
UN CLASSIFIED

AD2 9 2 109

ARMED 'SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

UIJTZCLASSIFIED



NOTICE: When government or other drawings, speci-
fications or other data are used for any purpose
other than in connection with a definitely related
government procurement operation, the U. S.
Government thereby incurs no responsibility, nor any
obligation whatsoever; and the fact that the Govern-
ment may have formilated, furnished, or in any way
supplied the said drawings, specifications, or other
data is not to be regarded by implication or other-
wise as in any manner licensing the holder or any
other person or corporation, or conveying any rights
or permission to manufacture, use or sell any
patented invention that may in any way be related
thereto.



S"', .. /'

MEMORANDUM
,.•RM-3283-PR

DECEMBER 1962

SOME PROBLEMS OF
BASIC ORGANIZATION IN

"PROBLEM-SOLVING PROGRAMS

Allen Newell

0*,

PREPARED FOR:

UNITED STATES AIR FORCE PROJECT RAND

SANTA MONICA • CALIFORNIA



MEMORANDUM

RM-3283-PR
DECEMBER 1962

SOME PROBLEMS OF
BASIC ORGANIZATION IN

PROBLEM-SOLVING PROGRAMS
Allen Newell

This research is sponsored by the United States Air Force under Project RAND - Con-
tract No. AF 49(638)-700 - monitored by the Directorate of Development Planning,
Deputy Chief of Staff, Research and Technology, Hq USAF. Views or conclusions con-
tained in this Memorandum should not be interpreted as representing the official opinion
or policy of the United States Air Force. Permission to quote from or reproduce portions
of this Memorandum must be obtained from The RAND Corporation.

1I00 MA I 5 *0S * MONICASI



-ill-i

PREFACE

This Memorandum is an interim report on the develop-

ment of problem-solving computer programs. Several of

the organizational problems in constructing a problem-

solving program and applying it to actual problems are

discussed and analyzed in an effort to detect the sources

of the information contained in the program.

The study is of interest to programmers and engineers

concerned with advanced concepts of machine use and

machine organization, and will eventually lead to con-

struction of very sophisticated applied programs, patterned

on the game-playing and theorem proving type programs

common today.

A presentation based on this study was made at the

Conference on Self-Organizing Systems, Chicago, Illinois,

May 1962, sponsored by the Information Systems Branch of

the Office of Naval Research and the Armour Research

Foundation of the Illinois Institute of Technology.



-V-

SUMMARY

This Memorandum examines several examples of organiza-

tional problems dealing with the construction and application

of problem-solving programs. Usually, problem-solving

programs are discussed by giving only the results and the

main methods used to achieve these results. Yet, most of

the difficulties in creating programs stem from organizational

problems, not substantive ones. This Memorandum is an

attempt to bring some of these out in the open. It proceeds

entirely by examples drawn from the experience of the last

several years, oince no adequate theoretical or conceptual

framework exists for discussing organizational issues.

The first example is how to store information that is

created dynamically and unpredictably during the operation

of the program. The solution that has been adopted--list

processing--is already well known, but is reviewed to bring

out its essential features.

The second example is how to organize large, complex

processes. The two principles that are at the heart of

modern programming, sequential control and hierarchical

subroutine organization, are discussed, both as to their

power and their limitations. The latter show up in the

form of highly rigid programs.

The third example is how to have many different kinds

of goals producing many different kinds of results, and yet

be able to use these results in the rest of the problem.



-vi -

The problem is made more difficult when it is also desired

to create and attempt goals in arbitrary order. Early

problem-solving programs solved the difficulty by establish-

ing restrictive conventions on the types of goals allowed.

Some attempts to remove these restrictions that have been

tried. with General Problem-Solver (GiS) are discussed.

The fourth example is how to avoid the rigidities of

many special routines when building up highly particular

and inhomogeneous collections of data. This is a problem

in which list processing is only of modest help.

The last example concerns the general problem of how

to remember the past. A problem-solver must selectively

keep various amounts of information about its past history.

Rigid strategies for doing this lead to cumbersome programs

and it is not clear how to provide the necessary flexibility.

All of these problems stem from the fact that problem-

solving programs are more dynamic and require more flexibility

than we know how to provide. By solving these organizational

problems in this context we can expect to develop the

appropriate ways to organize complex programs that require

flexibility in many applied areas as well.



-vii-

CONTENTS

PREFACE ............................................. iii

SUMMA* RY ........ . . . . . . . . . . . . . ........ v

Section

I. INTRODUCTION ................................. 1

II. STORING DYNAMIC STRUCTURES ................... 5

III. ORGANIZING LARGE PROCESSES ................... 10

IV. USING THE RESULTS OF SUBGOALS ................ 20
Solution by Remote Control ................. 26
Solution by Communication .................. 130
Solution by Interpretation .................. 31
Solution by Understanding ......r..... 34

V. ACCESSING INHOMOGENEOUS COLLECTIONS OF DATA .. 36

VI. PRESERVING PAST HISTORY ...................... 46

VII. CONCLUSION ................................... 55

REFERENCES .......................................... 59



I. INTRODUCTION

There now exists a well-launched scientific enter-

prise to explore the information processes involved in

intelligent behavior by constructing computer programs

that perform in an intelligent way. One segment of this

enterprise focuses on programs able to solve difficult

problems. About a dozen programs have been built that

can fairly be called problem-solvers. They include

checker playing programs; (1,2) chess playing programs;(3,4,5)

theorem proving programs in symbolic logic(6) and plane

geometry;(7) programs for handling management science

problemn;(8) programs for analytical integration;(9)

some attempts at more general problem solving programs;(10)

plus a few others.

These programs are all rather similar in nature.

For each,the task is difficult enough to allow us to

assert that the programs problem-solve, rather than

simply carry out the steps of a procedure for a solution

invented by the programmer. They all operate on formalized

tasks, which,although difficult, are not unstructured.

All the programs use the same conceptual approach: they

interpret the problem as combinatorial, involving the

discovery of the right sequence of operations out of

a set of possible sequences. All the programs generate

some sort of tree of possibilities to gradually explore

the possible sequences. The set of all sequences is much



-2-

too large to generate and examine in toto, so that various

devices, called heuristics, are employed to narrow the

range of possibilities to a set that can be handled within

the available limits of processing effort. Within these

bounds there is a good deal of variation among the

programs as to the particular heuristic devices used.

These range from learning schemes,(') to models,(7) to

elaborate abstract representations.(8) The current state

is well summarized by Minsky.(11)

For all the simplicity of the thumbnail sketch given

above, these programs are large and complex. Each has

required large amounts of effort to develop. Since these

programs represent an attempt to get computers to perform

patterns of symbolic activity that we do not understand

well, their complexity and effort is not surprising.

We do not know whether the difficulties stem from our

ignorance or from the inherent complexity of the

processing.

It is usual, when talking or writing about these

programs, to describe the task the program is to accomplish,

the major methods and heuristics that are used, and the

top executive routine. Problems in program organization--

what system conventions were adopted and how they

affected the problem, or what role different data structures

played--are not much discussed. (See (10) for a typical

example.) This silence is not surprising. The performance



-3-

of the program comes first. Without some fairly interesting

problem-solving behavior, of what interest are organi-

zational problems? More important, we neither know what

to discuss about organization, nor how to discuss it.

There is no lack of appreciation of the problems. Any

systems programmer can testify that questions of representation,

communication conventions, and the like, are the bane of

his existence--and the reason for it.

For problem-solving programs, the one exception to

this dearth of attention to organization is the development

of list structures and list processing languages. Here

an organizational problem pressed hard enough to call

forth an extended response and we found a way of talking

about it--partly, I suspect, because the solution was

expressed as a language. The literature on list processing

is appreciable( 1 2 - 2 1 ) and where discussions of organizational

problems do occur they usually center around list processing

languages. (8, Chapter 6) A programming language is a

way of dividing up organizational problems. The language

encapsulates the solutions to one set of problems--for

list languages these solutions are new data representations,

ease of hierarchization, recursive programming, etc. It

leaves another set untouched--how to build large programs

in terms of the language. Constructing an Information

Processing Language (IPL) or a List Processor (LISP) does

not automatically produce a problem-solver.



-4-

The purpose of this paper is to discuss some organi-

'ýational aspects of problem-solving programs. Of

necessity it will proceed. by a sequence of examples.

Although several issues can be identified--such as

centralization versus decentralization--there is no

adequate framework in which to discuss them generally

and abstractly. Each example must be described in

particular detail and in its own terms.

Each example revolves around. a specific issue. Most

of them have been drawn from programs with which I am

intimately familiar; namely, Logic Theorist (LT), (6) our

chess program,(5) and especially GS, (10) although I have

used the experience from other programs where it has been

known to me. No claim is made that these organizational

problems form an exhaustive list, or are representative

or original. However, they have commanded attention at

one time or another. Finally, most of them are unsolved

to some extent, either completely, or because the

solutions that have been adopted are still unsatisfactory

in one way or another.



-5-

II. STORING DYNAMIC STRUCTURES

Let us start with a simple case that is already well

known and relatively successfully solved. The problem

is to find memory space for the expanding tree of sub-

problems that is generated in exploring for a solution

to the main problem. In chess, for example, one starts

with the current position; analysis indicates certain

moves as worth considering and the positions resulting

from these moves are generated. Analysis is again conducted

from these new positions, yielding additional moves and

additional positions. Thus the tree of information, shown

at one instant in Figure 1, grows during the course of

problem-solving. The amount of information stored for

each subproblem is indicated by the length of the bar

at each node; it is variable since the description at a

position depends on the analysis. The problem, then, is

how to allocate space in a standard computer memory for

this growing tree.

When this problem first arose,(1 8 ) the existing

techniques of memory allocation revolved around the

assignment of individual cells of memory for numbers and

continuous segments of memory for vectors, matrices,and

tables. Arbitrary symbols for addresses could be used

in programming, the actual assignment of machine addresses

being deferred to the time Just preceding execution when



7

Fig. 1. Growing Tree Structure.



-7-

all entities demanding space have been specified. No

techniques were at hand for the dynamic case in which

the entities requiring space come into existence while

the program is being executed.

The solution to this problem is well known: the

organization of data in list structures. The essential

ideas are three. The first is to eliminate the topological

structure defined by the sequence of machine addresses

and replace it by explicit links. When this is done, a

list of consecutive items can be distributed anywhere

through memory, and new items can be added or deleted

from any part of a structure without disturbing items

that already exist. The second idea is to put all the

memory cells not in use on a single list with a known

name, the available space list. This list becomes the

source of new cells, when they are required, and the

repository for cells no longer needed. The final idea is

the creation of a set of processes for manipulating list

structures--processes such as "insert," "delete," "find

last," "erase," and so on.

Several variants of list processing already exist.
They differ in the occasions and the assignment of
responsibility for returning cells to available space;
in the size and variability of the units that are linked;
and in the kinds of access to list structures that are
provided. None of these variations affects appreciably
the solution provided for the dynamic allocation of
memory.



-8-

Several of the problem-solvers use list techniques (5-10)

but several do not,( 1 ,2, 3 ) and it is interesting to

understand the reason. The crucial difficulties arise

only when parts of the tree must be erased to gain space

for new parts. In general this provides an irregular

distribution of odd-sized pieces of space with which to

meet the additional demands for space. However, special

strategies for processing the tree can be found that avoid

these difficulties. The one used by the problem-solvers

can be called the "depth first" strategy. It is indicated

by the following recursive formula:

Process node X
For each immediate subnode of X (call it Y):

Create node Y
Process node Y
Save summary information from Y
Erase node Y

Finish the analysis of node X.

The nodes of Figure I are numbered according to the order

of generation specified by this strategy. When this

strategy is used, the only nodes that need to be in

existence at any moment are those that extend from the

top down a particular path towards the bottom. Assignment

of space always proceeds from the righthand edge of the

occupied space into open space, and erasure always occurs

from the right, enlarging the open interval. Thus this

strategy avoids most of the problems of dynamic assignment

by imposing some very special restrictions on the



-9-

processing: nodes are considered only once and in a

fixed order. Happily, the minimaxing procedure used in

most game programs is compatible with these restrictions.

More flexible exploration of the tree requires a more

general system of storing information.

Can we describe in abstract terms what is involved

here? We started out with a set of techniques that re-

quired certain kinds of structure to be fixed and known to

the program. The problem-solving programs required that

memory assignment be variable. A successful solution

has been achieved, not just by building programs that would

detect the variability and react accordingly, but by

creatinv a new set of invariant concepts (the list processes)

so that th• variability was taken care of without ann

increase in program complexity.



III. ORGANIZING LARGE PROCESSES

The processes that accomplish problem-solving are

large and complex. How can we specify such processes?

This seems almost a misplaced question. The computing

art has provided us with two tools for synthesizing

complex processes--the sequential flow of control, and

the hierarchy of closed subroutines--and it was in terms

of these tools that we even conceived the possibility of

constructing problem-solvers. But these tools, however

automatic their adoption, carry with them implications

for what is easy and what is hard--for what capabilities

will be included and what will be left out.

Sequential processing is, of course, built into the

basic structure of our machines. But it extends much

further than this, being used at the most macroscopic

level in the programmer's flow diagram. It encourages us

to envision isolated processes devoted to specific functions,

each passively waiting in line to operate when its turn

comes. It permits us to think of the total program in

terms of only one thing going on at a time.

The subroutine hierarchy emphasizes even more strongly

the notion of isolated and well-controlled processes.

Each subroutine has its well-specified inputs and provides

its well-specified outputs. The inputs and outputs define

all it must do and the sum of its interactions with the



total processes. The situation is perhaps more vivid when

viewed from the other side: when a routine uses a sub-

routine, it need know only the input-output specifications

of the latter. The using routine may safely ignore what-

ever complexity and involved processing goes on inside

the subroutine. There is none of the Alice-in-Wonderland

croquet game, with porcupine balls unrolling themselves

and wandering off, and flamingo mallets asking questions

at inopportune times.

I don't mean to undervalue the importance of se-

quential control and closed subroutines as organizing

principles. They constitute an organization theorist's

dream. By isolating each separate task, they allow us

to think through each part of our program in relative

security, knowing that there will be few interactions

witn other tasks, and that we can depend on each part

playing the role assigned to it. These organizing

principles have solved several other problems as well.

They allow nearly identical subprocesses to be coded

once and for all as single subroutines with parameters

that can be changed; the savings in coding effort and in

errors are worth almost more than the savings in space.

They aid in debugging, by permitting individual parts of

the program to be debugged separately. Perhaps most

important, they aid in program modification, where

centralization of processing has turned out to be crucial.



-12-

Many big changes in a program that one would like to make

and can't are thwarted because some crucial process is

distributed through the program and handled in idiosyncratic

ways, calling for innumerable and difficult corrections

to make the change.

Indeed, so powerful is the concept of the sequentially

controlled hierarchy for organizing large processes, that

some feel that the extremely convenient techniques for

subroutinization provided by the list languages are their

biggest asset. (14) But there are difficulties. They

stem from two related effects and can be summarized in

one word: rigidity.

The first difficulty is that this kind of organization

calls for uniform conventions to specify how one subroutine

will communicate with another. These conventions take

such forms as the calling sequence of standard programming

usage, the communication list of IPL, and the functional

notation (i.e., F(X,Y,Z)) of algebraic languages and

LISP. Although these conventions may carry no such

implication in principle (an irrelevancy), in practice

they lead to minimizing the amount of communication

between routine and subroutines. In consequence, the

subprocesses are forced to work in an impoverished infor-

mational environment. Processes that do large amounts

of work on small amounts of data tend to be preferred

by the programmer to processes that use fragments of many



-13-

different kinds of data. Yet the latter kind seems to

fit better the requirements of problem-solving, in which

relatively weak and scattered information must be used

to guide the exploration for a solution.

The difficulty might be alleviated by maintaining

the isolation of routines, but allowing all the sub-

routines to make use of a common data structure.

Metaphorically* we can think of a set of workers, all

looking at the same blackboard: each is able to read

everything that is on it, and to Judge when he has

something worthwhile to add to it. This conception is

Just that of Selfridge's Pandemonium:(22) a set of demons,

each independently looking at the total situation and

shrieking in proportion to what they see that fits their

natures. It is a much easier mode of organization to use

when the processes are only perceptual--that is, look at,

but do not change, the environment--than with active

problem-solving where the workers are as busy writing

and erasing as they are reading. Thus many large programs,

especially command and control programs, do have common

pools of information which play exactly the role described

here, but these programs are highly restrictive as to the

interactions they allow.

.
Metaphors, especially those involving human organi-

zation and human activities, provide highly appropriate
guides for machine organization. We shall use them freely.



-14-

Considerations of this kind has a strong influence

on the design of the later IPL's. IPL-II, the list

language used to program LT,(1 8 ) had a centralized way of

taking input information from the routine at the higher

level and establishing it in working cells for the next

lower level. 7nis scheme enforces the communication

of all immediate context information via the input sequence.

Information often has to pass through many levels to get

from the routine that generates it to the routine that

ultimately uses it. Such information is still "local"

in that it is created internally by some routine in the

course of doing its Job; it cannot easily be considered

part of the absolute context and be given a universal name.

Beginning with IPL-III(16 ) we have adopted the push-

down list as a technique for avoiding this rigidity in

communication among processes, and encouraging a more

"blackboard" kind of operation. Each cell individually

may be pushed-down to save the information being used by

a higher routine, and popped-up to return it to use.

Imagine, then, an array of cells holding information for an

hierarchy of subroutines. Communication between routines

occurs by means of these cells, each cell holding infor-

mation of a specific kind so that the routines know where

to find information they need and put information they

produce. The information in all the cells is available

to all the routines in the hierarchy. Where it is



-15-

necessary to communicate to a subroutine some information

in a cell that is different from the current information,

then the cell is pushed-down, the new information put

into it, the subroutine executed, and the cell popped-up

after the subroutine is finished. This sequence does

constitute a deliberate act of communication, as definite

and expensive as the standard procedures. But it occurs

only on those cells that need to be changed; the infor-

mation in the remaining cells is automatically communicated.

This system operates on a principle of exceptions, whereas

current subroutine communication philosophy dictates that

everything must be actively communicated.

Although it is possible to show some positive benefits

from the individualized push-down list philosophy, it has

not changed the character of the large programs in major

respects. They still have fundamentally the flavor of a

hierarchy with restricted communication. Clearly, this

device did not tackle the right difficulty.

A second problem of rigidity associated with organi-

zing large processes in a sequentially controlled hierarchy

relates to high level organization. The subroutine and

the rigid input-output relation derives from and fits very

well the mathematical concept of function. At a low level

in a program--at the level of sines and cosines, or of

inserts and deletes--one wants highly specific tools that

behave in an exact, prescribed fashion. At higher



-16-

levels, this rigidity has serious disadvantages. Consider

an example.

In studying how humans play chess, we were led to

consider the position shown in Figure 2, taken from

de Groot's work on chess.(23, page 65) We wanted to know

what our chess program would do in such a position,

playing for Black. The situation is complex, but there

is an obvious undefended White Pawn at KN2. Capturing

this Pawn is unsound, although it is not immediately

obvious. Good human players spend most of their time

considering the center region of the board. As you might

expect, our chess program did not see deeply enough to

find the fallacy, and so took the Pawn; in fact, it

explored the center relatively little.

The question now arose: could we get the program

to explore the center? Could we say to it, in effect,

"If you didn't take the Pawn; what would you do?" or

"Why did you ignore the center? ... (at which point the

program might reply by giving us its sketchy analysis of

the position) ... But that isn't enough; analyze it

further." It turned out there was no way to do this.

We considered various subterfuges, such as removing the

Pawn from the board, or assigning it zero value; we even

tried one or two of these. None of the tricks worked,

because of the elaborate interrelationships among the

parts of the program. None of them produced an analysis



-17-

BIACK

-A'

Fi.2 A Ches Poiinfo eGot



-18-

that was an appropriate response to the question we were

trying to pose.

Should we be disturbed? Should we expect our program

to be able to answer such a question? Our chess program--

like all the others--is a big subroutine which inputs

chess positions and outputs moves. This task pervades

the entire structure of the program. All information

and organization that does not contribute to this end is

considered excess baggage and removed if possible. Yet

in some sense the questions we asked it above are well

within the basic power of analysis of the program. It

is "only" a matter of organization. It seems a peculiar

intelligence which can only reveal its intellectual powers

in a fixed pattern.

One can think of ways to make this demand for flexi-

bility operational. Let us stipulate that for each problem-

solver there be specified an input language, such that

the problem-solver can respond to any request stated in

the language. We can define the breadth of a program

by the range of things it can respond to, and its power

by the difficulty of the problems it can solve.

Certainly we can demand of it that if it can answer

question X successfully, it also be able to deal with all

questions similar to X and obviously easier than X.

The value of this formulation is in focusing on the

missing features of the higher organization of our



-19-

existing problem-solvers. Instead of fixed executive

routines, processes are needed to interpret the incoming

requests in the problem language and to organize the available

parts of the program into a functioning unit for the task

at hand. In these terms, Baseball,(24) the question-

answering program developed by Green and his colleagues

at Lincoln Laboratory, has greater breadth than any other

problem-solver, although it does not have great power.



-20-

IV. USING THE RESULTS OF SUBGOALS

Our previous two examples covered familiar ground:

subroutine hierarchies are pervasive in all complex

programming; and list processing is the one major contri-

bution of problem-solving programs to the programming

art. Let us now move to less familiar territory.

Suppose a subgoal is attained--how does the problem-

solver make use of the results? This seems a little like

asking a man how he would spend a thousand dollars. Yet

it should come as no surprise that difficulties occur in

getting machines to do what should come naturally. For

anything to happen in a machine, some processes must

know* enough to make it happen. Thus, the results secured

by attaining subgoals will be used only if routines exist

that know how to use them. And the nature of this infor-

mation--its exact content and the ways in which it becomes

known--conditions the kinds of results that can be secured,

We talk about routines "knowing." This is a para-
phrase of "In this routine it can be assumed that such and
such is the case." Its appropriateness stems from the
way a programmer codes--setting down successive instructions
in terms of what he (the programmer) knows at the time.
What the programmer knows at a particular point in a routine
is what the routine knows. The following dialogue gives
the flavor. (Programmer A looking over the shoulder of B,
who is coding up a routine.) "How come you Just added
Z5 to the accumulator?" "Because I want..." "No, I mean
how do you know it's a number?" "All the Z's are numbers,
that's the way I set it up." (B now puts down another
instruction.) "How can you do that?" "Because I cleared
the cell to zero up here at the s-'•rt of the routine."
"But the program can branch back to this point in front of
you2" "Oh, you're right; I don't know it's cleared to zero
at this point."



I'

-21-

and through this the kind of goals that can be formulated.

All this is well illustrated in the programs built to date.

LT, one of the earliest problem solvers, has for its

goal tree a tree of logic expressions. Its methods are

of the form, "To prove expression A, it is sufficient to

prove expression B."* Thus the expressions are the only

information that has to be remembered in the goal tree.

LT's methods incorporate an extremely powerful organizational

restriction. Once a subgoal (i.e., an expression) is

formed, it becomes independent of the circumstances of its

creation. If a subgoal is attained (an expression proved)

then it is uniformly true that the original problem is

solved. There is no issue of what to do with a successful

subgoal--the first such goal that occurs terminates the

entire problem-solving attempt. Furthermore, their

homogeneity of form (all goals being expressions) allows

all the goals to be put into a single pool, called the

subproblem list, from which the executive can fish for

subproblems to its liking. Complete freedom exists as

to the order of generation of the subgoals and their

selection for further exploration.

Thus LT solves the subgoal organization problem by

avoiding it. The price paid is a substantive restriction

*
LT has one other method of the form, "To prove A

make it identical to a theorem." Although crucial for
success, this method is not of interest here since it
does not elaborate the goal tree.



-22-

on the kinds of methods that can be used. Gelernter, in

building the Geometry Theory progpam,(7) eased these

restrictions, but in a way that retains the main organiza-

tional advantages. The methods of his program are of the

form, "To prove theorem A it is sufficient to prove

theorems B and C and ... and Z." The proof of a sub-

theorem is not the end of the story; there are still

others to go. All the subgoals (the generated theorems-

to-prove) can still be put in a single pool, but the

routines for selecting subproblems to be worked on must

now be sensitive not only to the character of a theorem,

but to the character of its siblings. However, the main

simplicities still remain: all subgoals are of the same

form; and the status of a goal expression is cither 'proved'

or 'unproved,' whereupon the executive knows uniformly how

to draw the consequences for the supergoal.

In real life goals are of diverse character. Their

attainment produces a partially modified state of affairs,

which in some manner is to enter into the larger modifi-

cation that is to be the result of a higher goal. In

real life--and in our problem-solvers if they are to be

good--there can be no rigid frame for the kinds of modi-

fications that goal attainments represent. But all the

early problem-solving programs have conventions that re-



-23-

strict the goals severely.* If these conventions of uni-

formity are destroyed, who will know enough about the

results of a goal to use it? Since each subgoal is set up

and used within the context of its supergoal, one answer

is that processes should be associated with each supergoal

that know how to deal with the subgoal.

The solution implied above, with its associated

philosophy, was adopted in the first version of GPS.

Goals could be of various types, and although there were

only three at the start, new goal types were to be expected

and welcomed. With each goal type was associated a set

of methods. A method was a routine that either attained

the goal directly, or decomposed the goal into appropriate

subgoals and reintegrated the results of attaining the

subgoals. For example, there was a "transform" type of

goal for finding a way to get from one object to another.

Associated with a transform goal was a method (the match

method) that decomposed the goal into two subgoals. The

first was a "reduce" type goal for eliminating a perceived

difference between the two objects; the second was another

transform goal for changing the object produced by the

.
For instance, game playing programs are all

structured so that the result of a subgoal (a game
position) is a "value" of uniform character. The values
of all the subgoals to a goal are combined by the
executive according to *he minimax rule to yield the value
of the goal.



-24-

reduce goal to the final desired object. These two

subgoals were of different types and produced different

results. Reduce goals produced new objects; transform

goals produced sequences of operators i.e., ways to get

between objects. These products were handled in quite

different ways. In the example just given,the new object

was used by the match method to construct a certain goal.

The result of the transform subgoal was incorporated in

the total sequence of operators that transformed the

first to the final object.

The recursive powers of the list language in which

GPS was written provided a natural way to realize the

above scheme, in which each subgoal was kept in the

total context of its supergoal and thus could be indefinitely

particular. Each method was a routine that executed

the problem-solving executive routine on the subgoals

and then obtained its results as outputs:

Attain goal X:
Select method (get M)
Execute method M:

Set up subgoal Y
Attain goal Y
Use product of Y to set up subgoal Z
Attain goal Z
etc.

It seemed so easy. We had finally provided ourselves

with the freedom to use arbitrary goal types and

arbitrary goal results; we had finally developed an

organization for a general problem-solver. Actually,

we had only mounted the other horn of the dilemma, for



-25-

the recursive structure dictated the order in which

goals would be generated and attempted. The scheme

implied by the structure described above is just the

"depth-first" generation strategy of Fig. 1. The depth

of generation was still controlled, for the routines

actually looked like:

Execute method M:
Set up subgoal Y
Do we really want to try Y?

If not, then quit method.
If yes, go on:

Attain goal Y
etc.

Thus the goal tree could be pruned, so that unnecessary

depth was avoided. However, there was only one chance to

try goal Y: either it was tried when generated (thus

growing the tree deeper) or the branch it represented

was permanently abandoned.

We had lost the ability, available in the earlier

programs, to throw all the goals into a pool and select

arbitrarily which one should be attacked next.

In LT, for example, the usual mode of operation was

"breadth first." All the goals LT would ever generate at

level 1 were obtained, then all those at level 2, then all

at 3, and so on. In the Geometry program elaborate

evaluation schemes were used to decide which of all the

goals generated so far should be worked on next. Thus

from an organizational viewpoint we had linked, in a

complementary relationship, the freedom to select subgoals



-26-

with the variety of the goals. Increase in one implied

decrease in the other.

But clearly we had not meant to give up the freedom

of goal selection; we envisioned GPS growing its tree of

subgoals in arbitrary fashion under the influence of

content criteria that would select the best place to

work. In the summer of 1959, having discovered that we

had been seduced by the ease of writing recursive programs

in IPL, we considered various schemes for resolving the

dilemma. Here was a pure question of organization--to

find a way that would give us both desirable properties,

without having to pay too much for either. Only one of

the schemes we considered has survived, but the others are

worth recounting briefly.

SOLUTION BY REMOTE CONTROL

First we tried to maintain the recursive subroutine

hierarchy. To work on a subgoal in this scheme, it was

necessary to get into context on all of the higher sub-

routines. This requirement preserved the ability to

deal with the results of arbitrary subgoals. To permit

a goal to be tried (and retried) on various occasions

under the control of the routines associated with higher

goals, we violated the hierarchy temporarily to put

control back into the hands of the higher routine. You

are to imagine a method routine, having just created a



-27-

new subgoal, calling "Boss, I've got a new goal; should

I try it?" and getting the answer "Yes, but call me if

you run into more goals." Actually the scheme was much

more automatic than this, for it did not involve an act

of communication between routines, but rather the location

in routine A of the control for what happened in the

midst of subroutine B.

To illustrate this scheme, suppose GPS were executing

method M on goal G and had just created a new subgoal, G'.

Then M could execute the following instruction:

Attempt goal G'.

This constitutes a decentralized goal attempt, since M

will not get control back again until the attempt is

over. It exercises no control over how much effort is

expended on G', what methods are used, etc. Alternatively,

M could execute:

Attempt Goal G'; return control at first subgoal.

This constitutes a centralized goal attempt. Suppose a

method, M', is applied to G' and generates a subgoal, G".

When M' attempts it by means of one of the "attempt"

instructions, control automatically returns to the point

in M following the instruction above. Several options

are now available to M. It could attempt G" by executing

"Attempt goal G"." This action has no further reference

to goal G' or its method M'. Alternatively, M could

permit the action that it had interrupted to continue:



-28-

Attempt goal G'; return control at first subgoal;
E2qaluate subgoal;
Attempt goal frrm prior context; return control

at f7RT-su'sbgoal.

We have shown M as keeping control; it could have attempted

the goal from the prior context--I.e., from MI--on a de-

centralized basis without asking for any return of

control until the attempt of G" was finished. The in-

serted evaluation signifies that M may use arbitrary

processes in deciding whether or not to attempt G".

Suppose at this point G" were successfully attained.

Then the results must be used by method M', which created

G" and knows how to use it. Since control resides in

M and not M', M would execute:

Execute prior context, to use results of goal.

Again, this is a decentralized action, since M did not

set up the conditions under which control would revert

to it.

The picture given above shows how central control

was maintained while the goal tree was growing into new

territory. it was also possible to re-attempt a goal at

any time. No additional mechanism was necessary until a

goal was attained, at which point GPS executed an

instruction such as:

Execute original context, to use results of goal.

This instruction determined the method that had

created the goal and re-executed it from the point

following where the goal had been attempted originally.



-29-

In summary, this remote control scheme contained

instructions for attempting goals, either directly or

from their prior context--i.e., from the context that

had Just been interrupted. In addition it contained

instructions for executing the routines that could use

the results of goal attainment--the prior contexts or the

original contexts. For all these types of instructions,

there were centralized variants, which requested a

return of control at the next subgoal, and decentralized

variants, which let the subroutines go their way.

The great virtue of this scheme is in avoiding any

restriction on how the decisions were to be made about

goals. By passing control back to the higher routines

we allow them to use arbitrary processes in order to de-

cide what to do. Thus the control scheme does not seem

to impose a substantive restriction. The difficulties

are at least two. First, this organization suffers from

the evil of large centralized organizations everywhere:

although the top executives have the freedom to decide

in any way they want, they don't have enough information

about the local situation to decide wisely. They are

hopelessly out of context. The second difficulty involves

the piling up of administrative apparatus. As long as

there is one controller, the system seems reasonable.

But an indefinite cascade of controllers is possible, in

which M requests the return of control from M', which



-30-

requests the return of control from M", which requests the

return of control from ... and so on. Each decision to

attempt a subgoal must pass through a long sequence of

separate decisions, and the whole system begins to seem

very cumbersome. Thus, the scheme was abandoned.

SOLUTION BY COMMUNICATION

An alternative to passing control back to the

higher executive is to have the executive send messages

down to the subordinates. This was the solution we

tried next. This alternative still preserved the subroutine

hierarchy, permitting arbitrary types of subgoals. The

higher routines would formulate messages, and the lower

routines would read them. The messages might instruct the

lower routines to generate new goals, to retry old ones,

to evaluate in such and such a way, to pass the message

down to lower routines, and so on. The advantage of

this scheme is that the acting routine can integrate

the information in the message with the local context.

The difficulties are again two. First, the messages

must contain strategies, not Just decisions. They must be

in the form of partial information that can be combined

with other information available to the local routine.

We had no good formal language for this kind of communi-

cation. We developed a set of discrete questions, such as:

Are there any communications?
Do I control communications?



-31-

Do I attempt this subgoal?
Do I search for a subgoal to retry?
Do I continue, using the results of the goal

Just attained?

The executive working on a particular goal asked appropriate

questions of the message received from the higher level,

and obtained various answers upon which it based its

actions. Although rather complex in its interpretation,

this language was neither a flexible nor a rich vehicle

to communicate strategies. The second difficulty is

that GPS, operating in this fashion, resembles nothing so

much as a bureaucracy bogged down in paper work--everyone

busily writing messages that others have to read. Notice

above that new organizational problems were created, such

as who had the right to change the content of messages.

So this scheme too was set aside.*

SOLUTION BY INTERPRETATION

Up to this point the appropriate metaphor has been

a large human bureaucracy: each subroutine is an office;

each has its own duties; control is decentralized among

the offices; and communication is highly stylized and

formal. Alternative metaphors are possible. Me problem-

solver should be a single personality, wandering over

the goal net much as an explorer wanders over the country-

Both the remote control scheme and the communication
scheme were programmed as modifications of GPS as it then
existed. Neither was debugged, since the defects had become
sufficiently clear, once the details of the organization
were worked out, to lead to their abandonment.



-32-

side, having a single context and taking it with him

wherever he goes.

In this scheme the methods can no longer be routines.

The active principle must lie in the central executive.

Methods must be schema that the central executive can

consult and follow, but where each important decision--

to attempt a new goal, to go on with the next step of

method--is made by the executive. This is the solution

we have adopted in GPS-2.*

As shown in Fig. 3, each method is written as a

sequence of segments. Each segment constitutes an

action in which the executive has control and decides

what to do--e.g., whether to execute the next segment.

The executive is essentially an interpreter, the methods

still being programs, but in a higher language. The GPS-2

executive is somewhat more sophisticated than a standard

machine interpreter, which only has the functions of

fetching the next instruction and executing it. Here,

the interpreter receives information about the results

of the segment's action and is able to make various

decisions about what actions should be undertaken next.

Have we really attained both our objectives?

Yes, to a degree. With the new scheme a goal may be

GPS-1 was written in IPL-IV for JOHNNIAC. The changes

implied in the interpretive solution were extensive enough
to justify a complete recoding into GPS-2 in IPL-V.
This latter organization is the one currently used.



-33-

Method: egment #1 ......... ...

ind appropriate not find
Start segment

st

accept Find
e ecu
cute segment

Evaluate

reject if wish success so far
to on repeaE segment

continue

I

success so far

try next segment

succeed

Attempt accept Evaluate success so far

ý*d.
subgoal subgoal subgoal created

ailjl
reject

Record
results
of

method
attempt success
and goal attained

quit

failure

goI not attained

Fig. Schematic flow diagram for executing methods in GPS-2.



-34-

selected anywhere in the goal tree and attempted; this

can occur at any time and more than once. The methods

still generate goals and contain the information about

how to use them. On the one hand this means that new

goal types and new uses of results can be introduced by

increasing the number and variety of methods.* On the

other hand it means that to use the results of a goal

requires finding the segment of the method of its super-

goal that is prepared to use it.

SOLUTION BY UNDERSTANDING

The infornnation that the above interpreter obtains

about the total situation is still impoverished. It

still knows nothing of the nature of the methods--of what

they really produce in the way of results and how they use

them. It is still very like a blind man who has learned

to push buttons to go his way, but only receives back

a few taps to tell him where he is going. One would like

a central process which could assimilate the knowledge of

its environment and the techniques for manipulating it--

that could understand how to use the results of its

efforts. In attempting to create such a central organiza-

tion we found--as we had with the problem of communicating

All the methods coded to date have been representable

as simple non-branching sequences of segments (with repetition
of segments possible). The interpreter of Fig. 3 is
specialized to this case.



-35

strategies--that we had no concepts and no formal language

to discuss the variety of results and their uses. The

program shown in Fig. 3 can be viewed as a first attempt

to expand the amount of knowledge that a problem-solving

interpreter should have about its environment.



-36-

V. ACCESSING INHOMOGENEOUS COLLECTIONS OF DATA

List structures solved some of the problems of data

representation for problem-solvers, but by no means all.

For example, consider specifying a chess move. There is a

man to be moved, designated, say, by the square he is

currently occupying, i.e., the square from which the move

takes place. This man moves to another square. Sometimes,

but not always, this square has a man on it, who is then

captured and removed from the board. Information on these

points is enough to specify most moves, but several special

cases exist. There are two castling moves, each of which

requires moving both a King and a Rook. If the Pawn moves

to the eighth rank, it is promoted and it is necessary to

specify what piece it will become. Finally, there are

en passant moves, in which a Pawn is moved one square

diagonally--as in a capturing move--but the man is captured

from a different square.

How shall we represent the information in a chess

move? The question is peculiarly organizational. There

is one imperative: we must get into the representation

enough variety to discriminate all the different kinds

of moves.* Yet there are many ways of satisfying this

requirement. How shall we select one? Numerous routines

*
Ashby even calls this the Law of Requisite Variety

(25, pg. 206).



-37-

must use the representation: routines for making moves,

for testing their legality, for generating them, for

testing when two are the same, and so on. To some degree,

each routine must be adapted to the representation.

Depending on what representation is used, particular routines

will be fast or slow, easy or hard to code, possible or

impossible to change.

This problem of representation is not unique to

problem-solving programs; it occurs in all programming

to some degree. It becomes especially vexing when the

information to be encoded consists of an inhomogeneous

collection, as in the case of the chess move above. For

orderly homogeneous information, such as vectors of numbers

or sets of identical symbols, natural ways of encoding

exist and few problems arise. Thus, the areas that are

most vexed by the problem of representation are business

data processing, information retrieval, and problem-solvilng,

rather than numerical analysis.

Let us follow the chess move example a little further.

A standard procedure for encoding arbitrary information is

to create a set of "fields"--i.e., an interval of bits in

a word (or words). Each field corresponds to some

variable aspect of the move. The size of the field is set

large enough to cover the range of possible conditions

expected for the variable feature; these possibilities are

somehow encoded into the bit patterns the field can hold.



-38-

This is possible for the chess move: assign one field for

the From square, another for the To square, etc. A certain

discomfort arises when space is set aside to encode the

extra Rook moves for castling and the capture square for

the en passant moves. These moves occur rarely, yet

they may require the lion's share of space if one proceeds

incautiously. In fact, if only a small part of the total

possible information is present at any one time,

assigning fixed fields for all of it is obviously the

wrong solution. Most of the space will be empty.

This is a situation that list structures were meant

to handle. In a list formulation, one can assign symbols

to name the men, squares, etc. Then a possible representa-

tion would be:

Move List:

From square
Tosquare
!ý`ecial move symbol: castle, en passant, promotion.
From square of Rook f
ro square of Rook - for castle
Capture square for en passant move
Man type promoted to for promotion

Convention: if not a special move, list termi-
nates after second list cell; if a special
move, the remainder of the list is encoded
according to the identifying symbol in the
third list cell.

This has solved the space problem to some extent.

The routines that work with moves can use this

representation only if they know it. That is, only if the

routine knows that the first list cell holds the



-39-

From square; that the second holds the To square; that

there are three special symbols, S1, S2, and S3, that can

be in the third cell and that if it is Si, then the move

is a castle, but if it is S2 then ... etc.--only if it

knows all these facts can it perform its task. Knowing

these facts, a routine has the necessary information to

retrieve the symbols from the representation, interpret

them, and perform its task.

Every routine must include both the processing

necessary to generate its output and the processing

necessary to deal with the input data representations.

These are not separable, since the information must always

be in some representation and the processes of the

routine can only work on representations. Yet if we change

the representation, something will change in the routine--

but xnot everything. The routine and the representation also

share the total information about the move, sometimes in a

rather intimate way. In our example, the special symbols

serve only to select one of three distinct subroutines

associated with the three special cases. Each of these

subroutines carries all the information about what to do

with the extra information in its own case. Nothing in

the data structure says what to do with any of the infor-

mation. We could have put more information into the

routine and less into the data; for example, we could have

used a separate symbol to stand for each castle. Then the



-40-

Rook square information would have been unnecessary and

the routine would have known just how to move the Rook

(and the King too). We could even have used a separate

arbitrary symbol for each possible move and simply assumed

the routine could recognize each one individually.

The effects of this intimate dependence and division

of information between routine and representation are well

known. Modification and extension of a program is limited

by how particular the routines have become. On a larger

scale, a complex program with many kinds of data becomes

a collection of special conventions and arrangements, each

with its own routines and rigidities.

At least two directions have been pursued in trying

to deal with this particularization of routines and

data. One is to try to retain full particularity of the

individual situation, but to attain some uniformity through

data descriptions--i.e., through formats. As long as one

deals in fixed formats, there can be a uniform language

for writing routines, which is recoded at compiling time

in terms of the specific details of the representation

selected by the compiler. One gets the best of both

worlds. This is the route being taken by work in business

data processing. If the program is essentially dynamic,

or if the data varies in amount as well as over the values

of given variables, then data descriptions imply operating

interpretively--i.e., through processes that consult



-41-

formats to determine how to interpret particular structures.

(To my knowledge no one yet carried this latter effort

very far.)

The second route has been taken in the work on problem

solvers. From considerations quite like those we have

been raising, the designers of list languages were led

to provide an additional way of storing information besides

storing on lists. In IPL-V, for example, the scheme can

be stated as follows:*

Let X, Y and Z be any three symbols in the
language. Then it is always possible to perform
the following three processes:

Establish the relation Y = X(Z)--i.e., associate
Y with Z a/c X.

Find X(Z) if it exists--i.e., the symbol
associated with Z a/c X.

Remove X(Z)--i.e., remove the association a/c X.

These processes form a complete system for reading and

writing information: given some symbol, say Z, any other

symbol, say Y, can be stored with it by means of an

arbitrary association, X. Once stored, it can be read

again by means of the "find" process or erased by means

of the "remove" process.

Given this scheme, a natural way of encoding a chess

move would be to assign a set of symbols to stand for the

.
These are the description list processes of IPL-V,

J10, Jll,and J14. Details about their realization in (17)
terms of list structures can be found in the IPL-V Manual.



-42-

various subpieces of information: Al for the From square,

A2 for the To square, A3 for the secondaiy From square,

A4 for the secondary To square, A5 for the new-man-type,

and A6 for the capture square for en passant. These

would be the attributes--the symbols according to which

association would be made. A move would be a symbol that

had the prescribed associations. Figure 4 shows how a

standard move and a castling move would be described in

this representation. Only those associations are stored

that are needed, Just as in the list representation. The

special nature of the move, if any, is detected by the

existence of the special associations.

This association scheme provides a uniform way of

encoding inhomogeneous collections of information. Each

type of information is simply assigned a name and called

for by that name. This call is relative to the basic

symbol (the move), Just as in table look-up procedures the

index is relative. In fact, the scheme is Just a table

look-up that is unrestricted with respect to what is

index, what is entry, and when the decision has to be

made that the table shall hold an entry. All the components

of an association are symbols, and to that degree homogeneous

and restricted; but since in a list language symbols can

name arbitrary structures, this restriction is in fact no

restriction. This uniformity is paid for by searching for

each item when it is needed. Since the symbols the routine



-43-

move mv
symbol smo

AAA2Al A2A34

1(2 1(4 Ksq. KNsq. XRsq. KBsq.

Opening move with Castling to the King's side: King
King's Pawn from moves from K square to KN square;
square K2 to Rook moves from KR square to KB
square K4 (P-K4). square.

Fig. 4. Use of Associations to Encode Chess Moves.



-44-

knows--the names of the information it is interested in--

bear no structural relation to the way the information

is stored (and they cannot, since the symbols can be se-

lected arbitrarily) there must be a process that discovers

the relationship--e.g., through searching the list that

serves as a table.

One may question whether such uniformity deals effectively

with the organizational problems of inhomogeneous data and

the multiplicity and particularity of encodings that

arise in large systems. There is some empirical evidence

that it does. This association scheme was introduced into

IPL as an augmentation to lists: it was thought that besides

the list structure, there might be some additional

"descriptive" information. Hence, in the large programs

that have been coded in IPL both representational schemes

have been freely available--in free competition, so to

speak. There has been a continual increase in the use

of the association process to encode everything but homo-

geneous structures: the programming is simpler, encoding

decisions are avoided, etc, The extreme example is the

current version of GPS, whose data is represented almost

entirely by associative structures. To give an illustration

of the effect of this decision, goals and logic expressions,

the two main kinds of structures in GPS, are now handled

uniformly. The same match processes are used to match

two goals and to match two logic expressions.



-45-

How far this associative memory structure goes towards

handling the problems raised in this example is unclear.

Data must always be represented, and knowledge must exist

about this representation in the processes, thus making

them to some degree representation-dependent and not

easily modified. Even with the associative processes,

the routines still seem quite particular. There is a long

way to go to achieve full generality.



-46-

VI. PRESERVING PAST HISTORY

GPS has goals; they are rather elaborate data

structures of the associational variety discussed in the

last example, containing a wealth of heterogeneous infor-

mation. Each goal represents a single state of desire;

GPS is under the control of a single goal at any instant,

working on it, preparing to quit and go back to a higher

goal, or about to create a new subgoal and go deeper.

Why should GPS have goals? They are expensive to

produce and use up quantities of space. They are

probably the single biggest reason why GPS appears to be

a plodder--all its time seems to be spent in building

goals. When GPS goes into the context of a goal, it uses

a set of working cells (about a hundred). It pulls infor-

mation off the goal and puts it into these cells for more

immediate reference. As new information is generated it is

put into these temporary cells as well as being stored

away on the goal structure. Why maintain a goal str'iltiuey

Why not use just the immediate storage--i.e., only the

currently needed information?

The most general answer, perhaps, is the need to

remember the past. But there are several quite different

reasons why it must be remembered. Perhaps the most

cogent, given the discussion so far, is keeping infor-

mation about the supergoals still in progress. This is



-47-

the same as the reason why there must be a push-down list

for recursive routines: as each subpart is completed the

higher routine must be reactivated at the right point.

But as we saw earlier, if this was all there was to it,

we could use the recursive capabilities of list languages

much as in any subroutine hierarchy, without creating separate

goal structures.

A second reason for retaining goals is to remember

the terrain so as not to go over it again. Under very

special strategies or with special tasks the generation

of subtasks will never repeat itself. In general, however,

checking is required to avoid repeating. Sometimes this is

only a heuristic matter--a question of whether the search

will go faster or slower. More often it is a crucial

matter of avoiding a cycle.

The third reason for remembering, and the focus of

this example, is to return to a point reached in the past

in order to try something different from that point.

From this viewpoint, a goal is a place marker, noting

the possibility that from its location something of

significance can be done. Turning the matter around,

if the problem-solver has arrived at a choice-point--where

one thing must be tried and others put aside--then pre-

serving the opportunity to later make the other choices

if the first one fails implies the recollection of this



-48-

situation. If implies that a goal must be created at

this point.* This seems a simple matter. But as stated

earlier, setting up goals and filing information away on

them is a major housekeeping activity for GPS. Conse-

quently, we have tried several dodges to get around the

implications of the proposition.

One of these is the concept of immediate operators.

Suppose, as happens frequently in applying operators,

we compare the expression A with P.Q, where P and Q are

constants and A is a variable. There is a difference--

the expressions are manifestly not the same--but a dif-

ference we know precisely how to eliminate: substitute

P.Q for A. According to GPS liturgy, when a difference

is found a subgoal is created to reduce the difference.

This subgoal results in the selection of an operator (in

our case the substitution operator) and a goal is set up to

apply this operator. If it is successful (as we know it

will be), then the result of applying the operator (P.Q)

is used as the result of the reduce difference goal. This

leads to setting up a new subgoal to see if the modified

expression (P.Q) is the same as the criterion expression

(P.Q) (as we know it will be). Finally we are permitted

to say that the two are the same.

*

Nothing is implied about whether the goals must be
homogeneous--i.e., all contain the same information or
have a common format. This issue is related to some of
the other examples.



-49-

It seems a lot of unnecessary work to go through all

this. Instead, whenever GPS finds a difference it asks if

there is any "immediate" operator that applies to it. If

it finds one--as it does for substituting an expression

for a variable--then it applies this operator forthwith

and proceeds. Three subgoals and a large amount of

processing have been avoided.

But there are difficulties. On one occasion GPS

matched A D -R against R D Q. It promptly substituted

R for A, thus getting R 0 -R against R M Q, with which it

could do nothing. Of course, it should have first detected

the difference in position, so that it could have changed

R D Q to -Q D -R. By charging ahead and making the

substitution, it foreclosed its chance of taking that

action--even of taking it after it had detected the

mistake in the substitution. (If GPS had delayed, it

would have seen the right difference.)

To illustrate the same issue in a different guise,

consider the problem of applying operators that have more

than one input. These arise in logic, for example, in

the transitive law: from A zf B and B D C produce A 0 C.

Each of the two inputs is an independent expression.

Normally in GPS only one expression is at hand to be

input at the moment when the law is to be applied.

Typically there is a goal such as: apply (AOB, BoC - AzC)

to P D Q. It is necessary to find a second input



-50-

expression and to decide in which order to assign them

to the two input forms. The goal tree developed by GPS

in doing this is shown in Fig. 5. The top goal is to

apply the two-input operator to a single expression.

This leads to a difference, since a set of objects is

being compared with a single object, and a subgoal is

created to reduce this difference. This leads, by a

short cut similar to the immediate operators, to direct

application of a selection routine, which selects the

member of the set that is most similar to P • Q. In the

example either member will do, and the first is chosen.

This leads to applying the initial operator again, but

only fitting the first input form to P : Q. This is easily

done with two substitutions. However, the result is not a

new object, but a new specialized operator, of the form

Q D C 4 P n C. This operator is not valid in general, but

only within context where P D Q is a true expression.

At this point, GPS needs to find the second input to the

operator. It has available a set of admissible expressions,

so it creates the goal of applying the operator to the set.

This again leads to a difference, which leads to the

selection of the expression most similar to Q = C.

Notice that the prior incorporation of P = Q gives enough

additional information to select Q 0 R rather than R = S.

Finally the special operator is applied to Q • R and a final

result, P D R is obtained.



-51-

1. Apply (A o B, B : 0 - A M C) to P Q

2. Reduce Set-versus-object difference between
(A M B, B m C) and P D Q

Select: A : B

3. Apply (AD _B, B D C A : C) to P - 0.

Produce specialized operator:
P n Q, Q ) C P Zp C

4. Apply (P 0 Q, Q o C - P D C) to (R : S, -Q.P, Q D R)

5. Reduce Object-versus-set difference
between Q :D C and (R D S, -Q.P, Q D R)

Select: Q D R

6. Apply (P : Q, Q= C z P : C) to Q = R

Produce final object: P M R

Fig. 5. Application of Two Input Operator by GPS.



-52-

Again, it seems a lot of work. But each of these

goals represents an opportunity for error. In earlier

attempts to use multiple input operators in GPS we

short circuited goals 2 and 5, making the selections

directly. When the direct selections were wrong the chance

of coming back and making different selections had been

foreclosed. With respect to the other goals, if -P V R

had been given instead of P o R, or -Q V R instead of

Q :) R, additional subgoals would have been required under

goals 3 and 6 to change the connective.

So far only one side of the coin has been presented:

rich goal nets are needed to preserve the opportunity for

choice. Without this the problem-solver will be rigid,

unable to try things and profit from its failure. But

there are difficulties. A price is being paid in cumbersome

structures. And numerous anecdotes warn of the dangers

in a glut of information. LT provides a nice example.(6)

It first found a proof of a certain theorem given all the

prior theorems in the chapter. However, when it was

given only the axioms plus one other theorem and presented

with the same problem, it found a longer proof in about

a third of the time. The additional theorems required

more processing than they were worth.

Perhaps a second example will reinforce the point.

Recently we programmed GPS to try the well known puzzle



-53-

of the Missionaries and the Cannibals.* We started from

the program for logic, on which we had been working. In

the latter program all the intermediate products are kept,

both for checking and to provide inputs to the two-input

operations. GPS solved the problem. Then, we noted that

our human subjects, working with a physical model in front

of them, seemed only to recall the initial position and

the current one. We simulated this situation, giving GPS

an external representation and having it adopt a strategy

that didn't remember any of the intermediate positions.

GPS solved the problem this way much faster--all the extra

Intermediate goals and expressions had given it only useless

things to worry about. It was better off forgetting them

completely.

To draw the moral, a fixed regime of goal building is

to be avoided as are all other rigidities. Only those

goals should be built that seem absolutely necessary; the

rest provide nothing but noise and extra processing. To

do this requires developing strategies for what of the past

should be remembered. But a prior requirement is the capa-

bility to stipulate arbitrarily whether or not a goal

should exist, and when a goal should be destroyed. It

Three missionaries and three cannibals are on one
side of a river. They wish to cross to the other side
but have only a single boat that holds two people. The
problem is to get everyone across without letting the
cannibals ever outnumber the missionaries on either river
bank.



-54-

must be possible to forge ahead, heedless of the memory

problems, until it becomes clear that some difficulties

exist, then to back down to the previous goal (now

serving as an anchor point) and to proceed again more

cautiously, creating suitable intermediate goals.

This capability is a matter of organization. It is

a question of discovering the role played by various

fixed conventions in the current GPS--of trying to shift

more information from the goal routines into the goal

structure so that less need be assumed in the routine as

fixed and immutable. This problem is hardly insurmountable;

even to put the question is to half solve it. GPS will

eventually have much greater freedom with its goal building.

How far the solution will go towards the general problem

indicated here is harder to predict.



-55-

VII. CONCLUSION

We have now seen a handful of examples of organizational

problems connected with building problem-solving programs.

The issues represented seem diverse, the solutions

particular. Some seem to be simply the projection into

the domain of problem-solvers of issues that plague all

programming. Others seem special to building intelligent

machines. Can anything be said about them generally?

First, let me repeat that the primary purpose of

this paper is to set out some examples of organizational

problems, describing each in its own terms. Although there

exists no adequate framework for describing them, hopefully

enough of a picture has been given to permit their

recognition in other complex programs if they exist there,.

Such problems are seldom recorded in print, presumably

because we neither know how to talk about them nor how to

assess their significance. The faith of the butanizer is

that specimens precede classification, which in turn pre-

cedes theory.

Second and more tentatively, we can discern some

pattern in these examples. As we observed earlier, a

program can operate only in terms of what it knows. This

knowledge can come from only two sources. It can come

from assumption--from the programmer's stipulation that

such and such will be the case. Alternatively, it can



-56-

come from executing proce;ses that assure that the parti-

cular case is such and such--either by direct modification

of the data structures or by testing. Now the latter

source--executing processes--takes time and space; it is

expensive. The former source costs nothing: assumed

information does not have to be stored or generated.

Therefore the temptation in creating efficient programs

is always to minimize the amount of generated information,

and hence to maximize the amount of stipulated information.

It is the latter that underlies most of the rigidities.

Something has been assumed fixed in order to get on

with the programming, and the concealed limitation finally

shows itself. In LT the convention that "the solution of

a subgoal must solve the main goal" is an example.

When the rigidity becomes too gross to neglect, there

are two paths towards resolution. One is to relax the

constancy of the convention and allow a fixed number of

cases. The program is expanded to contain separate sub-

parts for each case and testing programs are added to

transfer control to the correct part., The normal fracturing

of s program Into many p"- pe-g ' the type of

data is the result of this sort of solution. The virtue

of this technique is that it can always be done at least

to some extent. No new synthesis is required, only the

willingness to write a more complex program with more

parts. And this is its chief vice: it makes programs



-57-

ever more particular, ever more fractured, ever more resistant

to further correction and modification, ever more obscure

and complex.

The other path to solution is again to remove the

rigidity--to let be variable what once was fixed--but to

discover a new set of invariant concepts to deal with

this variability, so that the complexity of the program

does not increase. The list processes--insert, delete,

etc.--represent an excellent example of this. The use of

the associative processes to handle inhomogeneous data

collections is another. The attempts at a set of processes

for remote control, at communicating strategies, and at a

description of understanding how to use results, are

abortive or Incomplete attempts.

Progress is a see-saw between these two types of

solutions. The uniform goals in GPS are partly an attempt

to avoid separate structures for all the particular kinds

of information that need to exist. Strong uniformities

were accepted in the goal scheme to make it operational.

Some of the limitations of the current scheme are now quite

clear, and are forcing a solution with more variability

again. Along the way common routines for handling all the

goals have been achieved, an intermediate success not

likely to be lost.

It seems also that as we diminish the amount of

assumed information, and avoid heving separate parts of



-58-

the total program know separate things, we are moving toward

more interpretive schemes. It is one way to get dynamic

variability without increasing complexity too much.

One good example Is the current GPS, as indicated in

Fig. 3. Additional examples could be given from the

other parts of GPS, where the matching process is now

accomplished by a higher level interpreter, as is the

similarity testing that makes the selections shown in

Fig. 5.

All this seems quite reasonable. Roughly, we are trying

to shift the information from the programmer's head, which

is where programming efficiency for simple algorithms says

it should be, to the dynamic data structure. Surely this

is right. For if ever a fully capable intelligent program

is realized, it will be recognized by noting that it can

get along without any programmer at all. Then all its

information will be in the progran structure and none in

the programmer's head.



-59-

REFERENCES

1. Samuel, A. L., "Some Studies in Machine Learning Using
the Game of Checkers," IBM J. Res. and Develop..,
Vol. 3, No. 33, July 1959, pp. 210-229.

2. Strachy, C. S., "Logical or Non-Mathematical Programmes,"
Proceedings Assoc. for Computing Machinery
September 1952, pp. 4b-40.

3. Bernstein, A., et al. "A Chess-Playing Program for
the IBM 704 CoT_.er," Proceedings of the 1958
Western Joint Computer Conference- March 1959,
Pp. 157-159.

4. Kister, J., et al., "Experiments in Chess," J. Assoc.
for Comput-nT--achinery. Vol. 4, No. 2, April 1957,
PP. 174-177.

5. Newell, A., J. C. Shaw, and H. A. Simon, "Chess-
Playing Programs and the Problem of Complexity,"
IBM J. Res. and Develop., Vol. 2, No. 4, October
1958, pp. 320-335.

6. Newell, A., J. C. Shaw, and H. A. Simon, "Empirical
Explorations of the Logic Theory Machine: A Case
Study in Heuristics," Proceedings of the 1957
Western Joint Computer-ConUFTeree February 1957,
pp. 21=-230.

7. Gelernter, H., J. H. Hansen, and D. W. Loveland,
"Empirical Explorations of the Geometry Theorem
Machine," Proceedings of the 1960 Western Joint
Computer Conference, May 19bO, pp. 149-150.

8. Tonge, F. M., A Heuristic Program for Assembly Line
Balancing, Prentice-Hall, 19l1.

9. Slagle, J. R., "A Heuristic Program that Solves
3ymbolic Integration Problem in Freshman Calculus
(SAINT)," Unpublished Ph.D. dissertation, MIT,
June 1961.

10. Newell, A., J. C. Shaw, and H. A. Simon, "Report on
a General Problem-Solving Program," Information
Processing: Proceedings of the International
Corence on Information Processing, UNESCO,

e 1959, UNESCO Paris, 1960, pp. 25b-2b4.



-60-

l. Minsky, M., "S3teps Toward Artificial Intelligence,"
Proceedings of the IRE, Vol. 49, No. 1, January 1961.

12. Carr, J. W., III, "Recursive Subscripting Compilers
and List-Type Memories," Communications of the ACM,
Vol. 2, No. 2, February 17g,' pp.--6.

13. Gelernter, H., J. R. Hansen, and C. L. Gerberich,
"A FORTRAN-Compiled List-Processing Language,"
J. Assoc. for Computing Machinery, Vol. 7, No. 2,
April 19b0, Pp7. 5-21

14. Green, B. F., "Computer Languages for Symbol Manipu-
lation," IRE Transactions on Human Factors in
Electronics, HFE-2, No. 1, March 1961, pp. 25-33.

15. McCarthy, J., "Recursive Functions of Symbolic Ex-
pressions and their Computations by Machine,"
Communications of the ACM. Vol. 3, No. 4, April'L•b0, p'p.' l?-195.

16. Newell, A., "Notes for Lectures on Heuristic Programs,"
Applications of Logic to Advanced Digital Computer
Programming, Intensive Sunmmer Sessions, University
df Michigan College of Engineering, August 1957.

17. Newell, A., (ed.), Information Processing Language-V
Manual, Prentice-Hall, 1961.

18. Newell, A., and J. C. Shaw, "Programming the Logic
Theory Machine," Proceedings of the 1957 Western
Joint Computer Conherence, February 1957, pp. 70-2'40.

19. Perlis, A. J., and C. Thornton, "Symbol Manipulation
by Threaded Lists," Communications of the ACM,
Vol. 3, No. 4, April 19bO, pp. 195-"204.

20. Shaw, J. C., A. Newell, H. A. Simon, and T. 0. Ellis,
"A Command Structure for Complex Information
Processing," Proceedings of the 1958 Western Joint
Computer Conference, May l95•, pp. i19-12b.

21. Weizenbaum, J., "Knotted List Structures," Communications
of the ACM, Vol. 5, No. 3, March 1962.

22. Selfridge, 0. G., "Pandemonium: A Paradigm for
Learning,1" Proceedings of Symposium on the Mechani-
zation of Thought Processes, HMS0, London 1959,
PP. 511-529.



-61-

23. de Groot, A. D Het Denken van Den Schaker,
Amsterdam, 1946.

24. Green, B. F., et al. "Baseball: An Automatic
Question Answerýe, Proceedings of the 1961 Western
Joint Computer Conferene- May 1. 9-.24.

25. Ashby, W. R., An Introduction to Cybernetics.
Wiley, 1956.-


