NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
Technical Report 33
to the
OFFICE OF NAVAL RESEARCH
ARPA Order No. 26-60, Task 2, Item 3
Contract No: Nonr 477(16)

PREPARATION OF THE FLUOROSULFONATES:
KI(SO₃F)₄, KBr(SO₃F)₂, SnCl(SO₃F)₂, and CrO₃(SO₃F)₂

By Max Lustig and George H. Cady

Department of Chemistry
University of Washington
Seattle 5, Washington

1961

Distribution according to list provided by Dr. R. Roberto of Power Branch of ONR on August 9, 1961.

Reproduction in whole or in part is permitted for any purposes of the United States Government.
Preparation of the Fluorosulfonates: \(\text{KI} (\text{SO}_3\text{F})_4, \text{KBr} (\text{SO}_3\text{F})_4, \text{SnCl} (\text{SO}_3\text{F})_3 \) and \(\text{CrO}_2 (\text{SO}_3\text{F})_2 \)

By Max Lustig and George H. Cady

It is known that peroxydisulfuryl difluoride, \(\text{S}_2\text{O}_8\text{F}_2 \), reacts with some chlorides to replace chlorine by the fluorosulfonate group.\(^1\)

This type of reaction has now been used to prepare \(\text{SnCl} (\text{SO}_3\text{F})_3 \) from \(\text{SnCl}_4 \) and \(\text{CrO}_2 (\text{SO}_3\text{F})_2 \) from \(\text{CrO}_2 \text{Cl}_2 \). It has also been shown that \(\text{S}_2\text{O}_8\text{F}_2 \) fails to replace the halogen in \(\text{KBr} \) or \(\text{KI} \) when reacting at about room temperature. Instead of this the complex salts, \(\text{KBr} (\text{SO}_3\text{F})_4 \) and \(\text{KI} (\text{SO}_3\text{F})_4 \), are formed.

Experimental

Materials. - Peroxydisulfuryl difluoride was prepared by the method of Dudley et al by passing a stream of \(\text{SO}_3 \) containing a slight excess of \(\text{F}_2 \) through a "catalytic" reactor\(^2,1\) at 165° using dry \(\text{N}_2 \) as a carrier. The product was purified by pumping away fluorine fluorosulfonate and other volatile impurities while the material was held at -78°.\(^1\) The potassium halogenides were of analytical quality. Stannic chloride and cromyl chloride were purified by vacuum distillation using the same vacuum line employed for the synthesis of the various fluorosulfonates.
Potassium Tetrakis(fluorosulfonato)iodate(III). - An excess of peroxysulfuryldifluoride was distilled into a weighed and cold bulb containing 0.271 mmoles of KI. The bulb was then allowed to warm. A mildly exothermic reaction began to occur just below room temperature. At first the solid became brown in color. After several hours, however, it became white. The excess reagent was distilled out of the bulb, and the weight of the product was that of 0.267 mmoles of KI(SO₃F)₄.

When a solution of sodium hydroxide was added, the product reacted according to the equation

\[3\text{KI(SO}_3\text{F)}_4 + 12\text{OH}^- \rightarrow 2\text{IO}_5^- + 3\text{K}^+ + \text{I}^- + 12\text{SO}_3\text{F}^- + 6\text{H}_2\text{O}, \]

rapidly and exothermically. Further hydrolysis of the fluorosulfonate to sulfate and fluoride ions took place by prolonged heating. The iodate was determined by iodometry using the "dead stop" potentiometric method. The sulfate was determined as barium sulfate and the fluoride as triphenyltin fluoride. Found: iodate, 0.184 mmoles; sulfate, 1.13 mmoles; fluoride, 1.09 mmoles. Calcd: iodate, 0.182 mmoles; sulfate and fluoride, 1.08 mmoles.

Potassium tetrakis(fluorosulfonato)iodate(III) is a white solid which melts at 167-8⁰ with slight decomposition yielding a green material which may be ISO₃F⁵. This salt does not react with F₂ at 100⁰.

Potassium Tetrakis(fluorosulfonato)bromate(III). - This salt was prepared in the same way as potassium tetrakis(fluorosulfonato)iodate(III) except that the reaction flask was closed by a break-seal rather than a stopcock. As the reactants warmed a chemical change started at about 0°. At first the solid became orange in color; then it slowly turned white. The flask was heated to 50° for several days to insure complete reaction. 4.697 mmolea of KBr yielded a solid residue having the weight of 4.628 mmolea of KBr(SO\textsubscript{2}F\textsubscript{4}).

The salt reacted with sodium hydroxide solution yielding oxygen and some bromine, the latter being quickly absorbed by the solution. The salt also produced some oxygen when it reacted with a solution containing a large excess of potassium iodide. In both cases the quantity of oxygen produced varied from one run to another. The solution from the alkaline hydrolysis was made acidic and then treated with NaHSO\textsubscript{3} to reduce BrO\textsubscript{3} to Br-. The sulfur dioxide was then removed by prolonged boiling. Bromide ion was determined as AgBr; sulfate as BaSO\textsubscript{4} and fluoride as triphenyltin fluoride. Found: 15.4% Br, 24.7% S, 14.3% F. Theoretical: 15.5% Br, 24.89% S, 14.75% F.

Potassium tetrakis(fluorosulfonato)bromate(III) is a white solid which begins to decompose at 100° giving a dark red liquid having the appearance of BrSO\textsubscript{2}F.5

Chlorotris(fluorosulfonato)tin. - This compound was prepared by contacting tin(IV) chloride with a large excess of peroxydisulfuryl difluoride in a sealed tube equipped with a break-seal attachment. A mild reaction took place just below room temperature and was complete within a few minutes. The reaction proceeded as follows:

\[2SnCl + 3S_2O_3F_2 \rightarrow 2SnCl(SO_3F)_3 + 3Cl_2.\]

It was found that heating the reactants at 100° for several days
achieved no further replacement of the chlorine. 0.518 mmoles of SnCl₄ yielded a weight of the above compound corresponding to 0.517 mmoles.

The volatile material remaining after the reaction was distilled and was shown by vapor density and infrared spectra to contain Cl₂, S₂O₆F₂ and a trace of an unidentified substance. After hydrolysis of the solid material in sodium hydroxide solution, chloride and sulfate were determined gravimetrically as AgCl and BaSO₄, respectively. Found: 7.84% Cl, 21.0% S. Theoretical: 7.87% Cl, 21.3% S.

Chlorotri(fluorosulfonato)tin is a white solid decomposing at about 167°.

Dioxobi(fluorosulfonato)chromium(VI). - Chromyl chloride was found to react with excess S₂O₆F₂ at room temperature as follows:

$$\text{CrO}_2\text{Cl}_2 + \text{S}_2\text{O}_6\text{F}_2 \rightarrow \text{CrO}_2(\text{SO}_3\text{F})_2 + \text{Cl}_2$$

0.362 mmoles of CrO₂Cl₂ yielded a solid having the weight of 0.345 mmoles of CrO₂(SO₃F)₂. Found: 14.23% Cr, 17.8% S, 0.99% Cl. Theoretical: 14.74% Cr, 18.17% S, 0.00% Cl. Chromium was determined by iodometric analysis involving the chromate ion formed by alkaline hydrolysis of the solid. Chloride and sulfate were determined as AgCl and BaSO₄, respectively.

Dioxobis(fluorosulfonato)chromium(VI) is a dark brown, slightly volatile solid which decomposes very slowly at room temperature into a greenish compound. Hydrolysis of an aged sample yielded a yellow solution and a small amount of green flocculent precipitate resembling chromium(III) hydroxide.
UNCLASSIFIED