NEW LIMITATION CHANGE

TO
Approved for public release, distribution unlimited

FROM
Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; Sep 1962. Other requests shall be referred to Library of Congress, Aerospace Technology Div., Washington, DC.

AUTHORITY
Aerospace Technology Division ltr dtd 2 Dec 1965
NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
SUBJECT: Lunar Temperature Measurements

Measurements were made in March 1959 of the temperature of separate sectors (1.5' x 1.5') of the lunar surface, using a modified version of the method proposed by Menzel (reference given). A vacuum thermocouple with a sensitivity of 10 v/°W, set in the Newton focus of the 13" reflector of the Abastumani Observatory, was employed for measurements. The thermocurrent was recorded on the M-21/5 galvanometer having a sensitivity of 3 - 10^-9 a.m.m. The amount of water vapor determining the absorption of planetary heat in the atmosphere was computed with Hann's empirical formula, which relates the amount of water vapor in a column of the atmosphere over 1 cm^2 of the earth's surface (so-called precipitated water) to the absolute humidity at the surface. It has the form:

\[d = 1.7 e_w, \] \hspace{1cm} (1)

where d is the precipitated water (in cm), and e_w is the absolute humidity (in cm). A mean value of d = 0.5 cm was obtained.

The temperature T of a lunar spot i is determined by the formula:

\[T_i(\alpha) = T_0 \frac{A}{R \ell^2} \sqrt{\frac{1}{2\eta} \int_{\rho}^{J_i(\alpha)} \frac{J_i(\alpha)}{\rho} \frac{\rho}{\ell(\alpha)} \frac{k(\ell(t))}{k(0)}}, \] \hspace{1cm} (2)
where \(a \) is the phase angle; \(T_0 \) is the temperature of an absolutely black body radiating energy equal to the solar constant; \(R \) is the distance to the sun; \(\bar{A}_{\text{rad}} \) is the radiometric albedo value; \(\bar{I} \) is the grayness factor; \(J_{\text{ref}}(a) \) is the deviation caused by the total flux without instrument and atmospheric absorption; \(J_{\text{f}}(a) \) is the deviation of the galvanometer in observations without filter, i.e., the deviation caused by the total flux; \(J_{\text{f}}(a) \) is the deviation in observation with a filter, i.e., the deviation caused by the reflected flux partially weakened by the filter; \(k(t) \) is the factor accounting for change in the sensitivity of the equipment in time; \(k(0) \) is the initial sensitivity factor; \(\rho_1(a) \) is the transmittance of thermal radiation by the instrument and by the atmosphere. With \(a \) at +17.0°, the value \(\bar{A}_{\text{rad}} = 0.128 \); the deviation values \(J_{\text{f}}(a) \) and \(J_{\text{f}}(a) \) are determined directly from observations; and \(k(0) = 1 \), since the drop in sensitivity of the thermoelement during the 7-day observation period is negligible.

After substituting numerical values, the formula for a temperature takes the form

\[
T_1(a) = 88^\circ \sqrt{\frac{J_{\text{f}}(a) - J_{\text{ref}}(a)}{\rho_1 \text{atm} + \text{flu}(a)}},
\]

where \(\rho_1 \text{atm+flu}(a) \) is the combined transmittance of thermal radiation by the atmosphere and by the fluorite window of the thermoelement; \(\rho_f \) is the transmittance of reflected radiation by the filter; "ref" stands for "reflected."

Computational results show that the temperature of the subsolar point for a phase angle \(a \) of +17.2° is 375°, which coincides with the value arrived at theoretically by Pettit for the full phase. The temperature of seas is about 10° higher than that of the adjacent continents. The ratio of the radiiands of formula (3) gives:

\[
\frac{J_{\text{f}}}{J_{\text{f}}} \frac{\rho_{\text{sea}}}{\rho_{\text{con}}} = \frac{\bar{E}_{\text{ir}}}{\bar{E}_{\text{ir}}} \frac{\rho_{\text{con}}}{\rho_{\text{con}}} = \frac{\bar{E}_{\text{ir}}}{\bar{E}_{\text{ir}}} \frac{\rho_{\text{con}}}{\rho_{\text{con}}} \rho_{\text{con}}.
\]

Here \(\bar{E}_{\text{ir}} \) denotes thermal energy (infrared).

Inasmuch as atmospheric conditions do not change substantially during the measurement of two adjacent points, it may be
assumed that $\rho_{\text{con}} = \rho_{\text{sea}}$, in which case

$$\frac{J_{\text{ir}}}{J_{\text{sea}}} = \frac{E_{\text{ir}}}{E_{\text{sea}}}.$$ \hspace{1cm} (5)

For each pair of computational points $\frac{E_{\text{ir}}}{E_{\text{sea}}} = 0.93 \pm 0.02$. This value supports the validity of the equality showing the relationship between the radiometric and visual albedos of points and mean A_o values, viz.:

$$A_{\text{rad}} = \frac{A_{\text{vis}}}{A_{\text{vis}}} A_{\text{rad}},$$ \hspace{1cm} (6)

The ratio of the visual and radiometric albedos of separate points is the same as the ratio of mean albedos over the disk.

The authors believe that their method of measurement and the equipment employed are sufficiently reliable for determining the temperature of selected areas of the lunar surface.