NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
SYSTEM FOR RAPID HANDLING OF AN IRRADIATED SOLUTION

by

E. Greendale
D. L. Love

U.S. NAVAL RADIOLOGICAL DEFENSE LABORATORY
SAN FRANCISCO 24, CALIFORNIA
The work reported was part of two projects, sponsored by the Atomic Energy Commission under Contract No. AT(49-2)-1167, and by the Defense Atomic Support Agency under NWER Program A7a, Subtask 10.030. The projects are described in this Laboratory's USNRDL Technical Program for Fiscal Years 1962 and 1963, revised January 1962, where they are designated Program A1, Problem 4, and Program D-1, Problem 1.
An apparatus has been constructed for rapidly transferring irradiated solutions to a container for fast radiochemical separations. A "rabbit" containing a solution is irradiated; within 1 second after irradiation it is transported through a pneumatic system to a receiver; there it impales itself onto two hypodermic needles connected to a container under vacuum. The irradiated solution and one acid wash of the rabbit are quantitatively transferred to the container within 2 seconds. Since the system is completely contained, there is no contamination of the laboratory area nor danger to personnel.
SUMMARY

The Problem

Studies of the fission process require rapid radiochemical separations of early-time fission products. To make measurements on these fission products as soon as possible after fission, it is desirable to have as short as possible the time required for the irradiation, transport of irradiated products to chemistry facilities, radiochemical separations, and physical measurements. An attempt is made in this work to reduce the time required to transport the irradiated products to the chemistry facilities.

Findings

An apparatus was constructed in which it is possible to have available, in about 2 seconds after irradiation, all of an irradiated solution in a form ready for radiochemical separations.
INTRODUCTION

In studies of short-lived radionuclides it is frequently necessary to recover irradiated samples from the site of irradiation and chemically process them as rapidly as possible. A system was developed which permits quantitative removal within about 2 seconds, of an irradiated solution from its irradiation and transporting container, called a "rabbit". The travel time of a rabbit transported by the pneumatic system from a reactor or an accelerator is 1 second or less. Therefore, chemical separations can be started within 3 seconds after irradiation. With this system purified samples of tin and of antimony were isolated from fission product mixtures in about ten seconds.* Such a system (see Fig. 4) has general utility in studies of short-lived radionuclides.

APPARATUS

Rabbit for Irradiating and Transporting Solution

The rabbit (Fig. 1) used is 0.725 in. diameter x 1-1/8 in. long and holds a volume of 1-1/2 ml. The body, one major part, of the rabbit is made of Teflon. This material is easy to machine, has a very low coefficient of friction, is inert to most reagents, holds up well in the neutron flux used (10^{10} n/cm2/sec), and does not become activated to the point where it is a radiological nuisance. Polyethylene could be used but it is more difficult to machine.

The cap was initially made of Teflon. However the threads did not hold their shape since Teflon tends to flow when under pressure for extended periods of time. Nylor was substituted for Teflon for it is tough and has many of Teflon's desirable properties. Since the cap does not come in contact with the solution, it need not be chemically inert.

The insert, a third major part, gives the contour for the efficient draining of the container. It is of polyethylene, which has the resilience necessary for a good seal and is inert to the chemicals currently used.

Two expendable diaphragms complete the rabbit. The one in contact with the solution is 0.016 in. thick Teflon, which gives strength to

*A. H. Greendale and D. L. Love, to be published.
the diaphragm and is chemically inert. The outer diaphragm of 0.020
in. thick gum rubber (rubber glove material) is needed to give a tight
leak-proof seal around the needles used to withdraw samples.

Method of Removing Irradiated Solution From Rabbit

The arrangement of the hypodermic needles is shown in Fig. 2. The
two 17-gauge stainless steel needles are silver soldered 1/8-in. on cen-
ters to a 1/16 in. thick 15/16 in. diameter brass plate.

One needle draws the solution out of the rabbit. It is positioned
in the plate so the lower edge of the opening in the point of the
needle is flush with the Teflon diaphragm of the rabbit. The lower end
of this needle has a serrated portion for attaching polyethylene tubing
(0.128 in. outside diameter, 0.085 in. inside diameter). The other
needle lets air into the rabbit as the solution is withdrawn. The
rinse solution (if one is desired) is also drawn through this needle
into the rabbit. This needle is positioned in the plate so its tip is
just below the top inside surface of the body of the rabbit.

The hub of the needle is threaded to fit a nut which pulls a tap-
ered threaded adapter into the needle. The top of the adapter has a
tapered 45° seat. A 3/32 in. diameter ground glass ball forms a check
valve with this seat. (Ordinary boiling beads will not give a good
fit). Two bypasses are milled inside of the hub so the ball will not
seal the needle when it rises off of its seat. The check valve is nec-
essary to prevent a small part of the solution from flowing out of this
needle when it first enters the rabbit. The same size polyethylene tub-
ing used for drawing the solution out of the rabbit is used for the air
intake and rinse solution. The hole in the base of the adapter is
tapered so the polyethylene tubing is held by friction. As the nut is
screwed off of the threaded hub, it bears against a ring on the adapter,
pushing the tapered adapter out of the needle hub. This ring also
keeps the nut and adapter together so the nut will not be misplaced.

Apparatus for Catching Irradiated Rabbit

The "rabbit trap" (Fig. 3) is made up of five parts; the cylinder,
cup, cap, retainer, and guide.

The cylinder is made of clear Lucite tubing, 1-5/16 in. inside
diameter, 1-13/16 in. outside diameter and 6 in. long. The ends are
threaded for 3/4 in. and are fitted with lock nuts.
The cup, made of brass, has two holes in the bottom through which the needles pass. A small locating pin goes into a hole in the brass plate holding the needles. This is to keep the needles from twisting when the cap is tightened. The cup has an O-ring on the inside to prevent the helium from the pneumatic system from leaking around and into the base of the rabbit. Four holes in the bottom edge of the cup allow any gas trapped below the rabbit to escape into the surge chamber in the cap. This gas in the cap cushions the rabbit when it comes to the end of its travel. There is also an O-ring seal between the cup and the plate holding the needles. The bottom of the cup is contoured to the shape of the base of the rabbit so the diaphragms will be supported when the rabbit comes to a stop. The cup screws into the threaded base of the next unit, called the retainer.

The retainer also is made of brass. It is fitted with four spring-loaded pawls which snap in behind and prevent the rabbit from bouncing away from the needles. Each pawl is cut to a slightly different length to allow for some variation in rabbit length. Vent holes in the retainer, placed in line with the top of the rabbit when seated in the cup, allow the helium to escape ahead of the rabbit. The escaping helium is used to trigger the shut-off valve of the pneumatic transfer system; consequently the outer edge of the retainer, which contacts the inside of the Lucite cylinder, is fluted to allow the helium to escape up the inside of the cylinder and out to the trigger.

The top of the retainer was originally tapered on the inside to take a 1.0 in. outside diameter Tygon tube, which runs to the reactor. This connection did not work very well since the junction between the soft plastic tubing and the retainer was difficult to adjust for proper alignment. A guide made of 3/4 in. inside diameter stainless steel of 0.020 in. wall thickness slips into a recess in the top of the retainer. The 3/4 in. inside diameter Tygon tubing slips over the top of and remains attached to the guide. To prevent misalignment of the plastic tubing and the guide when the Tygon tubing is under pressure (with resultant swelling of the tubing) a brass sleeve, which fits snugly around the Tygon, is soldered to the stainless steel guide. The top of the brass sleeve centers the guide in the Lucite cylinder. This section is fluted, as was the retainer, to allow the helium to escape between the guide and the inside of the Lucite tube.

Method of Adding Irradiated Solution to Chemical Analyzer

Figure 4 shows how the system is attached to the chemical apparatus for fast separations of fission products. The glass container pictured holds the carriers and other reagents needed in the chemical separation. Initially, the bottom stopcock is closed. The three-way stopcock
connecting the vessel to the vacuum and nitrogen is positioned for the vacuum. Just prior to the arrival of the "rabbit" from the reactor, the stopcock at the top of the vessel is opened. When the rabbit is impaled on the needles, the solution in the rabbit is drawn into the glass container within one second. A rinse can be performed in an additional second. The valve on the top of the container is then closed. The three-way valve is turned to shut off the vacuum and introduce nitrogen under a few pounds pressure. The valve on the bottom of the vessel can then be opened to send the solution to the next part of the separation apparatus which in this case is a semi-automatic chemical analyzer. It consists of a series of similar units for performing precipitations, solvent extractions, distillations, etc. which are placed in the proper sequence to make the required radiochemical separations.

SUMMARY

This system for transferring irradiated solutions from a rabbit to a piece of chemical apparatus has been found to be a marked improvement over anything presently available. The rabbit can be emptied within one second. One can make a quantitative transfer by using a rapid rinse (about one second). As the transfer is done in a closed system, there is no possibility of contamination of the laboratory area. Since the solutions are transferred quickly, the radiation dose absorbed by the laboratory worker is kept to a very low level. If one were to work at very high levels of radioactivity, the valves could be operated remotely by solenoids.
Fig. 1 Rabbit for Irradiating and Transporting Solution
Fig. 2 Apparatus for Removing Irradiated Solution from Rabbit
Fig. 3 Apparatus for Catching Rabbit
Fig. 4 Apparatus for Adding Irradiated Solution to Chemical Analyzer
DISTRIBUTION

Copies

NAVY

1-3 Chief, Bureau of Ships (Code 335)
4 Chief, Bureau of Ships (Code 320)
5 Chief, Bureau of Medicine and Surgery
6 Chief, Bureau of Naval Weapons (RHEMA-11)
7-8 Chief, Bureau of Yards and Docks (Code 74)
9 Chief, Bureau of Yards and Docks (Code C-400)
10 Chief of Naval Operations (Op-07T)
11 Chief of Naval Research (Code 104)
12 Commander, New York Naval Shipyard (Material Lab.)
13-15 Director, Naval Research Laboratory (Code 2021)
16-17 Director, Naval Research Laboratory (Code 6370)
18 Office of Naval Research (Code 422)
19-24 Office of Naval Research, FPO, New York
25 CO, U.S. Naval Civil Engineering Laboratory
26 Commander, Naval Air Material Center, Philadelphia
27 Naval Medical Research Institute
28 U.S. Naval Postgraduate School, Monterey
29 Office of Patent Counsel, San Diego
30 U.S. Naval Hospital, San Diego

ARMY

31 Chief of Research and Development (Atomic Div.)
32 Chief of Research and Development (Life Science Div.)
33 Deputy Chief of Staff for Military Operations (CBR)
34 Chief of Engineers (ENGMC-EB)
35 Chief of Engineers (ENGMC-DE)
36 Chief of Engineers (ENGCW)
37 CG, Army Materiel Command (AMCRD-DE-NE)
38 CG, Ballistic Research Laboratories
39 CG, USA CBR Agency
40 President, Chemical Corps Board
41 CO, Chemical Corps Training Command
42 Commandant, Chemical Corps Schools (Library)
43 CO, Chemical Research and Development Laboratories
44 Commander, Chemical Corps Nuclear Defense Laboratory
Army Environmental Hygiene Agency
CG, Aberdeen Proving Ground
Director, Walter Reed Army Medical Center
CG, Combat Developments Command (CDCMR-V)
CG, Quartermaster Res. and Eng. Command
Hq., Dugway Proving Ground
The Surgeon General (MEDNE)
CG, Engineer Res. and Dev. Laboratory
Director, Office of Special Weapons Development
CO, Army Research Office
CO, Watertown Arsenal
CG, Mobility Command
CG, Munitions Command
CO, Frankford Arsenal
CG, Army Missile Command

AIR FORCE
Assistant Chief of Staff, Intelligence (AFCIN-3B)
CG, Aeronautical Systems Division (ASAPRD-NS)
Directorate of Civil Engineering (AFOCE-ES)
Director, USAF Project RAND
Commandant, School of Aerospace Medicine, Brooks AFB
Office of the Surgeon (SUP3.1), Strategic Air Command
Office of the Surgeon General
CG, Special Weapons Center, Kirtland AFB
Director, Air University Library, Maxwell AFB
Commander, Technical Training Wing, 3415th TTG
Commander, Electronic Systems Division (CRZT)

OTHER DOD ACTIVITIES
Chief, Defense Atomic Support Agency (Library)
Commander, PC/DASA, Sandia Base (FCDV)
Commander, PC/DASA, Sandia Base (FCTG5, Library)
Commander, PC/DASA, Sandia Base (FCWT)
Office of Civil Defense, Washington
Civil Defense Unit, Army Library
Armed Services Technical Information Agency
Director, Armed Forces Radiobiology Research Institute

AEC ACTIVITIES AND OTHERS
Research Analysis Corporation
Aerojet General, Azusa
Aerojet General, San Ramon
Allis-Chalmers Manufacturing Co., Milwaukee
Allis-Chalmers Manufacturing Co., Washington
Allison Division - GMC
Argonne Cancer Research Hospital
107-116 Argonne National Laboratory
117 Atomic Bomb Casualty Commission
118 AEC Scientific Representative, France
119 AEC Scientific Representative, Japan
120-122 Atomic Energy Commission, Washington
123-126 Atomic Energy of Canada, Limited
127-130 Atomic International
131-132 Babcock and Wilcox Company
133-134 Battelle Memorial Institute
135 Beryllium Corporation
136 Borden Chemical Company
137-140 Brookhaven National Laboratory
141 Bureau of Mines, Albany
142 Bureau of Mines, Salt Lake City
143 Chance Vought Corporation
144 Chicago Patent Group
145 Columbia University (Cropper)
146 Combustion Engineering, Inc.
147 Combustion Engineering, Inc. (NRD)
148 Committee on the Effects of Atomic Radiation
149 Defence Research Member
150 Denver Research Institute
151 Division of Raw Materials, Washington
152 Dow Chemical Company, Rocky Flats
153-155 duPont Company, Aiken
156 duPont Company, Wilmington
157 Edgerton, Germeshausen and Grier, Inc., Goleta
158 Edgerton, Germeshausen and Grier, Inc., Las Vegas
159 Fundamental Methods Association
160 General Atomic Division
161-162 General Dynamics, Fort Worth
163-164 General Electric Company, Cincinnati
165-168 General Electric Company, Richland
169 General Electric Company, San Jose
170 General Electric Company, St. Petersburg
171 General Scientific Corporation
172 General Telephone and Electronics Laboratories, Inc.
173 Goodyear Atomic Corporation
174 Grand Junction Office
175 Hughes Aircraft Company, Culver City
176 Iowa State University
177 Jet Propulsion Laboratory
178-179 Knolls Atomic Power Laboratory
180-181 Los Alamos Scientific Laboratory (Library)
182 Mallinckrodt Chemical Works
183 Maritime Administration
184 Martin-Marietta Corporation
185 Massachusetts Institute of Technology
186 Monsanto Chemical Company
187 Mound Laboratory
188 NASA, Lewis Research Center
189-190	NASA, Scientific and Technical Information Facility
191	National Bureau of Standards (Library)
192	National Bureau of Standards (Taylor)
193	National Lead Company of Ohio
194	New Brunswick Area Office
195	New York Operations Office
196	Nuclear Materials and Equipment Corporation
197	Nuclear Metals, Inc.
198	Office of Assistant General Counsel for Patents
199-202	Phillips Petroleum Company
203	Power Reactor Development Company
204-207	Pratt and Whitney Aircraft Division
208	Princeton University (White)
209-210	Public Health Service, Washington
211	Public Health Service, Las Vegas
212	Public Health Service, Montgomery
213	Purdue University
214	Radiation Applications, Inc.
215	Sandia Corporation, Albuquerque
216	Sandia Corporation, Livermore
217	Technical Research Group
218	Tracerlab, Inc., Richmond
219-221	Union Carbide Nuclear Company (ORGDP)
222-225	Union Carbide Nuclear Company (ORNL)
226	Union Carbide Nuclear Company (Paducah Plant)
227	United Nuclear Corporation (NDA)
228	U.S. Geological Survey, Denver
229	U.S. Geological Survey, Menlo Park
230	U.S. Geological Survey, Naval Weapons Plant
232	U.S. Geological Survey, WR Division
233-234	University of California Lawrence Radiation Lab., Berkeley
235-236	University of California Lawrence Radiation Lab., Livermore
237	University of California, Los Angeles
238	University of Hawaii
239	University of Puerto Rico
240	University of Rochester (Atomic Energy Project)
241	University of Utah
242	University of Washington (Donaldson)
243-244	Westinghouse Bettis Atomic Power Laboratory
245	Westinghouse Electric Corporation (Rahilly)
246	Westinghouse Electric Corporation (NASA)
247	Yankee Atomic Electric Company
248-272	Technical Information Extension, Oak Ridge
USNRDL	
273-310	USNRDL, Technical Information Division

DISTRIBUTION DATE: 3 January 1963
<table>
<thead>
<tr>
<th>Naval Radiological Defense Laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>USNRDL-TR-601</td>
</tr>
</tbody>
</table>

UNCLASSIFIED

An apparatus has been constructed for rapidly transferring irradiated solutions to a container for fast radiochemical separations. A "rabbit" containing a solution is irradiated; within 1 second after irradiation it is transported (over)

<table>
<thead>
<tr>
<th>Naval Radiological Defense Laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>USNRDL-TR-601</td>
</tr>
</tbody>
</table>

UNCLASSIFIED

An apparatus has been constructed for rapidly transferring irradiated solutions to a container for fast radiochemical separations. A "rabbit" containing a solution is irradiated; within 1 second after irradiation it is transported (over)

1. Separation - Instrumentation.
2. Solvent extraction - Instrumentation.

I. Greendale, A. E.
II. Love, D. L.
III. Title.
IV.

through a pneumatic system to a receiver; there it impales itself onto two hypodermic needles connected to a container under vacuum. The irradiated solution and one acid wash of the rabbit are quantitatively transferred to the container within 2 seconds. Since the system is completely contained, there is no contamination of the laboratory area nor danger to personnel.

UNCLASSIFIED

through a pneumatic system to a receiver; there it impales itself onto two hypodermic needles connected to a container under vacuum. The irradiated solution and one acid wash of the rabbit are quantitatively transferred to the container within 2 seconds. Since the system is completely contained, there is no contamination of the laboratory area nor danger to personnel.

UNCLASSIFIED