UNCLASSIFIED

AD NUMBER

AD273854

NEW LIMITATION CHANGE

TO

Approved for public release, distribution unlimited

FROM

Distribution authorized to U.S. Gov’t. agencies and their contractors; Administrative/Operational Use; 05 JAN 1962. Other requests shall be referred to US Library of Congress, Attn: Aerospace Information Division, 10 First St SE, Washington, DC 20540.

AUTHORITY

atd ltr 2 dec 1965

THIS PAGE IS UNCLASSIFIED
NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
PERSONALITIES AND ORGANIZATIONS ACTIVE IN SOVIET
MASER AND LASER RESEARCH
(Preliminary)

Aerospace Information Division
PERSONALITIES AND ORGANIZATIONS ACTIVE IN SOVIET
MASER AND LASER RESEARCH
(Preliminary)

The publication of this report does not constitute approval by any U. S. Government organization of the inferences, findings, and conclusions contained herein. It is published solely for the exchange and stimulation of ideas.

Aerospace Information Division
INTRODUCTION

The present report contains a listing of personalities and organizations engaged in research in the field of quantum radiophysics, and specifically on maser and laser devices. The time span covered by this report is largely that of the period of development of the subject in the USSR, ranging from about 1954 to the present. Entries bearing earlier dates have been included in some cases when their relationship to the main subject of this report was considered close enough.

Each entry in the list consists of the author's name, the name of the organization associated with the author, the title of his work and the bibliographic reference. Co-authors are listed by separate entries. The author's association with an organization is indicated only when the name of the organization appears in the article cited. The names of organizations and periodicals have been abbreviated and their full versions given in separate tables.
TABLE OF CONTENTS

Key to Abbreviations of Periodical Names
Key to Abbreviations of Organizational Names

I. Infrared and Optical Masers

II. Semiconductor Devices

III. Gaseous Discharge Masers

IV. Paramagnetic Systems

V. Organic Maser Materials

VI. Beam Masers

VII. Maser Systems

VIII. Background Research

IX. Maser Applications
KEY TO ABBREVIATIONS OF PERIODICAL NAMES

1. BI - Byulleten' izobreteniy
2. DAN - Doklady akademii nauk SSSR
3. DANB - Doklady akademii nauk Belaruskay SSR
4. ESV - Elektrosyaz'
5. FTT - Fizika tverdogo tela
6. IAN-F - Izvestiya akademii nauk SSSR. Seriya fizicheskaya
7. IT - Izmeritel' naya tekhnika
8. IVUZ-RF - Izvestiya vyssikh uchebnykh zavedeniy: Radiofizika
9. OS - Optika i spektroskopiya
10. P - Priroda
11. PTE - Pribory i tekhnika eksperimenta
12. RE - Radiotehnika i elektronika
13. UFN - Uspekhi fizicheskikh nauk
14. VAN - Vestnik akademii nauk
15. VMU - Vestnik moskovskogo universiteta
16. ZhETF - Zhurnal eksperimental'noy i teoreticheskoy fiziki
KEY TO ABBREVIATIONS OF ORGANIZATIONAL NAMES

1. FIANS - Physics Institute im. P. N. Lebedev of the Academy of Sciences of the USSR
2. FTIANS - Physico-Technical Institute im. A. F. Ioffe of the Academy of Sciences of the USSR
3. FTIGGU - Gor'kiy Physico-Technical Research Institute
4. FTIKAZFANS - Physico-Technical Institute of the Kazan' Branch of the Academy of Sciences of the USSR
5. GOI - State Optical Institute im. S. I. Vavilov
6. IFANB - Physics Institute of Belorussian SSR
7. IREANUK - Institute of Radiophysics and Electronics of the Academy of Sciences of the Ukrainian SSR
8. IRESOANS - Institute of Radioengineering and Electronics of the Academy of Sciences of the USSR
9. IYFMGU - Nuclear Physics Institute of Moscow State University
10. KAZFANS - Kazan' Branch of the Academy of Sciences of the USSR
11. KAZGU - Kazan' State University im. V. I. Lenin
12. KPFFMGU - Semiconductor Chair, Physics Department, Moscow State University
13. LLGOI - Luminescence Laboratory of the State Optical Institute
14. MEI - Moscow Power Engineering Institute
15. MFTI - Moscow Physico-Technical Institute
16. MGU - Moscow State University im. M. V. Lomonosov
17. OYAFMGU - Moscow State University, Atomic Physics Department
18. RIGGU - Radiophysics Research Institute of Gor'kiy State University
19. SGPI - Stalingrad Pedagogical Institute
20. VEI - All-Union Electro-Technical Institute im. V. I. Lenin
I. INFRARED AND OPTICAL MASERS

1. Ablekov, V. K.: FIANS
 Realization of a Medium With Negative Absorption Coefficient
 ZhETF, v. 39, no. 3 (9), 1960, 892

2. Basov, N. G.:
 Generation of Coherent Light by Means of Solids
 VAN, no. 3, 1961, 61-66

3. Basov, N. G.:
 FIANS
 Oscillators and Amplifiers of Light
 P, v. 12, 1961, 16-25

4. Basov, N. G.:
 FIANS
 Possibility of Utilizing Indirect Transitions to Obtain Negative
 Temperature in Semiconductors
 ZhETF, v. 39, 1960, 1486

5. Basov, N. G.:
 Quantum Radiophysics
 VAN, no. 4, 1960, 110

6. Budinskiy, M.:
 Method of Amplifying Electromagnetic Radiation
 BI, v. 20, 1959, 29

7. Butayeva, F.:
 Method of Amplifying Electromagnetic Radiation
 BI, v. 20, 1959, 29

8. Fabelinskiy, I. L.:
 FIANS
 Realization of Medium With Negative Absorption Coefficient
 ZhETF, v. 39, no. 3 (9), 1960, 892

9. Fabrikant, V. A.:
 Beam Into Space
 Fizika i khimiya, seriya IX, no. 8, 1961. "Znaniye" Publishing House

10. Fabrikant, V. A.:
 MEI
 Procurement of Negative Absorption Coefficient in Gaseous Mixture
 Discharge
 ZhETF, v. 41, no. 2 (8), 1961, 524-527
11. Fabrikant, V. A.:
Method of Amplifying Electromagnetic Radiation
BI, no. 20, 1959, 29

12. Fayn, V. M.:
Oscillation Condition of a Laser
ZhETF, v. 41, no. 5 (11), 1961, 1498-1502

13. Fayn, V. M.:
Nonlinear Properties of Three-Level Systems
ZhETF, v. 41, no. 3 (9), 1961, 986-988

14. Grigor' yants, V. V.:
Paper Presented at The Second All-Union Conference on Radio-electronics in Saratov, September 1957
RE, v. 3, no. 3, 1958, 442

15. Ivanov, A. P.:
Effect of High Illumination Intensity on the Absorptive Capacity of Complex Molecules
OS, v. 8, 1960, 352

16. Khanin, Ya. I.:
Oscillation Condition of a Laser
ZhETF, v. 41, no. 5 (11), 1961, 1498-1502

17. Khanin, Ya. I.:
Nonlinear Properties of Three-Level Systems
ZhETF, v. 41, no. 3 (9), 1961, 986-988

18. Krokhin, O. N.:
Generation of Coherent Light by Means of Solids
VAN, no. 3, 1961, 61-66

19. Krokhin, O. N.:
Oscillators and Amplifiers of Light
P, v. 12, 1961, 16-25

20. Krokhin, O. N.:
Possibility of Utilizing Indirect Transitions to Obtain Negative Temperature in Semiconductors
ZhETF, v. 39, 1960, 1486

21. Lugovoy, V. N.:
Cyclotron Resonance in AC Magnetic Field
ZhETF, v. 41, no. 5 (11), 1961, 1562-1565
22. Pesin, M. S.: FIANS
Realization of Medium With Negative Absorption Coefficient
ZhETF, v. 39, no. 3 (9), 1960, 892

VAN, v. 3, 1961, 61-66

Oscillators and Amplifiers of Light
P, v. 12, 1961, 16-25

Possibility of Utilizing Indirect Transitions to Obtain Negative Temperature in Semiconductors
ZhETF, v. 39, 1960, 1486

VAN, v. 4, 1960, 110

27. Rautian, S. G.: FIANS
Line Form and Dispersion in the Absorption Band Taking Account of Stimulated Transitions
ZhETF, v. 41, no. 2 (8), 1961, 456-464

OS, v. 10, no. 1, 1961, 134-135

29. Schawlow, A.: [This translation of an American Optical Masers original incorporates several significant footnotes.]
UFN, v. 75, no. 3, 1961, 569-582

30. Sobel' man, I. I.: Problems of Negative Absorption
OS, v. 10, no. 1, 1961, 134-135

31. Sobel' man, I. I.: FIANS
Line Form and Dispersion in the Absorption Band Taking Account of Stimulated Transitions
ZhETF, v. 41, no. 2 (8), 1961, 456-464

RE, v. 3, no. 3, 1958, 442
33. Vavilov, V. S.: FIANS
Infrared Radiation Absorption by Free Carriers in Silicon
FTT, v. 2, 1960, 374

34. Yakovlev, V. A.: SGPI
Light Absorption by Electrons in Nonmetallic Crystals in an Electric Field
ZhETF, v. 40, no. 6, 1961, 1695-1698

35. Yashchin, E. G.: RIGGU
Nonlinear Properties of Three-Level Systems
ZhETF, v. 41, no. 3 (9), 1961, 986-988

RE, v. 3, no. 3, 1958, 442

II. SEMICONDUCTOR DEVICES

37. Basov, N. G.: FIANS
Utilization of Indirect Transitions in Semiconductors to Obtain Negative Absorption Coefficient States
ZhETF, v. 40, no. 4, 1961, 1203-1209

38. Basov, N. G.: FIANS
Obtaining Negative Temperature States in p-n Transitions of Degenerated Semiconductors
ZhETF, v. 40, no. 6, 1961, 1879-1880

39. Basov, N. G.: FIANS
Negative Conductivity in Stimulated Transitions
ZhETF, v. 41, no. 3 (9), 1961, 988-989

40. Basov, N. G.: FIANS
Semiconductor Amplifiers and Oscillators With Negative Carrier Mass
ZhETF, v. 38, 1960, 1001

ZhETF, v. 37, 1959, 587
42. Britsyn, K. I.: KPFFMGU
 Effect of Strong Electrical Field on the Absorption of Light by
 Silicon
 FTT, v. 2, 1960, 1937

43. Fen, N. I. :
 Absorption of Infrared Radiation by Semiconductors
 UFN, v. 64, 1958, 315

44. Gladun, A. D. :
 Utilization of Cyclotron Resonance in Semiconductors to Amplify
 and Generate Superhigh Frequency Oscillations
 ZhETF, v. 35, no. 3 (9), 1958, 808-809

45. Keldysh, L. V. :
 Kinetic Theory of Impact Ionization in Semiconductors
 ZhETF, v. 37, 1959, 713

46. Krokhin, O. N. :
 Negative Conductivity in Stimulated Transitions
 ZhETF, v. 41, no. 3 (9), 1961, 988-989

47. Krokhin, O. N. :
 Utilization of Indirect Transitions in Semiconductors to Obtain
 Negative Absorption Coefficient States
 ZhETF, v. 40, no. 4, 1961, 1203-1209

48. Krokhin, O. N. :
 Relaxation Time of Excited Current Carriers in Semiconductors
 ZhETF, v. 38, 1960, 1589

49. Krokhin, O. N. :
 Semiconductor Amplifiers and Oscillators With Negative Carrier
 Mass
 ZhETF, v. 38, 1960, 1001

50. Lisitsyn, L. M. :
 Negative Conductivity in Stimulated Transitions
 ZhETF, v. 41, no. 3 (9), 1961, 988-989

51. Markin, Ye. P. :
 Negative Conductivity in Stimulated Transitions
 ZhETF, v. 41, no. 3 (9), 1961, 988-989
52. Popov, Yu. M.: FIANS
Utilization of Indirect Transitions in Semiconductors to Obtain
Negative Absorption Coefficient States
ZhETF, v. 40, no. 4, 1961, 1203-1209

Relaxation Time of Excited Current Carriers in Semiconductors
ZhETF, v. 38, 1960, 1589

Semiconductor Amplifiers and Oscillators With Negative Carrier
Mass
ZhETF, v. 38, 1960, 1001

Quantum-Mechanical Semiconductor Oscillators and Amplifiers of
Electromagnetic Waves
ZhETF, v. 37, 1959, 587

56. Tager, A. S.: FIANS
Utilization of Cyclotron Resonance in Semiconductors to Amplify
and Generate Superhigh Frequency Oscillations
ZhETF, v. 35, no. 3 (9), 1958, 808-809

57. Vavilov, V. S.: KPFFMGU
Effect of Strong Electrical Field on the Absorption of Light by
Silicon
FTT, v. 2, 1960, 1937

58. Vul, B. M.: FIANS
Quantum-Mechanical Semiconductor Oscillators and Amplifiers of
Electromagnetic Waves
ZhETF, v. 37, 1959, 587

III. GASEOUS DISCHARGE MASERS

59. Ablekov, V. K.: FIANS
Hg-Zn and Hg-Cd Lamps of High Intensity
PTE, v. 6, no. 2, 1961, 140-142

60. Basov, N G.: FIANS
Conditions for Generating Negative Temperature States in Gas
Mixtures With Electron Excitation
ZhETF, v. 39, no. 6 (12), 1960, 1777
61. Fabrikant, V.: VEI
On the Qualitative Theory of Atom Excitation in a Gas Discharge
ZhETF, v. 8, 1938, 549

62. Krokhin, O. N.: FIANS
Conditions for Generating Negative Temperature States in Gas Mixtures With Electron Excitation
ZhETF, v. 39, no. 6 (12), 1960, 1777

63. Pesin, M. S.: FIANS
Hg-Zn and Hg-Cd Lamps of High Intensity
PTE, v. 6, no. 2, 1961, 140-142

64. Rautian, S. G.: FIANS
Negative Absorption in Metal Vapors
ZhETF, v. 39, 1960, 217

65. Zaytsev, M. S.: FIANS
Hg-Zn and Hg-Cd Lamps of High Intensity
PTE, v. 6, no. 2, 1961, 140-142

IV. PARAMAGNETIC SYSTEMS

66. Al'tshuler, S. A.: KAZGU
Theory of Paramagnetic Resonance of Ti and Co Ions in Corundum
ZhETF, v. 40, no. 1, 1961, 377-379

67. Al'tshuler, S. A.: KAZGU
Electronic Paramagnetic Resonance
UFN, v. 63, 1957, 553

68. Al'tshuler, S. A.: KAZGU
Theory of Electronic and Nuclear Paramagnetic Resonance Due to Ultrasound
ZhETF, v. 28, no. 38, 1955, 49

69. Bashkirov, Sh. Sh.: KAZGU
Paramagnetic Lattice Relaxation in Hydrated Salts of Bivalent Copper
ZhETF, v. 34, 1958, 1465

70. Briskina, Ch. M.
Reports at the Conference on the Paramagnetic Resonance, Kazan' 1959
71. Chernyak, G. E.: IREANUK
 Theory of Quantum Amplifier With a Traveling Surface Wave
 IVUZ-RF, v. 4, no. 3, 1961, 484-495

72. Glebskiy, L. B.: Device for Growing Corundum Crystals
 BI, v. 38, no. 6, 1961, 19

73. Glutsyuk, A. M.: IREANUK
 Theory of Quantum Amplifier With a Traveling Surface Wave
 IVUZ-RF, v. 4, no. 3, 1961, 484-495

74. Kanskaya, L. M.: FTIANS
 Zeeman Effect in B₁ and B₂ Lines of Ruby Absorption Spectrum in
 Strong Magnetic Pulse Fields
 FTT, v. 3, no. 11, 1961, 3531-3533

75. Karlov, N. V.: Paramagnetic Amplifier in the 10-cm Range Utilizing Fe³⁺ Ions
 in Corundum
 RE, v. 6, no. 5, 1961, 846

76. Karlov, N. V.: FIANS
 Saturation of Paramagnetic Amplifiers and Amplification Recovery
 Time
 RE, v. 6, no. 3, 1961, 410-415

77. Karlov, N. V.: FIANS
 Sensitivity of Radio Receivers With Paramagnetic Amplifiers
 RE, v. 6, no. 3, 1961, 416-421

78. Karlova, Ye. K.: Slow-Wave Comb System for Centimeter-Wave Paramagnetic
 Traveling-Wave Amplifier
 RE, v. 4, no. 3, 1961, 406-408

79. Keldysh, L. V.: FIANS
 Effect of Strong Electric Field on Optical Characteristics of
 Nonconducting Crystals
 ZhETF, v. 34, 1958, 1138

80. Khokhlov, M. I.:
 Device for Growing Corundum Crystals
 BI, v. 38, no. 6, 1961, 19
81. Kochelayev, B. I.: KAZGU
 Relaxation Absorption of Sound in Paramagnetics
 ZhETF, v. 41, no. 2 (8), 1961, 43-48

82. Kontorovich, V. M.: IREANUK
 Theory of Quantum Amplifier With a Traveling Surface Wave
 IVUZ-RF, v. 4, no. 3, 1961, 484-495

83. Kontorovich, V. M.: IREANUK
 Traveling-Wave Maser Theory
 IVUZ-RF, v. 3, 1960, 656

84. Korniyenko, L. S.: IYFMGU
 Electron Paramagnetic Resonance of Fe$^{3+}$ Ion in Corundum
 ZhETF, v. 40, no. 6, 1961, 1594-1601

85. Korniyenko, L. S.: IYFMGU
 Electron Paramagnetic Resonance of Ti$^{3+}$ Ion in Corundum
 ZhETF, v. 38, 1960, 1651

86. Korniyenko, L. S.: MGU
 Paramagnetic Amplifier and Oscillator Using Fe$^{3+}$ Ions in Corundum
 ZhETF, v. 36, 1959, 819

87. Korniyenko, L. S.: FIANS
 Paramagnetic Chrome Corundum Amplifier and Oscillator
 ZhETF, v. 34, no. 6, 1958, 1660-1661

88. Korniyenko, L. S.: MGU
 Fine Structure of Electron Paramagnetic Resonance Spectrum of
 Fe$^{3+}$ Ions in Al$_2$O$_3$ Lattice
 ZhETF, v. 33, 1957, 805

89. Krasil'nikov, F. A.: Device for Growing Corundum Crystals
 BI, v. 38, no. 6, 1961, 19

90. Manenkov, A. A.: FIANS
 Paramagnetic Resonance of Mn$^{2+}$ Ions in SrS
 ZhETF, v. 40, no. 6, 1961, 1606-1609

91. Manenkov, A. A.: FIANS
 Relaxation Phenomena in Paramagnetic Resonance of Mn$^{2+}$ Ions in
 the Cubic Crystal Field of SrS Crystals
 ZhETF, v. 41, no. 1 (7), 1961, 100-105
92. Manenkov, A. A.: FIANS
Spin-Lattice Relaxation in Chromium-Doped Corundum
ZhETF, v. 38, 1960, 729

93. Manenkov, A. A.: FIANS
Paramagnetic Chrome Corundum Amplifier and Oscillator
ZhETF, v. 34, no. 6, 1958, 1660-1661

94. Manenkov, A. A.: FIANS
A Radiospectroscopy for Observations of Electron Paramagnetic
Resonance in the 1-cm Wave Spectrum
RE, v. 1, 1956, 469

95. Milyayev, V. A.: FIANS
Relaxation Phenomena in Paramagnetic Resonance of Mn^{2+} Ions in
the Cubic Crystal Field of SrS Crystals
ZhETF, v. 41, no. 1 (7), 1961, 100-105

96. Pimenov, Yu. P.: FIANS
Paramagnetic Amplifier in the 10-cm Range Utilizing Fe^{3+} Ions in
Corundum
RE, v. 6, no. 5, 1961, 846

97. Pimenov, Yu. P.: FIANS
Saturation of Paramagnetic Amplifiers and Amplification Recovery
Time
RE, v. 6, no. 3, 1961, 410-415

98. Pimenov, Yu. P.: FIANS
Sensitivity of Radio Receivers With Paramagnetic Amplifiers
RE, v. 6, no. 3, 1961, 416-421

Paramagnetic Resonance of Mn^{2+} Ions in SrS
ZhETF, v. 40, no. 6, 1961, 1606-1609

100. Prokhorov, A. M.: FIANS
Paramagnetic Amplifier in the 10-cm Range Utilizing Fe^{3+} Ions in
Corundum
RE, v. 6, no. 5, 846, 1961

Electron Paramagnetic Resonance of Fe^{3+} Ions in Corundum
ZhETF, v. 40, no. 6, 1961, 1584-1601

102. Prokhorov, A. M.: FIANS
Saturation of Paramagnetic Amplifiers and Amplification Recovery
Time
RE, v. 6, no. 3, 1961, 410-415
103. Prokhorov, A. M.: IYFMGU
Electron Paramagnetic Resonance of the V^{3+} Ion in Corundum
ZhETF, v. 40, no. 4, 1961, 1016-1018

104. Prokhorov, A. M.: FIANS
Sensitivity of Radio Receivers With Paramagnetic Amplifiers
RE, v. 6, no. 3, 1961, 416-421

105. Prokhorov, A. M.: IYFMGU
Electron Paramagnetic Resonance Spectrum of V^{3+} in Corundum
ZhETF, v. 38, 1960, 449

106. Prokhorov, A. M.: IYFMGU
Electron Paramagnetic Resonance of Ti$^{3+}$ Ion in Corundum
ZhETF, v. 38, 1960, 1651

Electron Paramagnetic Resonance and Spin-Lattice Relaxation of
Co^{2+} Ion in Corundum
ZhETF, v. 39, no. 1 (7), 1960, 57-63

Cross-Relaxation in Hyperfine Structure of Electron Paramagnetic
Resonance of Co^{2+} in Corundum
ZhETF, v. 39, 1960, 545

Spin-Lattice Relaxation in Chromium-Doped Corundum
ZhETF, v. 38, 1960, 729

110. Prokhorov, A. M.: IYFMGU
Electron Paramagnetic Resonance of Co^{2+} in Corundum
ZhETF, v. 36, 1959, 647

111. Prokhorov, A. M.: MGU
Paramagnetic Amplifier and Oscillator Using Fe$^{3+}$ Ions in Corundum
ZhETF, v. 36, 1959, 919

112. Prokhorov, A. M.: MGU
Electron Paramagnetic Resonance of V^{3+} Ion in Corundum
ZhETF, v. 34, no. 4, 1958, 1023-1024

113. Prokhorov, A. M.: MGU
Fine Structure of Electron Paramagnetic Resonance Spectrum of
Fe$^{3+}$ Ions in Al_2O_3 Lattice
ZhETF, v. 33, 1957, 805
114. Prokhorov, A. M.: FIANS
A Radiospectroscope for Observation of Electron Paramagnetic Resonance in the 1-cm Wave Spectrum
RE, v. 1, 1956, 469

115. Rodak, M. I.:
Determination of Polarizations of a Variable Magnetic Field, Which Correspond to Extremal Probabilities of Transitions in Electron Paramagnetic Resonance
RE, v. 6, no. 7, 1961

116. Rodak, M. I.:
Reports at the Conference on the Paramagnetic Resonance, Kazan' 1959

117. Shaposhnikov, I. G.: KAZGU
Thermodynamic Theory of Spin-Spin Relaxation in Paramagnetic Materials
ZhETF, v. 18, 1948, 533

118. Shaposhnikov, I. G.: FTIKAZFANS
On the Thermodynamic Theory of Paramagnetic Absorption in Weak Fields
ZhETF, v. 17, 1947, 824

119. Shteynshleyger, V. B.: ESV, no. 12, 1960, 38-44
Quantum Paramagnetic SHF Amplifiers. Part I

120. Shteynshleyger, V. B.:
Quantum Paramagnetic SHF Amplifiers. Part II
ESV, no. 1, 1961, 40-49

121. Sibilev, A. I.: FTIANS
Zeeman Effect in B_1 and B_2 Lines of Ruby Absorption Spectrum in Strong Magnetic Pulse Fields
FTT, v. 3, no. 11, 1961, 3531-3533

122. Solovyev, Ye. G.:
Slow-Wave Comb System for Centimeter-Wave Paramagnetic Traveling-Wave Amplifier
RE, v. 4, no. 3, 1961, 406-408

123. Stepanov, B. I.: IFANB
Deviation From Bouguer's Law on Media With Negative Coefficient of Absorption
DANB, v. 5, no. 11, 1961, 489-491
124. Timerov, R. Kh.: FTIKAZFANS
Effect of Unresolved Structures on Line Width in Electron Paramagnetic Resonance
ZhETF, v. 40, no. 4, 1961, 1101-1105

125. Vinokurov, V. M.: IYFMGU
Fine Structure of Paramagnetic Resonance Spectrum of Natural Sapphire
ZhETF, v. 37, 1959, 312

126. Yablokov, Yu. V.: FTIKAZFANS
Paramagnetic Resonance in a CrCl$_3$ Quasi-monocrystal
ZhETF, v. 39, 1960, 265

127. Yafayev, N. R.: IYFMGU
Fine Structure of Paramagnetic Resonance Spectrum of Natural Sapphire
ZhETF, v. 37, 1959, 312

128. Yegorov, G. A.: FTIKAZFANS
Paramagnetic Resonance in a CrCl$_3$ Quasi-monocrystal
ZhETF, v. 39, 1960, 265

129. Zakharachenya, B. P.: FTIANS
Zeeman Effect in B$_1$ and B$_2$ Lines of Ruby Absorption Spectrum in Strong Magnetic Pulse Fields
FTT, v. 3, no. 11, 1961, 3531-3533

130. Zaripov, M. M.: KAZGU
Theory of Paramagnetic Resonance of Ti and Co Ions in Corundum
ZhETF, v. 40, no. 1, 1961, 377-379

Fine Structure of Paramagnetic Resonance Spectrum of Natural Sapphire
ZhETF, v. 37, 1959, 312

132. Zhitnikov, R. A.: Quantum Amplifier (Generator) of SHF Oscillations in Solids
BI, no. 8, 1961, 27

133. Zolin, V. F.: Reports at the Conference on the Paramagnetic Resonance, Kazan' 1959

134. Zverev, G. M.: IYFMGU
Cross-Relaxation in Hyperfine Structure of Electron Paramagnetic Resonance of Co$^{2+}$ in Corundum
ZhETF, v. 39, 1960, 545
135. Zverev, G. M.: IYFMGU
On the Nature of Spin-Lattice Interaction in Corundum With Chromium
ZhETF, v. 40, no. 6, 1961, 1667-1671

136. Zverev, G. M.: IYFMGU
Electron Paramagnetic Resonance of the V^{3+} Ion in Corundum
ZhETF, v. 40, no. 4, 1961, 1016-1018

137. Zverev, G. M.: IYFMGU
Electron Paramagnetic Resonance of V^{3+} in Corundum
ZhETF, v. 38, 1960, 449

138. Zverev, G. M.: IYFMGU
Electron Paramagnetic Resonance and Spin-Lattice Relaxation of Co^{2+}
Ion in Corundum
ZhETF, v. 39, no. 1 (7), 57-63

139. Zverev, G. M.: IYFMGU
Electron Paramagnetic Resonance of Co^{2+} in Corundum
ZhETF, v. 36, 1959, 647

140. Zverev, G M.: FIANS
Paramagnetic Chrome-Corundum Amplifier and Oscillator
ZhETF, v. 34, no. 6, 1958, 1660-1661

141. Zverev, G. M.: MGU
Electron Paramagnetic Resonance of V^{3+} Ion in Corundum
ZhETF, v. 34, no. 4, 1958, 1023-1024

V. ORGANIC MASER MATERIALS

142. Karlov, N. V.: FIANS
Investigation of Slow Wave Systems
RE, v. 6, no. 6, 1961, 1029

Into Metastable State
OS, v. 10, no. 1, 1961, 86-90

Luminophors
OS, v. 9, 1960, 601
145. Shpol'skiy, E. V.:
Emission Spectral Analysis of Organic Compounds
UFN, v. 68, 1959, 51

146. Sveshnikov, B. Ya.:
Transition Mechanism in Excited Molecules of Organic Substances
Into Metastable State
OS, v. 10, no. 1, 1961, 86-90

147. Sveshnikov, B. Ya.:
Impurity Concentration Quenching of the Luminescence of Organic Luminophors
OS, v. 9, 1960, 601

148. Sveshnikov, B. Ya.:
GOI
On Theory of Quenching of Luminescence of Organic Phosphors
ZhETF, v. 18, 1948, 878

149. Sveshnikov, B. Ya.:
LLGOI
Effect of Activator Concentration on the Phosphorescence of Organic Luminophores
DAN, v. 58, 1947, 49

150. Yablokov, Yu. V.:
KAZFANS
Paramagnetic Resonance in Various Types of \(\alpha, \alpha - \text{Diphenyl-} \beta - \text{Picrylhydrazyl} \)
DAN, v. 133, 1960, 2

VI. BEAM MASERS

151. Basov, N. G.:
FIANS
ND\(_2\) Beam Maser
PT\(\varepsilon\), v. 6, no. 1, 1961, 120-121

152. Basov, N. G.:
FIANS
Investigation of the Frequency of Molecular Oscillators as a Function of Various Parameters. Part I. Theory
RE, v. 6, no. 6, 1961, 796-805

153. Basov, N. G.:
FIANS
Investigation of the Frequency of Molecular Oscillators as a Function of Various Parameters. Part II
RE, v. 6, no. 6, 1961, 1020-1028
154. Basov, N. G.:
Possibility of Studying Relativistic Effects With the Aid of Molecular and Atomic Frequency Standards
UFN, v. 75, no. 1, 1961, 3-59

155. Basov, N. G.:
Use of Slow Molecules in Molecular Oscillators
ZhETF, v. 37, 1959, 1068

156. Basov, N. G.:
FIANS
Absolute Stability of NH₃ Maser
RE, v. 4, no. 7, 1959, 1185

157. Basov, N. G.:
FIANS
Molecular Clocks
IVUZ-RF, v. 2, no. 3, 1958, 50

158. Basov, N. G.:
FIANS
Prospects for the Design of a Sealed Beam Maser Using ND₃, NH₂D and NHD₂
IVUZ-RF, v. 2, 1958, 63

159. Basov, N. G.:
FIANS
Design of a ND₃ Maser
IVUZ-RF, v. 1, no. 2, 1958, 89

160. Basov, N. G.:
FIANS
NH₃ Beam Maser
PTÈ, v. 1, 1957, 71

161. Basov, N. G.:
FIANS
The Maser
RE, v. 1, 1956, 752
162. Basov, N. G.: FIANS
Theory of Maser and Molecular Power Amplifier
ZhETF, v. 30, 1955, 560

163. Basov, N. G.: FIANS
Theory of Molecular Generator and Molecular Power Amplifier
ZhETF, v. 30, no. 3, 1956, 560-583

164. Basov, N. G.: FIANS
Molecular Generator
Doctoral Dissertation, FIANS, 1956

165. Basov, N. G.: FIANS
Theory of Molecular Oscillator and Molecular Power Amplifier
DAN, v. 101, 1955, 47

166. Basov, N. G.: FIANS
Maser and Molecular Amplifier
UFN, v. 57, 1955, 485

167. Basov, N. G.: FIANS
Possible Methods for Obtaining Active Molecules for a Maser
ZhETF, v. 28, 1955, 249

168. Basov, N. G.: FIANS
The Application of Molecular Beams for Radiospectroscopic Studies
of Rotational Spectra of Molecules
ZhETF, v. 27, 1954, 431

169. Bunkin, F. V.: FIANS
On Spontaneous Emission of a Molecule in a Resonant Cavity
IVUZ-RF, v. 2, 1959, 181

170. Cheremiskin, I. V.: FIANS
Investigation of the Frequency of Molecular Oscillators as a Function
of Various Parameters. Part II
RE, v. 6, no. 6, 1961, 1020-1028

171. Cheremiskin, I. V.: OYAFMGU
A Simple Method of Tuning a Molecular Oscillator
VMU, no. 1, 1961, 79-81

172. Dudenkova, A. V.: FIANS
Molecular Oscillator (Sealed)
PTE, no. 3, 1961, 180
173. Fayn, V. M.: RIGGU
Oscillation Equations of a Molecular Oscillator
ZhETF, v. 33, no. 10, 1957, 945

174. Grigor' yants, V. V.:
Molecular Generator (Ammonia) Operating Without Liquid Nitrogen
RE, v. 6, no. 1, 1961, 175-177

175. Gurtovnik, A. S.: FTIGGU
On Maser Theory
IVUZ-RF, v. 1, no. 5-6, 1958, 83

176. Krokhin, O. N.:
Possibility of Studying Relativistic Effects With the Aid of Molecular
and Atomic Frequency Standards
UFN, v. 75, no. 1, 1961, 3-59

177. Khokhlov, R. V.: MGU
Stability of Molecular Oscillators
IVUZ-RF, v. 4, no. 2, 1961, 259-262

178. Khokhlov, R. V.: MGU
On the Polarization of a Molecular Beam by an Alternating Field
With a Variable Amplitude and Phase
ZhETF, v. 33, 1957, 1395

179. Krupnov, A. F.: RIGGU
Sealed-Off Molecular Oscillator With Getter-Ionic Pump and Cooling
IVUZ-RF, v. 4, no. 1, 1961, 178-179

180. Krupnov, A. F.: RIGGU
Molecular Oscillator Without a Freezing System
IVUZ-RF, v. 3, 1960, 1128

181. Krupnov, A. F.: RIGGU
A Ring System for a Maser
IVUZ-RF, v. 2, 1959, 658

182. Lyubimov, G. P.: OYAFMGU
A Simple Method of Tuning a Molecular Oscillator
VMU, no. 1, 1961, 79-81

183. Lyubimov, G. P.: MGU
On the Polarization of a Molecular Beam by an Alternating Field
With a Variable Amplitude and Phase
ZhETF, v. 33, 1957, 1395
184. Mukhamedgaliyeva, A. F.: MGU
Stability of Molecular Oscillators
IVUZ-RF, v. 4, no. 2, 1961, 259-262

185. Murin, I. D.: FIANS
Molecular Clocks
IVUZ-RF, v. 2, no. 3, 1958, 50

186. Naumov, A. I.: RIGGU
Sealed-Off Molecular Oscillator With Getter-Ionic Pump and Cooling
IVUZ-RF, v. 4, no. 1, 1961, 178-179

187. Naumov, A. I.: RIGGU
Molecular Oscillator Without a Freezing System
IVUZ-RF, v. 3, 1960, 1128

188. Nikitin, V. V.: FIANS
Investigation of the Frequency of Molecular Oscillators as a Function of Various Parameters. Part I. Theory
RE, v. 6, no. 5, 1961, 796-805

189. Orayevskiy, A. N.: FIANS
Investigation of the Frequency of Molecular Oscillators as a Function of Various Parameters. Part I. Theory
RE, v. 6, no. 5, 1961, 796-805

190. Orayevskiy, A. N.: FIANS
Possibility of Studying Relativistic Effectw With the Aid of Molecular and Atomic Frequency Standards
UFN, v. 75, no. 1, 1961, 3-59

191. Orayevskiy, A. N.: FIANS
Absolute Stability of NH₃ Maser
RE, v. 4, no. 7, 1959, Î85

192. Orayevskiy, A. N.: FIANS
Use of Slow Molecules in Molecular Oscillators
ZhETF, v. 37, 1959, 1068

193. Orayevskiy, A. N.: FIANS
On Spontaneous Emission of a Molecule in a Resonant Cavity
IVUZ-RF, v. 2, 1959, 181

194. Orayevskiy, A. N.: FIANS
Prospects for the Design of a Sealed Beam Maser Using ND₃, NH₂D and NHD₂
IVUZ-RF, v. 2, 1958, 63

- 19 -
195. Petrov, A. P.: FIANS
Molecular Clocks
IVUZ-RF, v. 2, no. 3, 1958, 50

196. Prokhorov, A. M.: FIANS
Molecular Clocks
IVUZ-RF, v. 2, no. 3, 1958, 50

197. Prokhorov, A. M.: FIANS
Theory of Maser and Molecular Power Amplifier
ZhETF, v. 30, 1955, 560

198. Prokhorov, A. M.: FIANS
Theory of Molecular Generator and Molecular Power Amplifier
ZhETF, v. 30, no. 3, 1956, 560-563

199. Prokhorov, A. M.: FIANS
Theory of Molecular Oscillator and Molecular Power Amplifier
DAN, v. 101, 1955, 47

Maser and Molecular Amplifier
UFN, v. 57, 1955, 485

201. Prokhorov, A. M.: FIANS
Possible Methods for Obtaining Active Molecules for a Maser
ZhETF, v. 28, 1955, 249

The Application of Molecular Beams for Radiospectroscopic
Studies of Rotational Spectra of Molecules
ZhETF, v. 27, 1954, 431

203. Shcheglov, V. A.: MFTI
The Utilization of a Ring Capacitor for Sorting Molecules in a
Molecular Generator
IVUZ-RF, v. 4, no. 4, 1961, 648-655

204. Shcheglov, V. A.: FIANS
Ring Condenser, Report of the Physics Institute im. P. N. Lebedev
of the Academy of Sciences of the USSR
FIANS Report, 1959

205. Skvortsov, V. A.: RIGGU
Sealed-Off Molecular Oscillator With Getter-Ionic Pump and Cooling
IVUZ-RF, v. 4, no. 1, 1961, 178-179
206. Skvortsov, V. A.: RIGGU
Molecular Oscillator Without a Freezing System
IVUZ-RF, v. 3, 1960, 1128

207. Strakhovskiy, G. M.: FIANS
Investigation of the Frequency of Molecular Oscillators as a Function
of Various Parameters
RE, v. 6, no. 6, 1961, 1020-1028

208. Strakhovskiy, G. M.: FIANS
Possibility of Studying Relativistic Effects With the Aid of Molecular
and Atomic Frequency Standards
UFN, v. 75, no. 1, 1961, 3-59

209. Strakhovskiy, G. M.: FIANS
Investigation of Maser Frequencies as Functions of Various Parameters.
Part II
RE, v. 6, no. 6, 1961, 1020-1028

210. Strakhovskiy, G. M.: OYAFMGU
A Simple Method of Tuning a Molecular Oscillator
VMU, no. 1, 1961, 79-81

211. Svidzinskiy, K. K.: FIANS
Design of ND₃ Maser
IVUZ-RF, v. 1, no. 2, 1958, 89

212. Svidzinskiy, K. K.: FIANS
Design of a ND₃ Maser
FIANS Report, 1957

213. Troitskiy, V. S.: RIGGU
Mean Free Path of Molecules in Molecular Beam
ZhETF, v. 41, no. 2 (8), 1961, 389-390

214. Zhabotinskiy, M. Ye.: FIANS
Molecular Generator (Ammonia) Operating Without Liquid Nitrogen
RE, v. 6, no. 1, 1961, 175-177

215. Zuyev, V. S.: FIANS
ND₃ Beam Maser
PTE, v. 6, no. 1, 1961, 120-121
VII. MASER SYSTEMS

216. Bunkin, F. V.: FIANS
 Concept of Effective Temperature for Stationary Unbalanced Systems
 IVUZ-RF, v. 4, no. 3, 1961, 496-507

217. Fayn, V. M.: RIGGU
 On Spectral Line Width of Three-Level Maser
 IVUZ-RF, v. 1, 1958, 66

218. Fayn, V. M.: RIGGU
 Saturation Effect in Three-Energy Level Systems
 ZhETF, v. 33, 1957, 1290

219. Izyumova, T. G.: UFN
 Optical Orientation of Atoms and Its Applications
 UFN, v. 73, no. 3, 1961, 423-470

220. Khaldre, Kh. Yu.: MGU
 Stability of Oscillations in a Maser
 IVUZ-RF, v. 1, no. 5-6, 1958, 60

221. Khokhlov, R. V.: MGU
 Stability of Oscillations in a Maser
 IVUZ-RF, v. 1, no. 5-6, 1958, 60

222. Kontorovich, V. M.: IREANUK and FIANS
 On Nonlinear Effects of Interaction of Resonant Fields in a Maser
 Generator and Amplifier
 ZhETF, v. 33, 1957, 1428

223. Leykin, A. Ya.: IT
 Experimental Maser Study
 IT, v. 7, 1959, 41

224. Malakhov, A. N.: RIGGU
 On Spectral Line Width of Three-Level Maser
 IVUZ-RF, v. 1, 1958, 66

225. Prokhorov, A. M.: IREANUK and FIANS
 On Nonlinear Effects of Interaction of Resonant Fields in a Maser
 Generator and Amplifier
 ZhETF, v. 33, 1957, 1428
226. Skrotskiy, G. V.:
Optical Orientation of Atoms and Its Applications
UFN, v. 73, no. 3, 1961, 423-470

227. Troitskiy, V. S.:
RIGGU
Noise in Excited Two-Level Medium
IVUZ-RF, v. 4, no. 3, 1961, 508-513

228. Tsaregradskiy, V. B.:
RIGGU
Noise in Excited Two-Level Medium
IVUZ-RF, v. 4, no. 3, 1961, 508-513

229. Zhabotinskiy, M. E.:
Hydrogen Halide Masers
RE, v. 4, no. 11, 1959, 1943-1947

230. Zolin, V. F.:
Hydrogen Halide Masers
RE, v. 4, no. 11, 1959, 1943-1947

VIII. BACKGROUND RESEARCH

231. Abrikosov, A. A.:
On Eliminating Infinities in Quantum Electrodynamics
DAN, v. 95, 1954, 497, 773, 1177

232. Bakhshiyev, N. G.:
Intensities in Spectra of Multiatomic Molecules
OS, v. 5, 1958, 634

233. Fabrikant, V.:
Theory of Experiments With Deactivation of Metastable Atoms in Collisions With Atoms and Molecules
OS, v. 5, 1958, 711

234. Fabrikant, V.:
VEI
Collection of Articles: Electron and Ion Devices
Symposium on Electron and Ion Devices, Proceedings of the VEI Institute, 1940

235. Fayn, V. M.:
Quantum Phenomena in Radio Spectrum
UFN, v. 64, 1958, 273
236. Feofilov, P. P.:
Polarized Luminescence of Atoms, Molecules and Crystals
Fizmatgiz Publishing House, 1959

237. Galkin, A. A.:
The Fourth All-Union Conference of the Ministry of Higher and Special Secondary Education of the USSR on Radio Electronics, Quantum Radiophysics Section, 24–29 October 1960
IVUZ-RF, v. 4, no. 1, 1961, 192

238. Kaganov, M. I.:
Some Problems of the Electron Theory of Metals. I. Classical and Quantum Mechanics of Electrons in Metals
UFN, v. 69, 1959, 419

239. Khalatnikov, I. M.:
On Eliminating Infinities in Quantum Electrodynamics
DAN, v. 95, 1954, 497, 773, 1177

240. Kontorovich, V. M.:
IRESOANS
Field Interaction in Overhauser Effect
ZhETF, v. 34, 1958, 779

241. Landau, L. D.:
Point Interaction in Quantum Electrodynamics
DAN, v. 102, 1955, 489

242. Landau, L. D.:
On Eliminating Infinities in Quantum Electrodynamics
DAN, v. 95, 1954, 497, 773, 1177

243. Lifshits, I. M.:
Some Problems of the Electron Theory of Metals. I. Classical and Quantum Mechanics of Electrons in Metals
UFN, v. 69, 1959, 419

244. Miller, M. A.:
FTIGGU
Propagation of Electromagnetic Waves Over a Flat Surface With Anisotropic Homogeneous Boundary Conditions
DAN, v. 87, 1952, 571

245. Miller, M. A.:
Electromagnetic Surface Waves in Rectilinear Channels
ZhETF, v. 25, 1955, 1972
246. Misezhinkov, G. S.:
Measurement of the Group Velocity in Decelerating Systems of Quantum
PTE, v. 6, 1959, 133

247. Naberezhnykh, V. P.:
The Fourth All-Union Conference of the Ministry of Higher and Special Secondary Education of the USSR on Radio Electronics, Quantum Radiophysics Section, 24-29 October 1960
IVUZ-RF, v. 4, no. 1, 1961, 192

248. Neporent, B. S.:
Intensities in Spectra of Multiatomic Molecules
OS, v. 5, 1958, 634

249. Neporent, B. S.:
Relationship Between Absorption Spectra and Luminescence of Multiatom Molecules
IAN-F, v. 22, no. 11, 1958, 1372

250. Ormont, B. F.:
Structure of Inorganic Substances
Gostekhizdat, Publishing House, 1950

251. Pilipovich, V. A.:
FIANS
A Unit for a Detail Study of Phosphorescent Damping Curves Exceeding 0.1 Sec
OS, v. 4, 1958, 116

252. Pomeranchuk, I. Ya.:
Point Interaction in Quantum Electrodynamics
DAN, v. 102, 1955, 489

253. Shteynshleyger, V. B.:
Measurement of the Group Velocity in Decelerating Systems of Quantum
PTE, v. 6, 1959, 133

254. Stepanov, B. I.:
Foundations of Spectroscopy of Negative Light Fluxes
BGU, Publishing House, 1961

255. Sveshnikov, B. Ya.:
FIANS
A Unit for a Detail Study of Phosphorescent Damping Curves Exceeding 0.1 Sec
OS, v. 4, 1958, 116
256. Vaynshteyn, L. A.:
Electromagnetic Waves

IX. MASER APPLICATIONS

257. Basov, N. G.: FIANS
On the Relative Stability of Frequency of Masers
RE, v. 3, 1958, 288

258. Bernshteyn, I. L.: RIGGU
On the Theory of Phase-Shift Frequency Control
RE, v. 3, no. 2, 1958, 288

259. Bernshteyn, I. L.: RIGGU
Automatic Phase-Shift Frequency Control of 1-cm Wave Generators
RE, v. 2, no. 2, 1958, 280

260. Fanchenko, S. D.:
Problems of Accurate Measurement of Time and Analysis of Extremely Short Duration Processes
PTE, no. 1, 1961, 5-15

261. Gaygerov, B. A.: IRESOANS
Phase-Shift Automatic Control of Klystron by Means of a Molecular Generator
RE, v. 2, no. 10, 1957, 1300

262. Ginzburg, V. L.:
Use of Artificial Earth Satellites to Check the General Theory of Relativity
UFN, v. 63, 1957, 119

263. Ginzburg, V. L.:
Experimental Confirmation of the General Theory of Relativity and Artificial Satellites
P, no. 9, 1956, 30

264. Ginzburg, V. L.: FIANS
Use of Artificial Satellites for the Confirmation of the General Theory of Relativity
ZhETF, v. 30, 1956, 213
265. Ginzburg, V. L.: FIANS
On the Red Shift in the Solar Spectrum
DAN, v. 97, 1954, 617

266. Grigor' yants, V. V.: IRESOANS
Phase-Shift Automatic Control of Klystron by Means of a Molecular Generator
RE, v. 2, no. 10, 1957, 1300

267. Grigor' yants, V. V.: IRESOANS
Molecular Frequency Standard Compensated for the Error Introduced by the Reference Oscillator
RE, v. 6, no. 2, 1961, 321-328

268. Petrov, A. P.: FIANS
On the Relative Stability of Frequency of Masers
RE, v. 3, 1958, 298

269. Sibiryakov, N. Y.: RIGGU
Automatic Phase-Shift Frequency Control of 1-cm Wave Generators
RE, v. 3, no. 2, 1958, 290

270. Troitskiy, V. S.: RIGGU
Radioemission of the Atmosphere and Study of cm-Wave Absorption
IVUZ-RF, v. 2, 1958

271. Tseytlin, M. B.: RIGGU
Radioemission of the Atmosphere and Study of cm-Wave Absorption
IVUZ-RF, v. 2, 1958

272. Vasneva, G. A.: IRESOANS
Phase-Shift Automatic Control of Klystron by Means of a Molecular Generator
RE, v. 2, no. 10, 1957, 1300

273. Yelkin, G. A.: IRESOANS
Phase-Shift Automatic Control of Klystron by Means of a Molecular Generator
RE, v. 2, no. 10, 1957, 1300

274. Zhabotinskiy, M. Ye.: IRESOANS
Molecular Frequency Standard Compensated for the Error Introduced by the Reference Oscillator
RE, v. 6, no. 2, 1961, 321-328
275. Zhevakin, S. A.: RIGGU
Radioemission of the Atmosphere and Study of cm-Wave Absorption
IVUZ-RF, v. 2, 1958