NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
BEST

AVAILABLE

COPY
THE LOAD CARRYING CAPACITY AND STABILITY
OF HYBRID GAS BEARINGS
by
L.W. Winn
B. Sternlicht

R92AT8
March 11, 1962

AIRCRAFT ACCESSORY TURBINE DEPARTMENT
GENERAL ELECTRIC
THE LOAD CARRYING CAPACITY AND STABILITY
OF HYBRID GAS BEARINGS

by

L.W. Winn
B. Sternlicht*

MARCH 11, 1962
TECHNICAL REPORT R62AT8

FOR: Office of Naval Research
CONTRACT NO.: NONR 2844(00)
TASK NO.: NR097-348

*Presently associated with
Mechanical Technology Incorporated
Latham, New York
DISTRIBUTION

Complete Report:
AATD Library, 3-74
SAE Library, 2-40
FPD Library, Evendale
TIS, Bldg. 5, Schenectady

Schenectady, New York
RC Elwell, 37-323
GR Fox, 37-1020
JD McHugh, 37-1020
DW Jones, 37-1020
WR Nial, 37-304
RM Mains, 37-680
FJ Martin, 5A6, Res. Lab.
GM Rentzepis, 37-680

Bridgeport, Connecticut
CA Edman, Fan Dept.

Lynn River Works
MA Prohl, 2-64G
JD Cairns, 3-74
LW Winn, 3-74 (2)

Fitchburg, Massachusetts
AE Truran, SST

Erie, Pennsylvania
FS Potts, DCM & G

Ft. Wayne, Indiana

San Jose, California
K. Cohen, APED

Pittsfield, Massachusetts
DF Wilcock, Ordnance

Title Page:
TIS, Bldg. 5, Schenectady
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glossary of Terms</td>
<td>iv</td>
</tr>
<tr>
<td>List of Symbols</td>
<td>v</td>
</tr>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II. TEST EQUIPMENT</td>
<td>3</td>
</tr>
<tr>
<td>III. DISCUSSION OF TEST RESULTS</td>
<td>5</td>
</tr>
<tr>
<td>IV. THEORETICAL ANALYSIS</td>
<td>12</td>
</tr>
<tr>
<td>V. CONCLUSIONS</td>
<td>17</td>
</tr>
<tr>
<td>VI. REFERENCES</td>
<td>18</td>
</tr>
<tr>
<td>VII. APPENDIX</td>
<td></td>
</tr>
<tr>
<td>A. List of Tables</td>
<td>19</td>
</tr>
<tr>
<td>B. List of Figures</td>
<td>22</td>
</tr>
<tr>
<td>C. Distribution List</td>
<td>49</td>
</tr>
</tbody>
</table>
GLOSSARY OF TERMS

Self-acting - (Used interchangeably with hydrodynamic) - a bearing system in which the journal and bearing are separated by a fluid film resulting from pressures generated by relative displacement and motion of the surfaces.

Externally Pressurized - (Used interchangeably with hydrostatic) - a bearing system in which the journal is separated from the bearing by fluid film established due to introduction of pressurized fluid into the clearance between them.

Hybrid Bearings - A bearing system combining self acting and externally pressurized features.

Steady State Performance - A condition at which the fluid film pressure is distributed independently of time, i.e., stationary journal axis.

Dynamic Performance - A condition under which the axis of the journal moves so that local gas film pressures vary with time. Examples of dynamic operation are:

a. Start-up and shutdown transients
b. Motion excited by rotating load
c. Motion excited by reciprocating load
d. Bearing instability (H.F.W., P.F. W., and synchronous whirl as described in this paper)

Whirl Ratio - Ratio of frequency of shaft rotation to frequency of shaft whirl.
LIST OF SYMBOLS

L/D Length/Diameter
b m/w
r Radial Clearance, 1 inch
f Bearing Load, lbs.
Ip Polar Moment of Inertia, #/sec.²/in.
It Translatory Moment of Inertia, #/sec.²/in.
Kx Radial Bearing Stiffness, #/inch
kc Radial Translatory Stiffness Evaluated at ωc, #/inch
ω Angular Velocity, rad./sec.
ωc Angular Velocity at Onset of H.F.W. - Conical Whip, rad/sec.
ωT Angular Velocity at Onset of H.F.W. - Translatory Whip, rad/sec.
ε Bearing Span c-c, inches
L Bearing Length, inches
m Mass, #/sec.²/inch
Pa Ambient Pressure, psia
R Bearing Radius, inches
E Eccentricity Ratio
Λ Compressibility Number
μ Viscosity, #/sec./in²
ω Attitude Angle, degree
K3 Radial Stiffness Under Misaligned Conditions
Ks Static Spring Stiffener
Fth Radial Hydrodynamic Force
Fth Tangential Hydrodynamic Force
ε Eccentricity - inches
I. INTRODUCTION

The theory of externally pressurized bearings, despite valuable contributions by some investigators, is still in its initial stages of evolution. Most of the solutions presently available (Refs. 1, 2, 3, 4, page 18) disregard rotational effects and as such can only be used with fair accuracy to determine the static load carrying capacity of externally pressurized bearings. However, since shaft rotation can have serious effects on the performance of externally pressurized bearings, it must be included in any analysis if the latter is to serve as a useful and reliable tool to the designer of systems utilizing hybrid (hydrodynamic-hydrostatic) gas bearings. The effects of rotation can be divided into two categories:

1. Effect of rotation on load carrying capacity and flow.
2. Effects of rotation on dynamic performance of a rotor-bearing system.

Regarding the first category, a recent theoretical analysis which includes the effects of rotation, shows that the hydrodynamic effect may or may not have a significant influence on the hydrostatic load capacity; its effect depends upon the operating conditions (Ref. 5, page 18). Effects of rotation on the dynamic behavior of the rotor-bearing system, however, can be quite severe and plagued by various types of instabilities which have been recognized and can broadly be defined as:

1. Critical Speed

This is a rotating speed of a journal which corresponds to the resonant frequencies of the system. (The system critical speeds include rigid body as well as bending or torsional critical speeds).
2. **Half-Frequency Whirl**

A special case of instability generally associated with self-acting journal bearings. This instability occurs when the journal speed reaches a critical value. The journal axis whirls at a frequency of one-half or nearly one-half of the journal speed in the same direction as the journal rotation. The motion of the journal axis can be either conical or translatory.

3. **Fractional-Frequency Whirl**

The subject phenomenon is a special case of instability generally associated with hybrid journal bearings. This instability occurs when the journal speed reaches a critical value. The journal axis whirls at a frequency which is a fraction of the journal speed in the same direction as the journal rotation. The motion of the journal axis can be either conical or translatory. (The expression for the fractional frequency is given in equation 14, (page 15). And in the limit where self-acting forces predominate, it approaches the half-frequency whirl).

4. **Pneumatic Hammer**

This is a self-excited oscillation in the flow system of an externally pressurized bearing. This oscillation does not necessarily require shaft rotation.
Figure 1 presents a picture of the test rig which consists of a housing incorporating two journal bearings, the length of which can be changed up to 2 inches maximum. The shaft is 2 inches in diameter and accommodates a Terry-type impulse drive turbine on one end. The turbine employs full arc admission to minimize aerodynamic forces on the rotor. A dummy wheel is mounted on the other end of the rotor to provide rotor symmetry, decrease coastdown time, serve as a speed signal generating device, and a direction of rotation reverser.

The bearings (leaded-bronze) are externally fed through a total of eight orifices per bearing with all connections extending to a common manifold for each individual bearing. The orifice holder (figure 2, page 24) includes a removable orifice insert to facilitate quick orifice changes. In addition to the replaceable orifices, fixed orifices (.052 inch) are permanently incorporated in the journal bearing. This series orifice combination provides a means for changing the feeding system from orifice compensation to a combination of orifice-inherent compensation, or pure-inherent compensation through changes in replaceable orifice diameter and clearance.

Each bearing is fed via flowmeters shown in figure 1. The two meters shown for each bearing cover a range from 0 - 1.5 scfm with accuracy ranging from 2% - 8% of measured flow. Pressure gages calibrated to indicate absolute pressure with accuracy of ± .5 psi are used to register supply pressure levels.

Loading is accomplished through an air piston connected through a flexible foil to a 180° recessed gas journal bearing. The piston pulls against the foil which, in turn, applies a uniform load to the shaft. Since this system permits uniform
and indirect (through air film) load application, damping applied through the loading device which may effect onsets of instability can be considered negligible. Due to instability encountered on the loader bearing above 40,000 rpm, the use of the same had to be restricted to speeds below that level. The nature of this instability was not determined; however, it should be noted for future references that the bearing was 2 inches in diameter with 0.001 inch radial clearance and a recessed depth of 0.0005 inch, with 3/16 inch wide lands running around the entire perimeter. A centrally located 0.25 inch diameter hole was used to admit external air under pressure.

Each bearing end is supplied with four capacitive probes placed 90° apart with the output of each fed directly through proximity meters to a cathode-ray oscilloscope (CRO). Calibration of the CRO screen with the probe input permits determination of shaft position with accuracy of ± 25 x 10^-6 inches or better. The same probe outputs are also used to determine frequency of oscillation, criticals and phase relationships between both ends.

Two thrust plates externally pressurized through 0 - 0.020 inch diameter orifices, as shown in figure 3, are used to contain the rotor in the axial direction. Total axial play amounts to 0.004 inch.

The entire unit is mounted on a heavy steel table which in turn is mounted on vibration isolation pads to reduce effects of building vibrations.
III. DISCUSSION OF TEST RESULTS

A. Instabilities

1. Criticals

In all tests described in this report, two critical speeds were observed in the safe operating speed range of the rotor. The lower critical corresponded to the conical mode. This conical whirl persisted up to the second critical. If one is to utilize the criterion for conical criticals described in Ref. 9 (page 18) then

\[\frac{L}{2} k_c + 2k_3 = \left(\frac{\omega_c}{\kappa} \right)^2 \left(I_T - n I_p \right) \]

and where the critical frequency occurs at frequency of one per rev.,

\[n = 1 \text{ and } \frac{L}{2} k_c + 2k_3 = \omega_c^2 \left(I_T - I_p \right) \] \hspace{1cm} (1)

where \(k_3 \) is the radial stiffness under misaligned conditions, \(k_3 \) can be evaluated by making simplifying assumptions about end effects, and by assuming that each elemental length of the bearing contributes equally to the linear stiffness. Thus:

\[k_3 = \frac{L}{i_2} k_c \] \hspace{1cm} (2)

The translatory critical is a function of film stiffness and can be expressed as:

\[\omega_T^2 = \frac{2k_T}{m} \] \hspace{1cm} (3)

Substituting (2) in (1) and combining (1) and (3), one obtains the ratio of translatory to conical criticals for a two bearing system.

\[\frac{\omega_T^2}{\omega_c^2} = \frac{12 \left(I_T - I_p \right) k_T}{m \left(3\ell^2 + L^2 \right) k_c} \]
Assuming further that \(K_T = K_c \) (i.e., the two criticals are not too far apart in speed and therefore the stiffnesses are not too different), then the ratio of criticals, knowing the translatory and polar moments of inertia, bearing span, bearing length, and mass of rotor can be easily computed from equation 4. For our case:

\[
\begin{align*}
I_T &= 0.612 \text{ ft}^2 \\
I_p &= 0.0172 \text{ ft}^2 \\
m &= 0.0341 \text{ ft}^2 \\
1 &= 6.487 \text{ in.} \\
L &= 1 \text{ in.}
\end{align*}
\]

and \(\frac{\omega_T}{\omega_c} = 1.285 \)

Table I presents the test results in terms of criticals and onset of fractional-frequency whirl for all conditions observed. The lowest critical listed in column 3 corresponds to the conical mode induced by gyroscopic rotor effects (equation 1). Column 4 lists the next critical corresponding to the translatory mode (equation 3). Column 5 gives the onset of fractional-frequency whirl. Values of criticals for \(C = 0.0005 \) inch given in this table had to be calculated since the amplitude of vibration with this particular clearance was too low to permit accurate measurements. The ratio of criticals as given in column 6 varies between 1.235 - 1.65, and does not remain constant at 1.285 as calculated above and based on \(K_T = K_c \). The variation appears to be a function of orifice size, clearance and pressure at conditions of constant load under which those tests were performed. Column 7 gives ratios of onset of fractional frequency whirl to lowest system critical.
A comparison between calculated values and test values of the conical and translatory criticals is given in Table 2. The calculated criticals are based on equation 3 where the film stiffness K_F has been obtained from test results on load carrying capacity at a given load of 6.57 lbs. per bearing. Theoretical values based upon the theoretically derived stiffness are also given. The test values obtained have then been reduced by a factor of 1.285 to yield calculated values of conical criticals. As can be seen, the correlation of calculated and test values for the translatory criticals is good. Only fair agreement exists between calculated and test values of conical criticals. This is probably due to the simplifying assumptions made in calculating the conical stiffness.

2. Pneumatic Hammer

The instability known as pneumatic hammer was encountered in one bearing geometry ($L/D = 0.5$, $D = 2.00$ inches, $P_s = 120$ psia, $C = 0.001$ inch, $a = 0.0055$ inch). The instability was severe enough to prevent safe operation. Further investigation of this phenomenon at $P_s = 150$ and zero RPM showed that air hammer persisted up to loads of 4.5 lbs. per bearing and at higher loads it disappeared. When unstable, vibrations occurred in line with load only (vertical plane) at a frequency of 249 cps and were sinusoidal in form. At 200 psia vibrations persisted up to bearing loads of 12 lbs. per bearing, again sinusoidal, and in the vertical plane only at a frequency of 269 cps.

Pneumatic hammer investigation was not included in the scope of this program; however, pneumatic hammer appears to be a function of bearing geometry, supply pressure and bearing load. The frequency of oscillation seems to be unaffected by load, and affected by supply pressure only for a constant bearing geometry.
3. **Fractional-Frequency Whirl**

The results obtained in this series of tests on onset of fractional frequency whirl are presented in figures 4 - 9. Figures 4 - 6 show the effect of orifice size on onset of fractional-frequency whirl at various pressures keeping all other factors constant. The variation in orifice size is accomplished through orifice insert change only, leaving the 0.052 inch diameter bearing orifices in the system. This results in inherent rather than orifice compensation and, as such, has to be taken into consideration when analysis is made for comparison with test data. For the conditions represented in figure 4, the orifice size appears to have little or no effect on the onset of fractional-frequency whirl. This is due to the fact that the major restriction with the tight clearance is formed not by the area of the orifice incorporated in the insert, but by the annular area of the permanent set of 0.052 inch diameter orifices in the bearings, or combinations of both restrictors in series. It is also interesting to note that in every instance the onset of fractional-frequency whirl at zero supply pressure occurred at a higher speed than at 50 psia supply pressure. This clearly indicates that in many externally pressurized gas bearing applications, the hydrodynamic effects are significant, and must be included in stability analysis.

Results given in figures 4 - 6 are replotted in figures 7 - 9 as functions of clearance. At low supply pressure, where the hydrodynamic effects predominate, the onset of fractional-frequency whirl increases with increase in clearance. This should not be generalized since the authors in their past work (Ref. 7, page 18) have shown that a clearance exists for each bearing geometry which will produce the onset of instability at lowest speed. Either an increase or decrease in clearance from this
value will produce an increase in threshold of instability. Orifices in the bearing can also significantly influence the threshold of instability. The hydrodynamic effects for the low and high supply pressure conditions are shown in figure 10. Each graduation on the CRO screen represents 0.0001 inch, and the center of the screen represents bearing center. The shaft center is represented by the whirl paths.

As can be seen with the bearing geometry indicated, when externally pressurized with 50 psia, the shaft rests on the bearing, and not enough load carrying capacity is available to lift the 6.57 lbs. per bearing load. As soon as shaft begins to spin, however, the shaft center follows a hydrodynamic path. On the other hand, with pressures of 100 psia and above, the position of the shaft when rotating does not differ appreciably from its static position. The whirl amplitudes at speeds below the lowest critical are caused by slight amounts of unbalance. The whirl amplitudes at higher speeds accompanied by phase changes indicate that the rotor is going through critical. This is shown more clearly in figure 11 where pictures show the rotor unit went through both criticals. The photo taken at the highest speed indicates onset of fractional frequency whirl. The frequencies of rotor oscillation at this onset could not be determined since in most cases the onset was quick and violent. Efforts to determine the onset of instability at high speed and high supply pressure conditions resulted in three bearing seizures.

4. Effects of Load on Onset of Fractional-Frequency Whirl

The evaluation of effects of load on onset of fractional-frequency whirl had to be limited to a few points due to the fact that onset was violent
and destructive. Again, as in the other tests, a dependence upon the relative influence of hydrodynamic and hydrostatic effects can be seen in figure 12. At low pressure conditions where the hydrodynamic effects are predominant, the effect of increasing load is to increase the speed at which fractional-frequency whirl occurs. At high pressure, however, this effect becomes modified due to the increase in the load carrying capacity of the bearing. Figure 13 represents effects of load on onset of fractional-frequency whirl at constant pressures of 50 psia as a function of orifice size. Again at these low pressures, hydrodynamic effects predominate and one cannot expect to obtain appreciable benefits from a change in the size of the feeding restrictor.

5. Load Carrying Capacity

Results on load carrying capacity tests are presented in figures 14 - 21 where the test data is superimposed on analytical results. Correlation between theory and test results is good for radial clearances of 0.001 inch and 0.0015 inch up to eccentricity ratios of roughly 0.5. Above those ratios the slope of the load vs. displacement curves seems to be decreasing for the 0.001 inch radial clearance, the decrease being more pronounced at lower pressures. For the 0.0015 inch clearance at pressures of 100 psi and above, the slope seems to be increasing at higher eccentricities over a considerable displacement range and decreasing again as the eccentricity approaches the radial clearance. The reasons for this are not apparent at this time. Considerable disagreement between theory and test data appears in the tests involving 0.0005 inch radial clearance.

This can be explained by the fact that the coefficient of discharge for the bearing in theoretical analysis was matched for one clearance (c=0.001 inch)
and thereafter used for all clearance theoretically calculated.

6. Flow Measurements

Results of flow measurements for all conditions are given in figures 22 - 24. As expected, the flow is dependent upon pressure, clearance and orifice size. The effects of inherent compensation are clearly shown in figures 22 and 23 where changes from $a = 0.010$ inch to $a = 0.015$ inch do not result in appreciable flow changes. Excellent agreement between theory (as indicated by dotted lines) and experiment is indicated for radial clearances of 0.0005 and 0.001 inch. Appreciable discrepancies reaching a maximum of 80% at the highest pressure (200 psia) are indicated for the radial clearance of 0.0015 inch. This again can be explained by the fact that the discharge coefficient in the theoretical analysis was matched for the clearance of 0.001 inch and used for all other clearances.

The effects of rotor speed on flow are shown in figures 25 and 26. The decrease in flow with speed is more pronounced at higher pressure levels than at the lower levels.

The relative comparison between discrepancies in flow and load carrying capacity results show that in both cases good agreement exists at the clearance value of 0.001 inch as expected since the discharge coefficient was matched for this particular clearance. At the minimum and maximum clearance, however, the discrepancies between experiment and theory are most pronounced for the load carrying capacity at clearances of 0.0005 inch and for flow at 0.0015 inch. This observation warrants a closer scrutiny of the variation of discharge coefficient as a function of change in feeder parameter and clearance.
IV. THEORETICAL ANALYSIS

The theoretical calculations are concerned with the load carrying capacity and the gas flow for the purely hydrostatic bearing. The onset of instability due to rotation will not be analyzed. The present theoretical results are based on the analysis presented in Reference 10. However, this analysis is limited to orifice restricted bearings and does not take into account the additional flow restriction caused by "inherent compensation" (i.e., the restriction due to the annular area between the rim of the feeding hole and the surface of the journal). For the present test bearing, the feeding hole diameter is sufficiently small to make this effect very important, even being dominant for the tests with the largest orifice size. Thus, it is necessary to incorporate the inherent compensation in the analysis of Reference 10. The journal bearing is pressure-fed from orifice restricted feeding holes on the circumference in the centerplane of the bearing. For a sufficiently large number of feeding holes, these may be approximated by a line source such that the gas feeding becomes a boundary condition to the differential equation describing the flow in the bearing. The differential equation is the Reynolds equation which for a perfect gas under isothermal conditions may be written:

$$\frac{d}{dx} \left[\rho h^{3} \frac{dP}{dx} \right] + \frac{d}{dz} \left[\rho h^{3} \frac{dP}{dz} \right] = 0$$

(1)

(P = pressure, psia - h = film thickness, inch - x = circumferential coordinate, inch = z = axial coordinate, inch).

To make dimensionless set:

$$\theta = \frac{x}{R}, \quad \bar{P} = \frac{P}{P_a}, \quad \bar{h} = \frac{h}{C} = 1 + \epsilon \cos \theta$$

(R = bearing radius, inch - C = radial bearing clearance, inch - P_a = ambient pressure, psia - ϵ = eccentricity ratio).

Then:

$$\frac{d}{d\theta} \left[\bar{P} \bar{h}^{3} \frac{d\bar{P}}{d\theta} \right] + \frac{d}{d\bar{z}} \left[\bar{P} \bar{h}^{3} \frac{d\bar{P}}{d\bar{z}} \right] = 0$$

(2)
Writing the pressure as a power series of the eccentricity ratio \(\varepsilon \):

\[
P = P_0 + \varepsilon P_1 + \varepsilon^2 P_2 + \ldots
\]

(3)

and substituting back into Eq. (2) yields:

\[
P_0^2 = 1 + \frac{\mathcal{R}^2}{\varepsilon^2} (\xi - \xi^2)
\]

(4)

\[
\frac{d^2(P_0P_1)}{d\varepsilon^2} + \frac{d^2(P_0P_2)}{d\xi^2} = 0
\]

(5)

(\(\xi = L/D - L = \) bearing length, inch - \(D = \) bearing diameter, inch - \(p = \) feeding constant, to be determined later).

Terms of higher order than the first shall be neglected, i.e., we assume that is small.

In the center of the bearing (\(\xi = 0 \)) the mass flow through the feeding holes are set equal to the flow leaving through the bearing.

It shall be assumed that the flow through the feeding holes may be considered as a flow through two orifices in series with the same orifice coefficient, but with different flow area. Then the exact mass flow equation is:

\[
\frac{M}{\mathcal{R}} = \frac{\mathcal{R}}{\mathcal{T}} \sqrt{1 - \left(\frac{P_1}{P_2}\right)^{K-1}} \left(\frac{P_1}{P_2}\right)^\frac{K-1}{K} = \left(\frac{P_1}{P_2}\right)^\frac{K-1}{K} \left(1 - \frac{P_1}{P_2}\right)^{K-1}
\]

(6)

(\(M = \) mass flow, lbs. sec/in. - \(\mathcal{R} = \) gas constant, \(in.^2/sec. \) - \(\mathcal{T} = \) absolute temperature, \(\mathcal{R} = \) \(\gamma = \) adiabatic orifice coefficient - \(K = \) adiabatic exponent - \(P_1 = \) supply pressure, psia - \(P_2 = \) downstream pressure after second orifice, psia - \(P_2 = \) pressure between first and second orifice, psia - \(A_1 = \) area of first orifice, \(in.^2 - B = \) area ratio between first and second orifice). In Eq. (6) the pressure ratio (\(P_2/P_1 \)) and (\(P_1/P_2 \)) cannot exceed the critical pressure ratio \((2/K+1)^{K-1} \).

To remove this discontinuity Eq. (6) shall be replaced by an approximate expression:

\[
M = \frac{\phi A_1 P_1}{\mathcal{R}} \left(1 + \mathcal{T}^2 \right)^\frac{1}{2} \left(1 - \frac{\mathcal{T}}{\mathcal{R}}\right)^{\frac{1}{2}}
\]

(7)

(\(\phi = \) orifice coefficient).
A graphical comparison between Eq. (6) and (7) based on $K = 1.4$ shows that $\alpha = 0.78 \sqrt{\gamma}$; setting $\gamma = 0.95$ gives $\alpha = 0.71$ which value has been used in the present calculations. The flow per inch circumference from the feeding holes is

$$\frac{N \cdot M}{2 \pi R}$$ (N = number of feeding holes). Equating this to the flow per inch into the bearing: $-2 \frac{h^3}{12 \mu} \left(\frac{d}{R \cdot \varphi} \right)$ gives:

$$\left(\frac{d \cdot P^3}{\varphi} \right) = -\Lambda_t \left[1 - \frac{3 + 2 d^2}{1 + Q^2} \cos \theta \right] \sqrt{V^2 t^2}$$

where:

$$\Lambda_t = \frac{6 \mu N v^2}{P_a C^3} \sqrt{\frac{R \cdot \varphi}{1 + Q^2}}$$

(μ = viscosity, lbf sec/in2; a = orifice radius, inch; $V = P_a / P_a$, pressure ratio; $Q = a^2 / d^2$, orifice area ratio; d = diameter of feeding hole, inch).

Using Eq. (8) as a boundary condition to Eq. (4) and (5) and proceeding as in Ref. 10 we obtain the bearings load carrying capacity and flow:

$$W = \frac{1}{4} \frac{\pi d^2}{1 + Q^2} \cdot \frac{P}{P_a} \cdot \frac{N \cdot M}{2 \pi R} \cdot \left[\frac{e^{-\frac{d^2}{2}}} \left(\psi \left(\psi \left(\psi \left(\psi \left(\psi \right) \right) \right) \right) \right]$$

$$Q = \frac{\pi d^3}{6 \mu R T} \frac{m}{\varphi} \frac{1}{in}$$

where:

$$U = \frac{1}{\varphi} = \left[\frac{\pi \Lambda_t^2}{2} \left(-1 + \sqrt{1 + \frac{4 (V^2 - 1)}{5 \cdot \Lambda_t^2}} \right) \right]^{-\frac{1}{2}}$$

$$\psi(x) = \int_0^x e^{t^2} dt \quad \psi'(x) = e^{x^2} = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

Except for the factor $\frac{1 + Q^2}{1 + Q^2}$ in Eq. (10) and the modification of Λ_t these two equations are identical with the results obtained in Ref. 10.

From Eqs. (9), (10), and (11) numerical results are obtained for the load carrying capacity and the flow. The results are plotted together with the experimental data.
in figures 14 - 24. The calculations are based on the following data:

Bearing length-to-diameter ratio $\frac{L}{D} = \frac{1}{2}$

Bearing radius $R = 1$ inch

Radial clearance $C = 0.0005$ inch - 0.001 inch - 0.0015 inch

Diameter of feeding hole: $d = 0.032$ inch

Number of feeding holes: $N = 8$

Orifice coefficient $\delta = 0.71$

Orifice radius $a = 0.0055$ inch - 0.010 inch - 0.015 inch

Ambient pressure $p_a = 14.7$ psia

Supply pressure $P_s = 50$ psia - 100 psia - 150 psia - 200 psia

Gas viscosity $\nu = 2.828 \times 10^{-9}$ lbs.sec/in.² (air at 70°F)

Gas constant R Total temperature $T = 339,300$ lbs.in/lbs. (air at 70°F)

Whirl Analysis

If one accepts the model of a constant speed whirl motion centering around the axis of the bearing such that the orbit of the shaft center is a circle, then it has been shown rigorously, for an isothermal gas film, that the effective bearing number is (Refs. 1, 2, 3):

$$\Lambda^* \Lambda \left(1 - \frac{2}{\nu} \frac{C}{R_a} \right)$$

where

$$\Lambda = \frac{6 \mu \omega}{P_a} \left(\frac{R}{C}\right)^2$$

More specifically, with the approximations of small Λ^* and C/R the hydrodynamic film forces during a steady translatory whirl motion are:

$$F_{rh} = K_2 \left(\omega - 2 \varphi\right)^2 e$$

$$F_{th} = K_1 \left(\omega - 2 \varphi\right) e$$

where K_1 and K_2 are functions of Λ and L/D, and have the dimensions of the product of the stiffness and the first and second powers of time respectively. Using these relations, following an analysis otherwise similar to reference 4, the conditions for neutral stability (self-sustained whirl motion) are:
\[
\frac{\omega}{\omega_0} = \frac{1}{\sqrt{1 - \omega_0^2 \left((\tau_1 - \tau_2) \frac{k_s}{k_1} \right)^2}}
\]

where
\[\omega = \text{whirl speed},\]
\[\omega_0 = \text{shaft speed at neutral stability},\]
\[\tau_1, \tau_2 = \text{lead and lag time constants of pressurization system}.\]

The above result can be rearranged as
\[
\frac{\omega}{\omega_0} = 2 + (\tau_1 - \tau_2) \frac{k_s}{k_1}
\]

Above results also employed the assumption
\[\tau_2^2 \omega^2 \ll 1\]

The above result can be rearranged as
\[\lambda = \frac{\omega}{\omega_0} - 2 = (\tau_1 - \tau_2) \frac{k_s}{k_1} \]

\[
\frac{\omega}{\omega_0} = \frac{1}{\sqrt{1 - \frac{2k_s}{m} \frac{k_s}{k_1}}}
\]

which reveals the interesting conclusion that the self-sustained whirl can be suppressed if
\[\frac{2k_s}{m} \geq \frac{1}{\lambda^2}\]
V. CONCLUSIONS

1. Good agreement on load carrying capacity and flow for certain clearance values was noted. The disagreements between test and theoretical results for other clearances can be attributed to the assumption of constant coefficient of discharge in calculations which was matched for one particular clearance, but could have been matched for other clearances.

2. Based on load carrying capacity solutions, good agreement between calculated and observed system critically was obtained.

3. Onsets of fractional-frequency whirl are a function of bearing geometry, load, speed and supply pressure.

4. Hybrid bearings, depending upon supply pressure level and bearing geometry, can be subject to hydrodynamic forces which will have a net effect of producing destructive self-sustained whirl at speeds lower than that of onset of half-frequency whirl, if the bearings had been purely self acting (see figures 4-9).

5. Effects of increase in load on onset of fractional-frequency whirl are pronounced at low supply pressures when self acting effects predominate; same, however, become negligible when supply pressures are raised to the point where static load carrying capacity of the hydrostatic bearing does not result in significant eccentricity at the higher pressures and given load.

6. Air flow in hybrid bearings decreases as speed increases.

7. Theoretical analysis indicates that whirl ratio is a function of lead and lag time constants and the ratio of hydrostatic gas film stiffness to the tangential hydrodynamic gas film stiffness. The whirl ratio can be larger or smaller than 2 depending on the sign of the difference between lead and lag time constants. When hydrostatic effects become negligible, the ratio approaches a limit of 2.

8. Theoretical calculations indicate that onset of FFW can be suppressed if

\[2 \frac{K_2}{n} \geq \frac{4}{\omega^2} \]
VI. REFERENCES

VII. APPENDIX A

Table I - Instabilities

Table II - Comparison of Observed with Calculated Criticals
Table I

Instabilities

L/D = .5, D = 2.00", W = 6.57 lbs/brg.

8 Orifices in Central Plane

*Calculated - all others observed on test

<table>
<thead>
<tr>
<th>Orifice Dia.</th>
<th>Press.</th>
<th>(\omega_c)</th>
<th>(\omega_T)</th>
<th>FFW</th>
<th>(4/3)</th>
<th>(5/3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN.</td>
<td>PSI A</td>
<td>RPM</td>
<td>RPM</td>
<td>RPM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.030</td>
<td>50</td>
<td>12,600</td>
<td>16,700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>16,700</td>
<td>21,640</td>
<td>1.285*</td>
<td>1.61</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>17,200*</td>
<td>21,640</td>
<td>1.285*</td>
<td>1.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>22,000*</td>
<td>33,000</td>
<td>1.285*</td>
<td>1.28*</td>
<td></td>
</tr>
<tr>
<td>0.020</td>
<td>50</td>
<td>11,700</td>
<td>16,300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>16,300</td>
<td>22,500</td>
<td>1.285*</td>
<td>1.34*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>21,600*</td>
<td>22,500</td>
<td>1.285*</td>
<td>1.28*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>28,300*</td>
<td>33,000</td>
<td>1.285*</td>
<td>1.28*</td>
<td></td>
</tr>
<tr>
<td>0.011</td>
<td>50</td>
<td>7,680</td>
<td>10,200</td>
<td>16,240</td>
<td>1.33</td>
<td>2.12</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>16,500</td>
<td>38,640</td>
<td>1.36</td>
<td>3.18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>20,780</td>
<td>54,220</td>
<td>1.45</td>
<td>3.80</td>
<td></td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>22,000</td>
<td>62,260</td>
<td>1.32</td>
<td>3.75</td>
<td></td>
</tr>
<tr>
<td>0.020</td>
<td>90</td>
<td>7,600</td>
<td>10,200</td>
<td>16,280</td>
<td>1.34</td>
<td>2.14</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>12,000</td>
<td>35,300</td>
<td>1.36</td>
<td>2.94</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>21,200</td>
<td>51,000</td>
<td>1.57</td>
<td>3.78</td>
<td></td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>22,600</td>
<td>62,300</td>
<td>1.41</td>
<td>3.90</td>
<td></td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>23,500</td>
<td>70,000</td>
<td>1.38</td>
<td>4.12</td>
<td></td>
</tr>
<tr>
<td>0.011</td>
<td>50</td>
<td>8,000</td>
<td>11,600</td>
<td>15,350</td>
<td>1.45</td>
<td>1.92</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>16,600</td>
<td>22,000</td>
<td>1.51</td>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>16,000</td>
<td>22,400</td>
<td>1.44</td>
<td>2.88</td>
<td></td>
</tr>
<tr>
<td></td>
<td>150</td>
<td>14,400</td>
<td>25,200</td>
<td>1.235</td>
<td>2.50</td>
<td></td>
</tr>
</tbody>
</table>

Air hammer

C = 0.0005"
Criticals

Comparison of Observed with Calculated Criticals

$L/D = 0.5, D = 2.00" \quad W = 6.57 \#/bearing$

<table>
<thead>
<tr>
<th>Orifice Dia.</th>
<th>Radial Clearance</th>
<th>Press. (PSIA)</th>
<th>((w_c)) Obs. RPM</th>
<th>((w_c)) Calc. RPM</th>
<th>((w_T)) Obs. RPM</th>
<th>((w_T)) Theo. Rating</th>
<th>((w_T)) Calc. RPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.030</td>
<td>0.0005</td>
<td>50</td>
<td>0</td>
<td>14,238</td>
<td>17,200</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>13,400</td>
<td>28,743</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>150</td>
<td>22,000</td>
<td>37,395</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.020</td>
<td>0.011</td>
<td>50</td>
<td>0</td>
<td>17,953</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>16,800</td>
<td>32,458</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>150</td>
<td>25,800</td>
<td>41,014</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.011</td>
<td>0.030</td>
<td>50</td>
<td>0</td>
<td>22,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>17,800</td>
<td>33,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>150</td>
<td>17,800</td>
<td>33,200</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.030</td>
<td>0.001</td>
<td>50</td>
<td>7,680</td>
<td>9,230</td>
<td>10,200</td>
<td>14,047</td>
<td>11,870</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>12,600</td>
<td>14,300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>150</td>
<td>16,600</td>
<td>17,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.020</td>
<td>0.011</td>
<td>50</td>
<td>7,600</td>
<td>9,240</td>
<td>10,200</td>
<td>14,524</td>
<td>11,870</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>12,400</td>
<td>13,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>150</td>
<td>16,000</td>
<td>17,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>200</td>
<td>22,000</td>
<td>23,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.011</td>
<td>0.030</td>
<td>50</td>
<td>8,000</td>
<td>11,350</td>
<td>11,600</td>
<td>14,911</td>
<td>14,600</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>12,000</td>
<td>14,500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>150</td>
<td>17,800</td>
<td>19,150</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.030</td>
<td>0.0015</td>
<td>50</td>
<td>6,700</td>
<td>8,000</td>
<td>9,500</td>
<td>10,600</td>
<td>10,280</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>8,900</td>
<td>10,900</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>150</td>
<td>10,000</td>
<td>12,150</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.020</td>
<td>0.011</td>
<td>50</td>
<td>6,700</td>
<td>8,050</td>
<td>9,300</td>
<td>10,418</td>
<td>10,300</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>8,100</td>
<td>10,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>150</td>
<td>9,800</td>
<td>11,920</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.011</td>
<td>0.030</td>
<td>50</td>
<td>6,000</td>
<td>6,820</td>
<td>8,000</td>
<td>8,699</td>
<td>8,760</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>7,800</td>
<td>9,620</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>150</td>
<td>10,100</td>
<td>11,000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Calculated from static load carrying capacity curves

** Calculated on basis of \(\frac{w_c}{w_T} = 1.285\)
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Test Rig</td>
</tr>
<tr>
<td>2</td>
<td>Orifice Holder</td>
</tr>
<tr>
<td>3</td>
<td>Thrust Plate Detail</td>
</tr>
<tr>
<td>4-9</td>
<td>Results on Onset of FFW</td>
</tr>
<tr>
<td>10-11</td>
<td>CRO Pictures on Dynamic Behavior of Shaft inExternally Pressurized Bearing</td>
</tr>
<tr>
<td>12</td>
<td>FFW vs. Supply Pressure</td>
</tr>
<tr>
<td>13</td>
<td>FFW vs. Load</td>
</tr>
<tr>
<td>14-21</td>
<td>Load vs. Eccentricity Curves</td>
</tr>
<tr>
<td>22-24</td>
<td>Flow vs. Supply Pressure</td>
</tr>
<tr>
<td>25-26</td>
<td>Effect of Speed on Flow</td>
</tr>
</tbody>
</table>
ONSET OF FRACTIONAL FREQUENCY WHIRL
VS.
SUPPLY PRESSURE
(Effects of clearance)

\[\frac{L}{D} = 0.5 \]
\[D = 2.00^* \]
\[C = 0.0005^* \]
\[\odot \theta = 0.015^* \]
\[\cdots \theta = 0.010^* \]
\[\triangle \theta = 0.0055^* \]
\[W = 8.57 \text{ LBS/BRG.} \]

FIG. 4

SUPPLY PRESSURE - PSIA

FFN - RPM X 10^-3
ONSET OF FRACTIONAL FREQUENCY WHIRL
VS.
SUPPLY PRESSURE
(Effects of orifice size)

\[\frac{L}{D} = 0.5 \]
\[D = 2.00'' \]
\[C = 0.001'' \]
\[\delta - \delta = 0.015'' \]
\[\delta - \delta = 0.010'' \]
\[\Delta - \delta = 0.0055'' \]
\[W = 6.57 \text{ LBS/BRG.} \]
ONSET OF FRACTIONAL FREQUENCY WHIRL
VS.
SUPPLY PRESSURE
(Effects of orifice size)

L/D = .5
D = 2.00"
C = .0015"
O-a = .015"
A-a = .010"
A-a = .0055"
W = 6.57 LBS/RRG.

FIG. 6
ONSET OF FRACTIONAL FREQUENCY WHIRL
VS
SUPPLY PRESSURE
(Effects of clearance)

L/D = 0.5
D = 2.00
a = 0.0055
-b = 0.0045
-o-e = 0.0001
A = 0.0015
V = 6.57 LBS.

FIG. 7
ONSET OF FRACTIONAL FREQUENCY WHIRL
VS.
SUPPLY PRESSURE
(Effects of clearance)

\[\begin{align*}
L/D & = 0.5 \\
D & = 2.00" \\
\beta & = 0.010" \\
\gamma - \delta & = 0.005" \\
\Delta & = 0.001" \\
\Delta - E & = 0.0015" \\
W & = 6.57 \text{ LBS.}
\end{align*} \]
ONSET OF FRACTIONAL FREQUENCY WHIRL
VS.
SUPPLY PRESSURE
(Effects of clearance)

L/D = .5
G = 2.00°
S = .015°
-·C = .0005°
\(\square \) = .001°
\(\triangle \) = .0015°
\(W = \text{6.57 LBS.} \)

FIG. 9
Dynamic Behavior of Shafts Supported on Externally Pressurized Bearings

Load 6.57 lbs/bearing

\[
\begin{align*}
\sigma &= 0.0005" \\
n &= 0.015"
\end{align*}
\]

\[
\begin{align*}
P &= 50 \text{ psia} \\
\text{Static dot} &= \text{bottom} \\
2,000 \text{ RPM} \\
5,000 \text{ RPM} \\
10,000 \text{ RPM}
\end{align*}
\]

\[
\begin{align*}
P &= 100 \text{ psia} \\
\text{Static dot} &= 1 \text{ grad.} \\
2,000 \text{ RPM} \\
10,000 \text{ RPM (large ampl.)} \\
17,000 \text{ RPM}
\end{align*}
\]

\[
\begin{align*}
P &= 150 \text{ psia} \\
\text{Static} \\
10,000 \text{ RPM} \\
20,000 \text{ RPM (large ampl.)} \\
30,000 \text{ RPM}
\end{align*}
\]

\[
\begin{align*}
P &= 200 \text{ psia} \\
\text{Static} \\
10,000 \text{ RPM} \\
20,000 \text{ RPM (large ampl.)} \\
30,000 \text{ RPM}
\end{align*}
\]

FIG. 10

-32-
Dynamic Behavior of Shafts Supported on Externally Pressurized Bearings

Load 6.57 lbs/bearing

- $c = .001''$
- $a = .015''$
- $P = 50$ psia

Static

7680 RPM (large ampl.)

8300 RPM

10,000 RPM (large ampl.)

15,000 RPM

16,246 RPM

onset of whirl

FIG. 11
FFW VS SUPPLY PRESSURE

L/O = .5
D = 2.0
a = .015
C = .0005

LOAD/BRG. = 0
○ = 6.57 LBS
△ = 20.0 LBS

FIG. 12
FFW VS. LOAD

\[\frac{L}{D} = 0.5 \]
\[D = 2.0" \]
\[C = 0.001" \]
\[P_s = 50 \text{ PSIA} \]
\[\Delta - ? = 0.015" \]
\[\Delta - ? = 0.010" \]
\[\Delta - ? = 0.005" \]

FIG. 13

"W" - LBS PER BEARING
LOAD VS. ECCENTRICITY

L/D = .5
D = 2.0"
C = .0005"
α = .0055"

--- TEST
--- THEORY

FIG. 14
LOAD VS. ECCENTRICITY

\[\frac{L}{D} = .5 \]
\[D = 2.0 \]
\[C = .0005 \]
\[\cdot \theta = .015^\circ \]
\[\cdot \theta = .010^\circ \]

FIG. 15

PSIA
LOAD VS. ECCENTRICITY

\[\frac{L}{D} = 0.5 \]
\[D = 2.0'' \]
\[C = 0.001'' \]
\[a = 0.0055'' \]

FIG. 16

TEST

THEORY
LOAD VS. ECCENTRICITY

L/D = 0.5
O' = 2.0°
C = 0.001°
a = 0.010°

--- TEST ---
--- THEORY ---

FIG. 17

-39-
LOAD VS. ECCENTRICITY

FIG. 18
LOAD VS. ECCENTRICITY

L/D = 0.5
Q = 2.0
C = 0.0015
a = 0.005

TEST

THEORY

FIG. 19
LOAD VS. ECCENTRICITY

L/D = .5
C = 2.0°
\(\varepsilon \) = .0015°
\(\delta \) = .015°

--- TEST
--- THEORY

FIG. 21

\[e = \text{IN.} \times 10^{-4} \]
FLOW VS. SUPPLY PRESSURE
(Effects of orifice size)

\[\frac{L}{D} = 0.5 \]
\[D = 2.0' \]
\[C = 0.0005' \]
\[\Delta - a = 0.0055' \]
\[\Delta - a = 0.010' \]
\[\Delta - a = 0.015' \]
\[W = 0 \text{ LBS.} \]

TEST

THEORY

FIG. 22
FLOW VS. SUPPLY PRESSURE
(Effects of orifice size)

- L/D = .5
- D = 2.00".
- Δ = .0055"
- a = .010"
- φ = .015"
- C = .001"
- W = 0 LBS:

TEST

THEORY

FIG. 23

-45-
FLOW VS. SUPPLY PRESSURE
(Effects of orifice size)

L/D = .5
D = 2.0
Δ = .0055
Δ = .015
Δ = .015
W = 0 LBS.

TEST

THEORY

F = 0.055
F = 0.015
F = 0.010
F = 0.0055

FIG. 24
EFFECTS OF SPEED ON FLOW

L/D = 0.5
D = 2.0
C = 0.001
W = 6.57 LBS.
Δ - a = 0.005°
- a = 0.010°
- a = 0.015°

FIG. 25
EFFECTS OF SPEED ON FLOW

L/D = 0.5
D = 2.0
C = 0.0005°
\(\triangle a = 0.005° \)
\(-a = 0.010° \)
\(\circ a = 0.015° \)
W = 6.57 LBS.

NOTE: \(a = 0.010 \) AND \(a = 0.015 \) YIELDED SAME FLOW

FLOW - Q/MM X 10^2

SPEED - RPM X 10^{-3}

FIG. 26
APPROVED DISTRIBUTION LISTS FOR UNCLASSIFIED TECHNICAL REPORTS
ISSUED UNDER
GAS LUBRICATED BEARINGS CONTRACTS

Contract NONR 2844(00) NR 097-348

Chief of Naval Research
Department of the Navy
Washington 25, D. C.
Attn: Code 438 10
461 1
423 1
429 1
463 1
466 1

Chief, Bureau of Ships
Department of the Navy
Washington 25, D. C.
Attn: James C. Reid (Code 644B) 8

Material Laboratory Library
Building 291, Code 912B
New York Naval Shipyard
Brooklyn 1, New York 1

Commanding Officer
Office of Naval Research
Branch Office
346 Broadway
New York 13, New York 1

Commanding Officer
Office of Naval Research
Branch Office
1030 East Green Street
Pasadena 1, California 1

Commanding Officer
Office of Naval Research
Branch Office
1030 East Green Street
Pasadena 1, California 1

Commanding Officer
U. S. Naval Engineering Experiments Station
Annapolis, Maryland 1
Attn: Supervisor, Bearings Project, Code 790 2

Commanding Officer
U. S. Naval Boiler and Turbine Laboratory
Naval Base
Philadelphia, Pennsylvania 1

Commanding Officer
U. S. Naval Avionics Facility
Indianapolis 18, Indiana 1
Attn: J. C. Weir 1

Office of Naval Research
Branch Office
Navy No. 100 Fleet Post Office
New York, New York 10

Superintendent
U. S. Naval Postgraduate School
Monterey, California 1

Office of Naval Research
Resident Representative
University of Pennsylvania
Room 213, Hare Building
Philadelphia 4, Pennsylvania 1

Commanding General
U. S. Army Engineer R and D Labs.
Fort Belvoir, Virginia 2
Attn: W. M. Crim, Nuclear Power Field Office 2

Director
Naval Training Device Center
Sands Point, Fort Washington
Long Island, New York 1

Office of Chief of Ordnance
Research and Development Division
Department of the Army
Washington 25, D. C. 2
Attn: Normal L Kleir 2
<table>
<thead>
<tr>
<th>Company Name</th>
<th>Address</th>
<th>City</th>
<th>State</th>
<th>Attention</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Engineering Laboratory</td>
<td>One River Road</td>
<td>Schenectady, New York</td>
<td></td>
<td>Dr. G.M. Rentzepis</td>
</tr>
<tr>
<td>General Electric Company</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Motors Corporation</td>
<td>Research Laboratories Division</td>
<td>Detroit, Michigan</td>
<td></td>
<td>Mr. Robert Davies</td>
</tr>
<tr>
<td></td>
<td>Technical Center</td>
<td></td>
<td></td>
<td>Asst. Supr. of Bearings Section</td>
</tr>
<tr>
<td>Koppers Company, Inc.</td>
<td>Metals Products Division</td>
<td>P.O. Box 626</td>
<td></td>
<td>Mr. I.C. Kuchler</td>
</tr>
<tr>
<td>Lear, Incorporated</td>
<td>Research Laboratories Division</td>
<td>Grand Rapids, Michigan</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grand Rapids Division</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>International Business Machine Corp.</td>
<td>Research Laboratory</td>
<td>San Jose, California</td>
<td></td>
<td>Dr. W.A. Gross</td>
</tr>
<tr>
<td>Illinois Institute of Technology</td>
<td>Chicago, Illinois</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>International Telephone and Telegraph Laboratories</td>
<td>15151 Bledsoe Street</td>
<td>San Fernando, California</td>
<td></td>
<td>Mr. G.B. Speen</td>
</tr>
<tr>
<td>Institute of Aeronautical Sciences</td>
<td>2 East 64th Street</td>
<td>New York, New York</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jack and Heintz, Inc.</td>
<td>207 East Laboratory, Public Roads Bldg.</td>
<td>Washington National Airport</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kearfott Company</td>
<td>1378 Main Street</td>
<td>Clifton, New Jersey</td>
<td></td>
<td>Mr. Walter Carow</td>
</tr>
<tr>
<td>Lycoming Division</td>
<td>Avco Manufacturing Corp.</td>
<td>Main Street</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lockheed Aircraft Corporation</td>
<td>Missiles and Space Division</td>
<td>P.O. Box 504</td>
<td></td>
<td></td>
</tr>
<tr>
<td>McDonald Aircraft Corporation</td>
<td>Lambert St. - St. Louis Municipal Airport</td>
<td>Box 516</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marquardt Aircraft Company</td>
<td>P.O. Box 2013-South Annex</td>
<td>Van Nuys, California</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Massachusetts Institute of Technology</td>
<td>Room 35-132</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kearfott Company</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lawrence Industries</td>
<td>336 North Foothill Road</td>
<td>Beverly Hills, California</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Litton Industries</td>
<td>3171 South Bundy Drive</td>
<td>Santa Monica, California</td>
<td></td>
<td>Mr. Richard M. Mock, President</td>
</tr>
<tr>
<td>Lycoming Division</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lycoming Division</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>McDonnell Aircraft Corporation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marquardt Aircraft Company</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marquardt Aircraft Company</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Massachusetts Institute of Technology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Massachusetts Institute of Technology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Massachusetts Institute of Technology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Massachusetts Institute of Technology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Massachusetts Institute of Technology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Massachusetts Institute of Technology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Massachusetts Institute of Technology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Massachusetts Institute of Technology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Massachusetts Institute of Technology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Massachusetts Institute of Technology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Massachusetts Institute of Technology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Maico Electronics, Inc.
21 North Third Street
Minneapolis 1, Minnesota
Attn: Mr. G. E. Adams
Automatic Controls Dept.
Massachusetts Institute of Technology
Department of Aeronautical Engineering
Instrumentation Laboratory
Cambridge 39, Massachusetts
Dynamic Analysis and Control Lab.
Massachusetts Institute of Technology
Cambridge 39, Massachusetts
Attn: Dr. R. W. Mann
Aeronautical Engineering Labs.
University of Michigan
Ann Arbor, Michigan
Attn: Prof. R. B. Morrison
Minnesota-Honeywell Regulator Co.
Gyro Section
2600 Ridgeway Road
Minneapolis, Minnesota
Attn: Mr. Jack W. Lower
Chief, Aeronautical Div.
Cryogenic Engineering Laboratory
National Bureau of Standards
Boulder, Colorado
Attn: Mr. B. W. Birmingham
Library
U.S. Department of Commerce
National Bureau of Standards
Boulder Laboratories
Boulder, Colorado
New Departure
Division of General Motors Corp.
Briston, Connecticut
Attn: R. N. S. Schiedt, Manager
Bearing Development and Contract
Norden Laboratories
Norden Div. of United Aircraft Corp.
White Plains, New York
Attn: Miss Elizabeth Zeil, Librarian
Department of Chemical Engineering
New York University
New York 53, New York
Attn: James J. Barker, Assoc. Prof.
of Nuclear Engineering
New Hampshire Ball Bearings, Inc.
Peterborough, New Hampshire
Attn: Mr. Henry F. Villaume, Engr.
Northrop Corporation
Norair Division
1001 East Broadway
Hawthorne, California
Attn: Library, 3145-31
Nortronics
A Division of Northrop Corporation
100 Morse Street
Norwood, Massachusetts
Attn: Mr. E. L. Swainson, Tech. Asst.
Precision Products Dept.
The Technological Institute
Northwestern University
Evanston, Illinois
Attn: Professor A. Chanes
Pratt and Whitney Aircraft Div. CANEL
P. O. Box 1102
Middletown, Connecticut
Radio Corporation of America
Camden, New Jersey
Ryan Aeronautical Company
Lindberg Field
San Diego 12, California
Attn: Mr. Frank W. Fink
Vice Pres. and Chief Engr.
Sanderson and Porter
72 Wall Street
New York 5, New York
Attn: Mr. S. T. Robinson
Solar Aircraft Company
2200 Pacific Highway
San Diego 12, California
Attn: Paul A. Pitt, Chief Engineer
Space Technology Laboratories, Inc.
P. O. Box 95001
Los Angeles 45, California
Attn: Mr. Kenton Andrews
Bldg. "F", Room 125
Sperry Gyroscope Company
Great Neck, L. I., New York
Attn: Mr. Wilmert L. Borrow
Vice President for R and D
Utica Division
Bendix Aviation Corporation
Utica, New York
Attn: Mr. Russell T. DeMuth, Senior Engr.
1
Bendix Aviation Corporation
Research Laboratories Division
Southfield, Michigan
Attn: Mr. Ralph H. Larson
1
Boeing Airplane Company
Research Group
Box 3707
Seattle 25, Washington
Attn: Mr. D. J. Melchior
Mechanical Equipment
1
Bryant Chucking Grinder Company
60 Clinton Avenue
Springfield, Vermont
Attn: Mr. Roald Cann
1
Cadillac Cage Company
P.O. Box 3806
Detroit 5, Michigan
Attn: Mr. J. Taylor, Project Engr.
1
Carrier Corporation
Division of Research
Research Center
Syracuse, New York
Attn: Dr. Dewey J. Sandell
1
Chance Vought Corporation
P.O. Box 5907
Dallas, Texas
Attn: Mr. R. C. Blaylock
Vice President, (Engr)
1
Chrysler Corporation
Defense Operations
P.O. Box 757
Detroit 31, Michigan
Attn: Mr. C. W. Snider
1
The Cleveland Graphite Bronze Co.
17000 St. Clair Avenue
Cleveland 10, Ohio
Attn: Mr. R. H. Josephson
1
Collins Construction Co.
P.O. Box 86
Port Lavaca, Texas
Attn: Mr. James D. Mamarchev
Consulting Engineer
1
Convair
A Division of General Dynamics Corp.
Fort Worth, Texas
Attn: Mr. L. E. McTaggart, Sr. Des. Engr.
Engrg. Annex No. 1
1
Curtiss-Wright Corp.
Wright Aeronautical Division
Department 8311
Wood Ridge, New Jersey
Attn: Mr. W. J. Derner,
Chief Project Engr.
1
Daystrom Pacific
9320 Lincoln Boulevard
Los Angeles 45, California
Attn: Robert H. Smith
Special Project Engr.
1
Dynamic Controls Corporation
14 Runde Lane
Bloomfield, Connecticut
Attn: Mr. Thomas P. Farkas
1
E.I. DuPont de Nemours and Co., Inc.
Wilmington 98, Delaware
Attn: Dr. McNeilley
Mechanical Development Lab.
1
Electronics Systems Laboratory
Federal Telecommunications Labs.
Nutley, New Jersey
Attn: Mr. John Metzger
1
Ford Instrument Co.
31-10 Thomson Avenue
Long Island City 1, New York
Attn: Mr. Jarvis
1
Ford Motor Company
Dearborn, Michigan
Attn: Prof. Adolph Egli
1
General Atomics Division
General Dynamics Corp.
P.O. Box 608
San Diego 12, California
Attn: Mr. P. W. Simpson
1
General Engineering Laboratory
General Electric Company
One River Road
Schenectady 5, New York
Attn: Dr. Beno Sternlich-