClF}_3^-(s) + \text{ClF}_3O
\]

This confirms ClF_3 to be a stronger Lewis acid than ClF_3O toward CsF.

Reaction with Lewis Acids. The ability of oxychlorine trifluoride to form complexes with acidic fluoride has been demonstrated with AsF_3, BF_3, PF_3, and SiF_4. A nonvolatile equimolar adduct was formed with BF_3. The BF_3 complex of ClF_3O was formed as a 1:1 complex with ClF_3O which had less than 20 mm Hg dissociation pressure at ambient temperature. The solid dissociated in the gas phase and the spectrum of the gases matched the spectrum of equal amounts of the separate components. The low-temperature infrared spectrum of the
CONFIDENTIAL

CIF₃-O-PF₅ solid complex showed a broad absorption in the PF₅⁻ region in addition to bands attributed to PF₅. Two strong absorptions at ~1315 cm⁻¹ and ~1465 cm⁻¹ suggested the existence of CI₆²⁺ and CIF₃O⁻ arising from FC₁₀₂, a known impurity, and CIF₅O, respectively. The CI₆ absorptions for solid FC₁₀₂ and CIF₃O occur at 1280 and 1250 cm⁻¹, respectively and should shift to higher energy with fluoride removal. However, assignments of bands to CIF₂O⁺PF₅⁻ are not possible with the available data. A less stable complex was formed when CIF₅O and SiF₄ were mixed. The vapor pressure of the 2:1 CIF₃O-SiF₄ mixture was measured at several temperatures between -80 and 14 °C. The vapor pressure-temperature equation for the complex was obtained: log₁₀P(mm) = 7.75 - 1545/T. The enthalpy change associated with the process SiF₄(s) → CIF₃O(l) = SiF₄·2CIF₃O(s) was estimated at -2 kcal/mole of complex. Successive portions of the complex were volatilized at -23 °C. Their infrared spectra showed a constant ratio of CIF₃O to SiF₄ of 1.9 based on their absorbance ratio. A low-temperature infrared spectrum of the solid complex SiF₄·2CIF₃O was identical with the composite spectrum derived from the separate solids within experimental error. Thus, confirmatory infrared evidence on the nature of the complex was not obtained.

POSSIBLE SYNTHESSES OF CHLOROSYL FLUORIDE

Pyrolysis of the nonvolatile solid formed by low-temperature fluorination of the Cl₂O-CsF complex has, on at least three occasions, yielded CIF₃O, CIF and traces of an unknown species (Compound C). Compound C is volatile, being only partially trapped at -142 and -160 °C in attempted purification by fractional condensation. Two bands in the rock salt region were observed and are indicated in Fig. 1. Additional bands were noted at 645,
630, 610 \text{ (a possible wfr)}, and possibly at 465 cm\(^{-1}\). This unknown may be a new \(\text{F, Cl, O}\) compound and specifically may be FC10. Mass spectrometric examination of a sample containing the unknown yielded no structural information.

Because only traces of the new material were found in the pyrolysis, several new approaches have been utilized in the search for FC10 some of which have produced traces of Compound C.

If the material, presumed to be chlorosyl fluoride, were present as a complex such as CsF\(_2\)Cl0 and liberated by \(\text{CO}_{2}\) pyrolysis, metathetical displacement by ClF\(_3\) might avoid possible thermal decomposition. Three displacement attempts were not successful:

\[
[\text{CsF}_2\text{Cl0}] + \text{ClF}_3 \rightarrow \text{CsClF}_4 + \text{FC10}
\]

Because the desired FC10 may be strongly complexed, even by KF, it was decided to explore the synthesis of FC10 from fluorination of Cl\(_2\)O both in the presence of NaF and in the absence of any alkali metal fluoride. Instead of producing FC10, however, the low-temperature fluorination of Cl\(_2\)O in both cases gave good yields (described elsewhere in this report) of ClF\(_3\). The concomitant presence (or absence) of ClF suggested synthesis of the unknown and ClF by a simultaneous degradation of Cs\(^+\)ClF\(_4\) and Cs\(^-\)ClF\(_4\) complexes. Routine fluorinations of the Cl\(_2\)O-CsF complex to ClF\(_3\) and ClF\(_3\) have utilized 5:1 F\(_2\):Cl\(_2\) ratios. Intentional underfluorination to FC10 and ClF would require a F\(_2\):Cl\(_2\) ratio of 1:1 according to the equation:

\[
\text{CsF} \cdot \text{Cl}_2\text{O} + \text{F}_2 \rightarrow \text{FC10} + \text{ClF} \cdot \text{CsF}
\]
The "incomplete" fluorination at -78°C yielded ClF₃ and much unreacted Cl₂ but only traces of the unknown. Apparently once the Cl₂-CsF complex was initially attacked by F₂, the chlorine was oxidized all the way to ClF₃ and ClF₃-

Another approach to the synthesis of FCIO involves reaction of ClF₃ with appropriate reducing agents. These might include Cl₂, Cl₂, and ClF. With the reducing agent Cl₂, FCIO could arise as an oxidation product as well as a reduction product:

\[
\text{ClF}_3 + \text{Cl}_2 \rightarrow 2\text{FCIO} + \text{ClF}
\]

A series of reactions between Cl₂ and both ClF₃ and its CsF complex were run in varying reactant ratios at ambient temperature and at -18°C. In all cases the products were ClF and FCIO₂ in an overall reaction best described by:

\[
\text{Cl}_2 + \text{CsClF}_4 \rightarrow \text{CsClF}_2 + \text{ClF} + \text{FCIO}_2
\]

It is possible that the sequence involves formation of the desired FCIO followed by its disproportionation:

\[
\text{Cl}_2 + \text{CsClF}_4 \rightarrow \text{CsClF}_2 + 2\text{FCIO}^-
\]

\[
2\text{FCIO}^- \rightarrow \text{FCIO}_2 + \text{ClF}
\]

If the intermediate FCIO were generated, in no case was it stabilized through complex formation with CsF. With Cl₂ no reaction was observed at ambient temperature with either ClF₃ or its CsF complex. It should be noted that the ClF generated during the Cl₂ experiments also failed to produce FCIO by reaction with ClF₃.
From the initial preparation of Compound C by pyrolysis of a solid complex it was thought that FC10 might result from pyrolysis of ClF₃O as in the following equation:

\[
\text{ClF}_3O \xrightarrow{\Delta} \text{FC10} + \text{F}_2
\]

Representative results of experiments where Florox at low pressure was passed through a Monel tube held at temperatures from 300 to 585 °C are presented in Table 5. As seen in Table 5, decomposition of ClF₃O does not occur to a large extent under these flow conditions at temperatures less than 400 °C. Products found at 300 °C were ClF₃ and possibly FC10₂.

TABLE 5

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Percent Florox Collected at -196 °C (as percent of Florox passed)</th>
<th>Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>Not Determined</td>
<td>ClF₃, FC10₂</td>
</tr>
<tr>
<td>400</td>
<td>99</td>
<td>ClF, ClF₃, trace Compound C</td>
</tr>
<tr>
<td>450</td>
<td>82</td>
<td>ClF</td>
</tr>
<tr>
<td>500</td>
<td>46</td>
<td>ClF</td>
</tr>
<tr>
<td>500</td>
<td>38</td>
<td>FC10₂, ClF</td>
</tr>
<tr>
<td>585</td>
<td>0</td>
<td>ClF, trace Compound C</td>
</tr>
</tbody>
</table>

At 400 °C, small amounts of ClF as well as ClF₃ were found, and at higher temperatures ClF was the main product. Two reactions yielded traces of the unknown material, Compound C. Material balances agree with the
expected evolution of one molecule of ClF (or ClF₃) per molecule of decomposed ClF₃O according to the overall reaction.

\[\text{ClF}_3 \text{O} \rightarrow \text{ClF} + \text{F}_2 + \frac{1}{2} \text{O}_2 \]

Possible decomposition routes involve either of the following pairs:

\[
\begin{align*}
\text{ClF}_3 \text{O} & \rightarrow \text{ClF}_3 + \frac{1}{2} \text{O}_2 \\
\text{ClF}_3 & \rightarrow \text{ClF} + \text{F}_2 \\
\text{ClF}_3 \text{O} & \rightarrow \text{FCIO} + \text{F}_2 \\
\text{FCIO} & \rightarrow \text{ClF} + \frac{1}{2} \text{O}_2
\end{align*}
\]

No evidence is available to eliminate either of these possible routes.

Chlorine fluoride and FCIO₂ have frequently been found as products in reactions of ClF₃O. The compound FCIO may be produced in these reactions as an unstable intermediate, yielding FCIO₂ and ClF according to:

\[2\text{FCIO} \rightarrow \text{ClF} + \text{FCIO}_2 \]

It is possible that the free energy change in this reaction is sufficiently small that increasing the partial pressure of ClF in the proposed equilibrium would result in FCIO:

\[2\text{FCIO} \leftrightarrow \text{ClF} + \text{FCIO}_2 \]
A mixture of interhalogens and interhalogen oxyfluorides collected from many previous experiments and containing large amounts of ClF, ClF₃, and FC10₂ was partially separated by fractional condensation. The infrared spectrum of the most volatile fraction revealed the presence of ClF as well as Compound C. Continued fractionation of this volatile sample caused a decrease in the Compound C peaks as FC10₂ was removed. Readdition of the FC10₂ to the mixture caused an increase in the Compound C peaks.

However, a series of experiments to confirm this proposed equilibrium by reacting ClF with FC10₂ was unsuccessful. During one series of experiments, successive additions of FC1 to FC10₂ failed to show the unknown peaks. Partial pressures of ClF of from 200 to 1000 millimeters were used with a partial pressure of FC10₂ of 100 millimeters. Further attempts using large excesses of ClF with FC10₂ have not reproduced the unknown peaks at either ambient temperature or 200°C.

Another method to confirm the presence of the elusive FC10 would be the preparation of a derivative. If FC10 is present even at a very low pressure in equilibrium with ClF and FC10₂, addition of F₂ might form the derivative, ClF₃₀:

\[
\text{ClF} + \text{FC10}_2 \rightleftharpoons 2\text{FC10}
\]

\[
\text{FC10} + \text{F}_2 \rightleftharpoons \text{ClF}_3\text{O}
\]

This would both help to confirm the presence of FC10 and provide a new route to ClF₃₀ using only ClF, FC10₂, and F₂. A reaction among ClF, FC10₂, and F₂ at ambient temperature produced only the expected undesired product ClF₃ while a reaction at -78°C produced no new products.
Reaction of Cl₂0 and AgF₂

The fluorination of Cl₂0 by AgF₂ has been studied as a possible route to FC10 and/or ClF₃0.

\[
\text{Cl}_2 \text{O} + 2\text{AgF}_2 \rightarrow \text{FC10} - 2\text{AgF} - \text{ClF}
\]

\[
\text{Cl}_2 \text{O} + 4\text{AgF}_2 \rightarrow \text{ClF}_3 \text{O} - 4\text{AgF} + \text{ClF}
\]

Silver difluoride was placed in a Monel reaction tube and Cl₂0 was passed through it. In the initial reaction with the AgF₂ held at 100 °C, the Cl₂0 reacted completely producing Cl₂ (main product) and FC10₂. Because a subsequent flow experiment at ambient temperature produced the same results, static experiments at -18 and -78 °C were conducted. Again only Cl₂ and FC10₂ were found. Thus, Cl₂0 reacts or is catalytically decomposed by AgF₂ even at temperatures as low as -78 °C yielding Cl₂ and O₂ as well as smaller amounts of FC10₂.

ALKALI METAL FLUORIDE - Cl₂0 COMPLEXES

The alkali metal fluoride complexes of Cl₂0 represent a new class of compounds. The stoichiometry and structure of these compounds are of interest not only because of their unique nature but also because they may provide an insight into the paths leading to the formation of oxychlorine fluorides upon fluorination. A brief investigation of the potassium fluoride-chlorine monoxide system and a more thorough investigation of the cesium fluoride-chlorine monoxide system was undertaken to determine the stoichiometry and stability of the complexes. The potassium fluoride complex formed slowly at -78 °C and was not stable at -43 °C. The formation
of the CaF-Cl₂O complex occurred in as little as 6 hours at -78 C (as determined by disappearance of Cl₂O color) with excess amounts of CsF. At -23 C, Cl₂O vapor in contact with excess CaF was only one-third complexed after 11 hours. This observation was attributed to enhanced solid/liquid contact at -78 C. To investigate the stoichiometry of the complex formed at -78 C, large excesses of Cl₂O were stored over CsF for several days followed by overnight pumping at -78 C to remove the uncomplexed Cl₂O. Experimental Cl₂O/CaF ratios of 1.52, 0.82, 0.23, 1.5, 1.42, 1.48, and 1.54 were obtained. During another run after the usual overnight pumping to remove excess Cl₂O, an additional 3-1/2 days of pumping removed only 0.17 Cl₂O/CsF. The complex was then warmed to room temperature evolving 1.49 Cl₂O/CsF. The pressure of Cl₂O above such complexes was less than 4 millimeters at -23 C.

It is apparent that a slow forming complex with a Cl₂O/CsF ratio at or near 1.5 is formed at -78 C. A sample of the complexes was exposed to the air, hit with a hammer, and heated with a torch with no explosive results.

The nature of the complexes formed from Cl₂O and CsF are still not understood as to bonding features. Because the most stable complex, as evidenced by relative dissociation temperatures, has an appreciable dissociation pressure at 0 C, it would appear that the bonding involved is rather weak. The bonds may involve an acid-base interaction through fluorine "bridges."

\[
\text{F}^- \cdot \cdot \cdot \text{ClOCl}
\]

However, the reproducible stoichiometry of CsF\cdot1.5Cl₂O may suggest complex structures involving both dative FCl bonds and Cl-Cl bonds. The
ClF bonds would arise from the acid-base reaction of F⁻ and Cl₂O as shown in (a):

(a) \[\text{F - Cl - O - Cl} \]

Two anions represented by (a) may be interacting with 1 mole of Cl₂O to give the following resonance structures (all being doubly charged):

\[
\begin{align*}
\text{F - Cl - O - Cl} & \quad \text{F - Cl - O - Cl} \\
\quad \text{Cl - O - Cl} & \quad \text{Cl - O - Cl} \\
\quad \text{Cl - O - Cl - F} & \quad \text{Cl - O - Cl - F}
\end{align*}
\]

as well as others with the same atomic positions. The hybrid structure may well be a ladder structure such as (b):

(b) \[\text{F - Cl - O - Cl} \]

\[
\begin{align*}
\delta^- & \quad \delta^- \\
\quad \text{Cl - O - Cl} \quad \delta^- \\
\quad \text{Cl - O - Cl - F} \quad \delta^-
\end{align*}
\]

In the absence of the composition \((\text{CsF})_2\text{Cl}_2\text{O}\) it would not appear that the structure (c) is important despite the higher symmetry. As yet, no

(c) \[\text{F - Cl - O - Cl - F} \]
measurements, other than dissociation pressure, have been made on the
Cl₂O complexes. The absence of a suitable solvent has made infrared
examination of little help thus far. Broad line F¹⁹ and Cl³⁵ spectroscopy
may yield qualitative data regarding bond type.

ATTEMPTED SYNTHESIS OF OXYCHLORINE PENTAFLUORIDE

Attempts have been made to react fluorine with ClF₃O to synthesize ClF₅O
both in the presence and absence of CsF. In a series of consecutive
reactions using only ClF₃O and fluorine in a Monel reactor, five runs
from 70 to 284 °C yielded no new species. By analogy with the fluorina-
tion of Cs⁺ClF₄O⁻ would be expected to provide a more suitable route to
ClF₅O.

\[\text{Cs}^+\text{ClF}_4\text{O}^- + F_2 \rightarrow \text{CsF} + \text{ClF}_5\text{O} \]

Experiments with increasingly vigorous conditions of temperature and
pressure have not resulted in ClF₅O or any other new compound. Conditions
used were 750 psi at 50 °C, 850 psi at 100 °C, and 1200 psi at 160 °C for
a period of 16 hours or more. The ClF₅O was recovered essentially
unchanged from the Monel reactor in each case.

Another possible route to ClF₅O is the direct fluorination of ClF₃O by
KrF₂ (Ref. 8) at low temperatures. The possible utility of this reaction
is indicated by the recent report of the preparation of ClF₅ from ClF₃
and KrF₂ (Ref. 9).

\[\text{ClF}_3 + \text{KrF}_2 \rightarrow \text{ClF}_5 + \text{Kr} \]

\[\text{ClF}_5\text{O} + \text{KrF}_2 \rightarrow \text{ClF}_5\text{O} + \text{Kr} \]
Good mixing of the reactants can only be achieved at temperatures above -65 °C, the melting point of ClF₃O. In three reactions, the materials were allowed to warm up together from that temperature to ambient temperature over several hours. No evidence was found, however, for the formation of any new materials. The KrF₂ underwent smooth thermal decomposition to Kr and F₂, and some ClF₃ contaminant was partially converted to ClF₅; the ClF₃O was recovered quantitatively.

A NEW SYNTHESIS OF Cl₂O

Because of the increased requirements for Cl₂O as an intermediate in several preparations essential to this work, an improved synthetic route was desired. The presently accepted, and indeed the only proved method of preparing Cl₂O is via the ambient temperature flow reaction of nitrogen-diluted chlorine and freshly prepared yellow HgO (Ref. 10). This procedure is rather tedious and generally gives 85-percent Cl₂O (15-percent Cl₂) with 60- to 70-percent conversion of the HgO according to the following reported reaction.

\[2\text{HgO} + 3\text{Cl}_2 \rightarrow \text{Cl}_2\text{O} \cdot \text{HgCl}_2 \]

It has been found that the static reaction of HgO and Cl₂ at -80 °C, using either the above stoichiometry or excess HgO, produces high-purity Cl₂O in good yield with minimal effort. Furthermore, it has been established that under these conditions at least, the stoichiometry of the reaction approaches:

\[\text{HgO} + 2\text{Cl}_2 \rightarrow \text{Cl}_2\text{O} \cdot \text{HgCl}_2 \]

when the Cl₂:HgO ratio exceeds 2:1. The results from some representative preparations are presented in Tables 6 and 7. The Cl₂O yields are for purified material after removal of the Cl₂ impurity.

R-6641
TABLE 6

CONVERSION OF Cl\textsubscript{2} TO Cl\textsubscript{2}O BASED ON

\[2\text{HgO} + 2\text{Cl}_2 = \text{Cl}_2\text{O} + \text{HgO} \cdot \text{HgCl}_2 \]

(HgO in excess)

<table>
<thead>
<tr>
<th>HgO:Cl\textsubscript{2}, mole ratio</th>
<th>HgO, millimoles</th>
<th>Cl\textsubscript{2}, millimoles</th>
<th>Cl\textsubscript{2}O Yield, percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:1</td>
<td>9.1</td>
<td>9.06</td>
<td>100</td>
</tr>
<tr>
<td>1.08:1</td>
<td>281.6</td>
<td>260.8</td>
<td>79</td>
</tr>
<tr>
<td>1.5:1</td>
<td>127.4</td>
<td>84.3</td>
<td>79</td>
</tr>
<tr>
<td>2:1</td>
<td>18.2</td>
<td>9.06</td>
<td>77</td>
</tr>
<tr>
<td>2:1</td>
<td>18.7</td>
<td>9.33</td>
<td>80</td>
</tr>
<tr>
<td>4:1</td>
<td>37.4</td>
<td>9.33</td>
<td>70</td>
</tr>
</tbody>
</table>

TABLE 7

CONVERSION OF HgO TO Cl\textsubscript{2}O BASED ON

\[\text{HgO} - 2\text{Cl}_2 = \text{Cl}_2\text{O} + \text{HgCl}_2 \]

(Cl\textsubscript{2} in excess)

<table>
<thead>
<tr>
<th>HgO, millimoles</th>
<th>Cl\textsubscript{2}O, millimoles</th>
<th>Cl\textsubscript{2}O Yield, percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>169</td>
<td>119</td>
<td>70.4</td>
</tr>
<tr>
<td>229</td>
<td>129</td>
<td>56.3</td>
</tr>
<tr>
<td>277</td>
<td>223</td>
<td>81.2</td>
</tr>
<tr>
<td>233</td>
<td>187</td>
<td>80.2</td>
</tr>
<tr>
<td>193</td>
<td>184</td>
<td>95.5</td>
</tr>
</tbody>
</table>
Thus, the technique using excess chlorine gave maximum utilization of the HgO and achieved nearly quantitative conversion of the oxygen of HgO to Cl₂O. Other pertinent advantages of this method were its simplicity and safer handling for gross quantities of the explosive Cl₂O. Because the dispersed Cl₂O was drawn off as required from the mercury salt-Cl₂O reactor, the need to handle large volumes of liquid Cl₂O was eliminated.

The exact mechanism by which Cl₂O is formed from HgO and Cl₂ is not completely understood. It is known, however, that Cl₂O was not all present as free material when in contact with the mercury salts at -80°C. This was demonstrated by the lower vapor pressure (2 millimeters) exhibited under these conditions than that shown by pure Cl₂O (6 to 8 millimeters). Moreover, it was not possible to remove all the Cl₂O by pumping on the mixture at -80°C. Only 50 to 60 percent was evolved at that temperature, the remainder being obtained on warming the reactor to ambient temperature.

X-ray powder analysis of the solid product formed by this reaction using excess Cl₂ showed only lines corresponding to HgCl₂. Although the possibility of amorphous or isomorphous mercury compounds exists, apparently the only important reaction under these conditions yields HgCl₂.

The possibility of a complex between HgCl₂ and Cl₂O was investigated but no reproducible complex formation or reaction was found. The unusual behavior of the solid product observed (i.e., turning brown and evolving small amounts of Cl₂) may be attributed to products formed in amounts too small to be observed by simple X-ray powder analysis.
FLUORINATION OF Br-0-X COMPOUNDS

The synthesis of oxybromine fluorides was attempted using Br₂O and BrONO₂. This work was based on the analogous, proven Cl₂O and ClONO₂ reactions which yielded Florox. Fluorination of alkali fluoride complexed Br₂O at -50 C gave as volatile products, BrF₂, unreacted Br₂O, and traces of unstable, unidentified material. While it was anticipated that the sought Br, F, O compounds might remain as complexed solids after the fluorination, pyrolysis up to ~400 C did not yield any new products. The failure of this reaction may be caused by the inherent instability of the starting material or thermal degradation of the desired products upon pyrolysis.

Bromine nitrate (Ref. 11) offers two possible advantages over Br₂O as an intermediate in the proposed synthesis of oxybromine fluorides. It is reported to be more stable than Br₂O, decomposing near 0 C vs approximately -40 C for Br₂O (Ref. 12). Also, based on the high yields of Florox obtained by fluorination of uncomplexed ClONO₂, the analogous application of BrONO₂ can be expected to give similar results while eliminating the necessity of complexing the desirable products.

The synthesis of BrONO₂ was conducted according to the reported procedure (Ref. 11).

\[\text{Br}_2 + \text{Cl}_2 \rightarrow 2\text{BrCl} \]

\[\text{BrCl} + \text{ClNO}_3 \rightarrow \text{BrNO}_3 + \text{Cl}_2 \]

Yields were very low and in fact, usually zero. Because of the sketchy characterization of this material in the literature, no direct evidence for its presence (i.e., infrared spectrum or melting point) was sought.
on the small amounts thought to have been formed by this reaction. However, fluorinations yielded no new material and the actual presence of BrNO₃ was suspect. Bromine pentafluoride was the only Br-containing material observed.

A new route to BrNO₃ was derived which involves the reaction of HNO₃ and BrF₅ or BrF₃. This reaction produced a colorless liquid which decomposed slowly at room temperature. Thus, it was possible to obtain an infrared spectrum of the material and observe its vapor-phase decomposition. The reported 0°C decomposition is as follows:

\[2\text{BrONO}_2 \rightarrow \text{Br}_2 - \text{O}_2 + 2\text{NO}_2 \]

However, this vapor sample was observed to decompose according to the following stoichiometry:

\[2\text{BrONO}_2 \rightarrow \text{Br}_2 + \frac{1}{2}\text{O}_2 + \text{N}_2\text{O}_5 \]

Approximately 50-percent decomposition occurred in 15 hours at ambient temperature. The infrared spectrum of the crude material showed strong absorptions at 5.9, 7.75, and 12.5 microns, representing reasonable shifts from the infrared bands of the analogous FNO₃ and ClNO₂ compounds. (The infrared spectrum of BrNO₃ has not been reported in the literature.) Fluorination at -80°C resulted in no reaction, the BrNO₃ being recovered. This may have been caused by too low a temperature or the inhibiting effect of impurities present (HNO₃, N₂O₅, FNO₂). Reactions at higher temperatures are proceeding with efforts to purify the BrONO₂.
REACTION OF AsF$_5$ AND Cl$_2$O

As part of the effort to examine various single bonded Cl-O species as possible precursors to oxychlorine fluorides, an investigation of the reported compound, Cl$_2$O·AsF$_5$ (Ref. 13) was initiated. The reactions reported in the literature, together with the proposed fluorinations, are as follows:

\[
\begin{align*}
\text{Cl}_2\text{O} + \text{AsF}_5 & \xrightarrow{-80^\circ\text{C}} \text{Cl}_2\text{O} \cdot \text{AsF}_5 \\
\text{Cl}_2\text{O} \cdot \text{AsF}_5 & \xrightarrow{-50^\circ\text{C}} \frac{1}{2}\text{Cl}_2 + \text{Cl}_2 \cdot \text{AsF}_5 \\
\text{Cl}_2 \cdot \text{AsF}_5 + \text{F}_2 & \xrightarrow{\text{R.T.}} \text{FCIO/ClF}_3 \cdot \text{O} + \text{AsF}_5
\end{align*}
\]

At the outset of this work it was noted that there is a literature discrepancy with regard to the infrared spectrum of AsF$_5$. Samples of AsF$_5$ (Ozark-Mahoning) gave an infrared spectrum nearly identical with that reported for "AsOF$_5$", rather than AsF$_5$ (Ref. 14). But these vendor samples also gave the same infrared spectrum as that obtained for AsF$_5$ according to the unpublished thesis of L. K. Akers (Ref. 15). To establish the character of the supplied material, a vapor phase molecular weight determination was made. This gave a value of 160.7 gram/mole vs 169.9 for AsF$_5$ and 147.9 for AsOF$_5$. The mass spectrum of the material showed it to be 90-percent AsF$_5$ with approximately 10-percent As, O, and F species. Because a vapor-phase chromatogram showed only one component, it appears the sample was pure AsF$_5$. The As, O, and F impurities undoubtedly arose through reactions of the AsF$_5$ with an incompletely dry glass inlet system of the mass spectrometer, because HF and SiF$_4$ were also found in the mass spectrum.
Thus, the infrared spectrum reported by Akers is correct. Mitra's spectrum for "AsOF$_3$" (Ref. 14) consists of AsF$_5$, and the background produced on NaCl infrared cell windows after contact with AsF$_5$. Finally, Mitra's infrared spectrum for AsF$_5$ is identical in all respects with this window background band only (705 cm$^{-1}$). This was shown experimentally and it is probable that this band is attributable to an AsF$_6^-$ species. For example, K$^+$AsF$_6^-$ salt (Ref. 16) has its strong band at 694 cm$^{-1}$ vs the 705 cm$^{-1}$ observed for this peak.

The reaction of Cl$_2$O and AsF$_5$ when examined at -80 C did not proceed as indicated in the literature (Ref. 13). Mixing the two reactants at -196 C and warming to -80 C resulted in the formation of a dark red solid, which, over a period of several hours became almost black. Pumping on the solid at this point resulted in the evolution of much Cl$_2$ (with little or no -196 C noncondensibles observed).

This Cl$_2$ represents more than half that in the original Cl$_2$O. Further warming to ambient temperature caused additional evolution of small amounts of Cl$_2$ and ClO$_2$. When excess Cl$_2$O was used, no AsF$_5$ was recovered in the volatile phase. Remaining at room temperature was a white solid which exhibited two infrared active bands at 7.9 and 14.6 microns, regions characteristic of Cl=O and As-F absorptions. The solid fumed in moist air and exploded on contact with acid KI. Fluorination of the reaction mixture from which only part of the Cl$_2$ was removed gave the same white solid product on workup. When heated, the solid liberated ClO$_2$ and AsF$_5$. Present evidence, therefore, indicates that the material is probably ClO$_2$AsF$_5$ or ClO$_2$AsF$_6^-$. The latter appears most likely, especially in view of recent findings in somewhat related systems wherein redox of the oxygenated species occurs on reaction with fluorinated complexing agents (Ref. 17 and 18).
A similar reaction in this system might be:

$$25Cl_2O + 12AsF_3 \rightarrow 20 Cl_2 + 10 ClO_2^+AsF_6^- + As_2O_5$$

This could account for the high Cl_2 gas values observed, the oxidizing nature of the solid and its simple infrared spectrum and thermal decomposition. The alternate synthesis using $FCIO_2$ and $AsF_$ will be carried out in an attempt to prove the identity of the solid.

To ascertain the generality of the Cl_2O reaction with Group V fluorides, MF_5 compounds such as PF_5 were examined. It was found that only a weak interaction occurred. The Cl_2O gradually decomposed to ClO_2 and Cl_2, and some of the PF_5 was converted to POF_3. No new materials were obtained.
EXPERIMENTAL DETAILS

SYNTHESIS OF FLOROX

Fluorination of Cl₂O

Oxychlorine trifluoride, ClF₃O, was synthesized by fluorination of Cl₂O at -80 °C in the presence and absence of added alkali metal fluoride. Successful synthetic runs were also carried out at -45, -22, and 0 °C. In most cases the reaction was conducted in a 300-milliliter stainless-steel cylinder previously passivated by exposure to a minimum of 1 atmosphere of fluorine for a period of at least 16 hours. Chlorine monoxide and fluorine were introduced into the reactor by distillation in vacuo and allowed to react for several days to several weeks. Separation of the ClF₃O product from side products was achieved in all cases by fractional condensation. Excess fluorine and any oxygen produced passed -196 °C. The next most volatile side products were FC10₂, ClF, and Cl₂ and were removed by passage through a cold trap at -95 °C with the ClF₃O being retained. Chlorine trifluoride was partially retained at -95 °C; therefore, removal of ClF₃O was achieved by repeated passage through a trap held at -80 °C, with some loss of ClF₃O. In preparations using CsF, RbF, and possibly KF, pyrolysis of the nonvolatile solid complex yielded additional ClF₃O.

Fluorination of ClNO₃

Preparation of Florox from ClNO₃ was accomplished in much the same manner as that using Cl₂O. Complexing where CsF was present, however, could be conducted at either -80 or -18 °C. Work-up of the product was by the identical procedure stated previously.

R-6641
Fluorination of Mercury Salt-Cl₂O Complexes

Yellow HgO and Cl₂ were allowed to react and complex at -80°C for 1 day or longer. Fluorine was then added at -196°C and the reaction was then allowed to proceed at -80°C for several days. Vacuum fractionation was then used to isolate the products which were mostly ClF₃ and FCIO₂ with some ClF₅. Oxychlorine trifluoride when found was in low percentage yields and occasionally also some of the suspected FCIO was obtained.

Electric Discharge Fluorination of Cl₂O

Solid Cl₂O was frozen at -196°C near the bottom of a U-shaped discharge tube. During discharge, F₂ was circulated in a closed-loop system (Ref. 8) at 20-millimeter pressure until 5 mole/mole of Cl₂O was consumed. Product work-up was by fractional condensation techniques, as described previously. The amount of ClF₃O obtained was of the order of 1 to 2 percent.

The ClF₃O used for the vapor pressure-temperature measurements (Table 8) was purified by repeated fractional condensations. The material was water-white and free of any impurities detectable by infrared spectroscopy run at high pressures. Approximately 300 cc of gaseous ClF₃O were utilized for the measurements which were conducted in a 71-cc volume apparatus. This was constructed entirely of stainless steel and incorporated a stainless-steel Bourdon tube pressure gage.

Fluorination of Sodium Chlorite

Three grams of sodium chlorite (Matheson, Coleman, and Bell) were added to a 300-milliliter stainless-steel bomb. One liter of fluorine was added by condensation in vacuo at -196°C. The bomb was then allowed to warm to
TABLE 8

VAPOR PRESSURE-TEMPERATURE DATA FOR CIF₃₀

(Equation: \(\log_{10} p(\text{mm}) = 8.433 - 1680/T \))

<table>
<thead>
<tr>
<th>Observed Pressure, millimeters</th>
<th>Temperature, K</th>
</tr>
</thead>
<tbody>
<tr>
<td>822</td>
<td>304.9</td>
</tr>
<tr>
<td>635</td>
<td>298.1</td>
</tr>
<tr>
<td>525</td>
<td>294.3</td>
</tr>
<tr>
<td>410</td>
<td>288.6</td>
</tr>
<tr>
<td>314</td>
<td>283.0</td>
</tr>
<tr>
<td>253</td>
<td>273.9</td>
</tr>
<tr>
<td>200</td>
<td>273.2</td>
</tr>
<tr>
<td>98</td>
<td>260.6</td>
</tr>
<tr>
<td>54.5</td>
<td>250.1</td>
</tr>
</tbody>
</table>
ambient temperature. Products after 66 hours at ambient were ClF₃, Cl₂, ClF, much smaller amounts of Compound C, and possible traces of ClF₃O.

Another run was made by adding an additional 10 grams of NaClO₂ to the bomb. Two liters of fluorine was added at -196 C, and the bomb was warmed to -80 C for 16 hours. Volatile products were Cl₂, FCIO₂, and ClF₃O. Pyrolysis of the solids remaining in the bomb produced no additional materials.

Additional reactions using both gaseous F₂ at ambient temperature and -80 C, and liquid F₂ initially condensed at -196 C and subsequently warmed, produced no additional ClF₃O or Compound C.

PREPARATION OF Cl₂O

Yellow HgO was freshly prepared by the reaction of mercuric chloride and sodium hydroxide solutions. After drying and powdering, HgO was loaded into small glass ampoules together with appropriate amounts of chlorine. The closed, evacuated ampoule was kept at Dry Ice temperature at least overnight, although longer reaction periods were beneficial rather than detrimental to Cl₂O formation. Very pure Cl₂O was obtained if HgO was in excess, while better utilization of the oxygen of HgO was achieved if chlorine was in excess. Impure Cl₂O was upgraded by trap-to-trap distillation using carbon disulfide slush (-112 C) and liquid nitrogen baths. The purity and identity of the product was established by its infrared spectrum (Ref. 19), vapor-phase chromatography and vapor pressure.

With the earlier dynamic method it was necessary to use freshly prepared yellow HgO. However, it was determined that the static method is efficient enough to permit the use of commercial yellow HgO. While the yields
of Cl₂O are not quite as high as those achieved with the fresh HgO, they are nevertheless quite good; i.e., 90- to 97-percent Cl₂O using either 1:1 or 2:1 HgO to Cl₂ mole ratios. This compares to 95-percent with fresh HgO. Using the flow technique, the commercial material produces only a 20- to 25-percent conversion of the Cl₂ to Cl₂O. Therefore, if desired, the preparation of fresh HgO may be avoided with only minimal loss of efficiency in the conversion using the static technique.

PREPARATION OF ClNO₃

Chlorine nitrate was prepared by allowing roughly equimolar quantities of Cl₂O and N₂,O₄ or N₂O₃ to react in evacuated glass ampoules at -80°C overnight or longer. Residual Cl₂O indicated by its red color was consumed by allowing the reaction to proceed briefly in the vacuum line at ambient temperature. The ClNO₃ produced was purified by vacuum fractionation and identified by its infrared spectrum (Ref. 20) and vapor pressure (Ref. 21).

LOW-TEMPERATURE INFRARED CELL

The low-temperature infrared experiments were determined in a simple, infrared cell which was constructed as described elsewhere (Ref. 1). The completed assembled cell fits conveniently into a Perkin-Elmer 137 Infracord spectrometer and has a coolant capacity of 2 liters. It can be used at temperatures as low as 77 K and is relatively easy to use with slush baths because the cooling flask is insulated with 3-inch solid foam. The inner window of AgCl fits into a copper optical blank holder. The body is glass and is fitted with two outside AgCl windows.
Fluores complexes were performed in a metal vacuum line and condensed onto the inner AgCl window at -196°C by means of a copper entrance tube directed at the window.

Dissociation pressure-temperature data for FNO·ClF$_3$O and SiF$_4$·2ClF$_3$O are presented in Tables 9 and 10.

TABLE 9

DISSOCIATION PRESSURE-TEMPERATURE DATA FOR FNO·ClF$_3$O

(Equation: $\log_{10} p(\text{mm}) = 8.47 - 1625/T$)

<table>
<thead>
<tr>
<th>Observed Pressure, millimeters</th>
<th>Temperature, K</th>
</tr>
</thead>
<tbody>
<tr>
<td>435</td>
<td>278.6</td>
</tr>
<tr>
<td>340</td>
<td>273.2</td>
</tr>
<tr>
<td>97</td>
<td>270.1</td>
</tr>
<tr>
<td>25</td>
<td>228.1</td>
</tr>
</tbody>
</table>

TABLE 10

DISSOCIATION PRESSURE-TEMPERATURE DATA FOR SiF$_4$·2ClF$_3$O

(Equation: $\log_{10} p(\text{mm}) = 7.75 - 1545T$)

<table>
<thead>
<tr>
<th>Observed Pressure, millimeters</th>
<th>Temperature, K</th>
</tr>
</thead>
<tbody>
<tr>
<td>340</td>
<td>296.0</td>
</tr>
<tr>
<td>158</td>
<td>278.6</td>
</tr>
<tr>
<td>150</td>
<td>273.2</td>
</tr>
<tr>
<td>40</td>
<td>250.1</td>
</tr>
</tbody>
</table>
PREPARATION OF KrF₂

Krypton difluoride was prepared by circulating an approximately 1:1 molar mixture of Kr and F₂ through an electric discharge reactor cooled to -196 °C. The apparatus and technique are nearly the same as that reported in the literature (Ref. 8). Changing the temperature of the discharge tube to -80 °C resulted in no reaction.

PREPARATION OF BrNO₃

Bromine nitrate was prepared by allowing excess anhydrous HNO₃ and either BrF₅ or BrF₇ to react in a Teflon container under vacuum at 0 °C. Partial purification was achieved through fractional condensations at 0, -45, -80, and -196 °C. Pure BrNO₃ was not obtained but the presence of the desired material was determined by infrared spectra of crude samples. The decomposition products formed at ambient temperature confirmed the presence of a bromine nitrate species.

REACTION OF Cl₂O and AsF₅

The interaction of these materials was conducted in Teflon-metal containers. A slower reaction with less side products was noted at -80 °C, but even at -65 °C the basic course of the reaction remained unchanged. For approximately 2:1 mixtures of Cl₂O and AsF₅, the Cl₂ liberated was generally of the order of 80 percent of that contained in the Cl₂O used. Chlorine was identified by its vapor pressure, vapor-phase chromatography, and its lack of infrared absorptions. The small amounts of ClO₂ formed were identified by infrared examination.
REFERENCES

1. R-6258, Annual Summary Report, Inorganic Halogen Oxidizers, Nonr 4428(00), Rocketdyne, a Division of North American Aviation, Inc., Canoga Park, California, 30 July 1965, CONFIDENTIAL.

3. R-5883-2, Inorganic Halogen Oxidizers, Nonr 4428(00), Rocketdyne, a Division of North American Aviation, Inc., Canoga Park, California, 30 November 1964, CONFIDENTIAL.

5. PCC-8518-QR-12, Synthesis of Inorganic Oxidizers, Pennsalt Chemical Corp., King of Prussia, Pennsylvania, 1 March 1966, CONFIDENTIAL.

6. PCC-8518-QR-8, Synthesis of Inorganic Oxidizers, Pennsalt Chemical Corp., King of Prussia, Pennsylvania, 1 March 1965, CONFIDENTIAL.

Oxychlorine trifluoride (ClF₃O) has been synthesized in excellent yields by the fluorination of either Cl₂O or ClNO. Lesser amounts of ClF₃O resulted from direct discharge fluorination of solid Cl₂O and the simple fluorination of NaClO₂ and of a mercury salt Cl₂O complex. Basic physical properties and analytical data for ClF₃O were determined. The compound has a boiling point of 29.4 ± 1.0 C and a melting point of -66 ± 1.0 C with a density of 1.90 ± 0.03 g/cm³ at 25.5 C. The vapor pressure-temperature equation from -22 to 32 C is described by

\[\log_{10} P(\text{mm}) = 8.431 - \frac{1680}{T} \]

In addition, ClF₃O showed good thermal stability in Monel. On several occasions, pyrolysis of the solids from fluorination of the CsF-Cl₂O complex yielded traces of an unknown species (Compound C) which may be FCIO. Alternate syntheses were sought to achieve enhanced yields of Compound C. Alkali metal fluorides were found to complex with Cl₂O. These represent a new class of compounds. The most thorough investigation was with CsF where a stoichiometry of CsF·1.5Cl₂O was established. Possible bonding schemes are discussed. The preparation of ClF₃O was attempted by reaction of F₂ with ClF₃O in the presence and absence of CsF and also by reaction of KrF₂ with ClF₃O. An improved procedure was developed for the synthesis of Cl₂O. Maximum conversion of the starting materials results according to the equation: 2Cl₂O + HgCl₂ → Cl₂O + HgCl₂. Improved techniques were developed for the formation of BrNO₃. Bromine nitrate and Br₂O were employed as precursors in attempts to produce oxybromine fluorides. The reaction of Cl₂O and AsF₃ was examined and found not to proceed as indicated in the literature. Oxidation and reduction of the Cl₂O occurs giving ClO₂ and probably ClO₂⁺. AsF₆⁻. (C)