NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
X-RAY L-SPECTRA OF NIQUE IN NIQUE DIBORIDE, NITRIDE AND CARBIDE, AND THE NATURE OF THE BOND IN THESE COMPOUNDS

BY: M. I. Korsunskiy and Ya. Ye. Genkin

English Pages: 8

Fluorescent spectra of the L series of niobium in niobium diboride, nitride and carbide, were obtained with a fast x-ray spectrograph focused by the Johann method using a bent quartz crystal of R = 1000 mm radius. A specially designed fluorescent x-ray tube with replaceable anodes was installed in the spectrograph. In order to achieve greater intensity of the characteristic radiation of the substance on the surface of the primary anode, the cathode beam was transmitted at a small glancing angle of $\approx 28^\circ$. Vacuum in the spectrograph was maintained while the tube was in operation by MM-1000 and MM-4.0 pumps at 10^{-5} mm Hg. The primary and secondary anodes were cooled by tap water. The temperature of the secondary anode did not exceed 25$^\circ$. The surface of the primary anode was of silver. The fluorescent L-spectra of niobium are excited by the characteristic radiation of the L-series of silver.

The L$_{\alpha}$, L$_{\beta}$, L$_{\gamma}$, L$_{\delta}$, L$_{\epsilon}$, and L$_{\zeta}$ lines of the L-series of niobium were obtained, as well as a group of satellites of L$_{\alpha}$ and L$_{\beta}$ lines of the substances studied. The spectrum radiographs were subjected to photometry on the MF-4, recording microphotometer.

Comparison of the spectrograms obtained shows that when niobium goes into a compound, changes in various portions of the spectrum are observed. The shape and intensity of various lines of the spectrum and of the satellites are observed. Figure 1 represents a comparison of the photomicrographs of sections of the L$_{\alpha}$ - K$_{\alpha}$ spectrum (on identical scales) of these compounds and of metallic niobium. The exposures selected were such that the L$_{\alpha}$ lines obtained were of identical intensity (14 hrs for niobium, up to...
to 16 hrs for niobium carbide and niobium nitride, and 17 hrs for niobium diboride).

As we see, pronounced changes in the shape and brightness of the L_p_2 band occur.

In the case of pure niobium it takes on the form of a normal spectral line with an index of asymmetry of 1.4, while in the case of niobium carbide and niobium nitride it is a wide line with two humps. In the case of niobium diboride this band is sharply asymmetrical with a very flat decline on the short-wave end.

In order to obtain a more precise understanding of the nature of the changes occurring in the L_p_2 band, the photomicrographs of pure niobium were superimposed with those of the compounds. Inasmuch as the intensities vary, the selection of the line(s) which must be completely matched when the photomicrographs are superimposed is of the essence. We believe that matching of the L_p_4 line is most practicable in this situation.

When we proceed from consideration of niobium to that of its compounds, we observe

![Fig.1 - Photomicrographs of Segments of the L_p - K$_\alpha$ Spectra of NbC(1), NbN(2), NbB$_2$(3) and Nb(4)](image)

a change in the states of the outermost electrons. As a consequence, there is some variation in the relative intensity of the lines representing transitions competing with the ($L_{II} - N_{II}$, $L_{III} - N_{II}$) transitions. For this reason, the $L_{II}, L_{II}, L_{III}, L_{IV}$ lines cannot be used as base lines.
Of the noncompeting transitions \(\text{L}_1 - \text{M}_{\text{II}}, \text{L}_1 - \text{M}_{\text{III}} \) (lines \(\text{L}_04 \) and \(\text{L}_93 \) respectively), the \(\text{L}_94 \) line is a transition between the innermost levels, as a consequence of which variations in the outermost shell should manifest themselves least strongly here. Therefore, matching of the spectra of niobium and its compounds was done on the basis of the \(\text{L}_94 \) line.

Figure 2 presents a superposed segment of the spectrum of niobium and of its nitride in the region of the \(\text{L}_02 - \text{K}_{\text{S}3} \) lines:

![Fig.2 - Superposed Segment of Spectrum of Niobium and its Nitride in the Region of the \(\text{L}_02 - \text{K}_{\text{S}3} \) Lines:](image)

As we see, the lines match over their entire curvature for Nb and NbN, and the \(\text{L}_93 \) line retains its form and varies insignificantly in \(\text{L}_{2\pi} \) intensity (7%).

The variations occurring in the \(\text{L}_92 \) band differ in nature. The niobium \(\text{L}_92 \) band in the NbN spectrum is completely inscribed in the lower portion of the curve of the band of pure niobium. The variation of the \(\text{L}_92 \) band looks as though a portion thereof disappeared in the formation of the nitride (hatched on drawing). It should be observed that the greatest variation is experienced by the middle section of \(\text{L}_92 \) band.

Analogous matchings were performed for the Nb - NbC, Nb - NbB photomicrographs. The matched portions of the \(\text{L}_92 \) bands are shown in Fig.3a. As we see, in all of the compounds examined, the \(\text{L}_92 \) bands fit into the lower portion of the curve of the emission band of pure niobium.

Thus, in the nitride, the carbide, and the boride, the variation in the \(\text{L}_92 \) band...
takes on the nature of disappearance of a portion of the emission band. In the carbide
and nitride, it is primarily the central portion that disappears, and in the boride it
is a part of the band, displaced somewhat to the shorter waves. Inasmuch as emission
band L_{α_2} is complex, affecting the distribution of the electrons in accordance with
the $N\gamma$, $N\delta$, and $O\gamma$ levels, variations of this kind may serve as witness to the fact
that different states ($d_{3/2}$, $d_{5/2}$, and $s_{1/2}$) participate in the linkage in different
ways in the various compounds.

The L_{γ_1} bands also undergo sharp changes. Figure 3b shows the superposed L_{γ_1} bands
of niobium in compounds and in the pure form (as in the case of the L_{α_2} bands, the
superposition was based on the identical intensity of the L_{β_4} lines). Here, too, the
disappearance of parts of the L_{γ_1} band of niobium is observed.

Table 1
Integral Intensities of the L_{α_2} and L_{γ_1} Bands with
Equal Intensities of L_{β_4} Lines

<table>
<thead>
<tr>
<th>a) Substance</th>
<th>b) Intensity of β_2 line</th>
<th>c) Intensity of γ_1 line</th>
<th>d) Niobium</th>
<th>e) Niobium nitride</th>
<th>f) Niobium carbide</th>
<th>g) Niobium diboride</th>
</tr>
</thead>
</table>
Table 1 presents numbers descriptive of the variations in the \(L_{g2} \) and \(L_{\gamma1} \) bands of pure niobium and \(XXK \) compounds thereof.

Comparisons of the disappearing portions of the \(L_{g2} \) and \(L_{\gamma1} \) bands are made in Fig. 4, which also shows the curvature of the \(L_{g2} \) and \(L_{\gamma1} \) bands of pure niobium. The shape of the crosshatched section is the difference between the spectral intensities of the \(L_{g2} \) and \(L_{\gamma1} \) bands of pure niobium and the corresponding compounds.

Table 2 presents the measured integral intensities of the L series lines of niobium and its compounds. As we see, the ratio of the integral intensities \(I_{g2}/I_{\gamma1} \) varies. This bears witness to the redistribution of states in the fourth d-band (Bibl. 8).

In the spectrum of all the substances investigated, the \(L_{\gamma1} \) line is accompanied by numerous satellites representing the radiation of \(\text{Ni}^{++} \) ions and

Table 2

<table>
<thead>
<tr>
<th>Type of Compound</th>
<th>Intensity</th>
<th>Niobium</th>
<th>Niobium nitride</th>
<th>Niobium carbide</th>
<th>Niobium diboride</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L_{g1})</td>
<td>a) Intensity; b) Niobium; c) Niobium nitride; d) Niobium carbide; e) Niobium diboride</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The distribution of intensities among the satellites of \(L_{g1} \) of niobium and its compounds varies. Whereas the intensities of all the satellites vary insignificantly, the intensity of the satellite representing the \(L_{III} - M_{\gamma} \) transition in the absence of one of the d-electrons of the Ni-shell undergoes significant variation. The relative intensity of this satellite \(\text{Ni}^{++}/\text{Ni}^{+} \) of all the niobium compounds mentioned is much less than that of pure niobium. A reduction in the intensity of this satellite is particularly marked in the spectrum of \(\text{NbB}_2 \).
The reduction in the relative intensity of satellite I_2 as we proceed to consideration of compounds confirms the conclusion previously arrived at to the effect that a portion of the electrons leave the d-band when niobium enters into compounds with carbon, nitrogen, and boron.

As we see from Fig. 3 the shape of I_2 and I_{11} lines of the nitride and the carbide is virtually identical and differs from the diboride lines.

This may indicate that in the carbide and the nitride, niobium atoms participate in a coupling with electrons in identical states. As indicated, a pronounced diminution in the brightness of the I_2 and I_{11} bands is observed. This variation in line intensity may in part be due to no shift of levels is observed, the rise in self-absorption when compared to that niobium is something that may occur only as a consequence of the reduction in the degree of filling of the The considerable reduction in the relative intensities of the I_2 and I_{11} bands, thus bears witness to the fact that a portion of the undergo coupling in all the compounds studied. Consequently, the hypothesis that a portion of the electrons of nonmetallic shifts into the deeper d-band of the metallic atom in the crystal when
interstitial phases of transition elements are formed, is not confirmed for the carbides, nitrides, and diborides of niobium (Bibl.1, 2, 3, 4, 5). On the contrary, a comparison of the L_p lines of NbB$_2$, NbN, NbC, and Nb shows that the "defect" of this band declines monotonically from the boride to the nitride in accordance with the change in the number of vacancies in the $2p$-shell of the interstitial atoms. This is in agreement with the conclusions drawn in (Bibl.6, 7), in which it is pointed out that in the bonds of molybdenum carbide and titanium nitrides, as distinct from the hydrides, d-orbits come about not by the filling of empty states, but by the transition of a portion of the d-electrons from the metallic atom into the bond.

The appearance of humps on the emission band may well be a consequence of the fact that the niobium atoms in these compounds have various configurations and that more electrons go into the linkage in certain atoms, and fewer in others, inasmuch as when we proceed from niobium to the carbide, nitride, and diboride, we have an increase in the intensity of L_p / L_{α_1} (see Table 2) and it would therefore appear that in these compounds there is a corresponding increase in the $n \gamma / n_{1\gamma}$, i.e., it is chiefly electrons in the $d_{3/2}$ state that participate in this bond (Bibl.8).

Summary

1. The spectral lines of the fluorescent L-spectrum of niobium in the compounds NbN, NbC, NbB$_2$ and in pure niobium have been determined.

2. The intensity and shape of the L_{α_1}, L_{β_1}, L_{β_3}, L_{β_4} lines vary insignificantly, whereas the intensity and shape of the L_{β_2} and L_{γ_1} bands undergo sharp changes.

3. The L_{β_2} and L_{γ_1} bands of niobium in the compounds prove to be only a portion of the corresponding bands of pure niobium.

4. The "truncation" of portions of the XX bands is a consequence of the fact that a portion of the electrons leaves the d-orbitals.
5. In the formation of niobium nitride, carbide, and diboride, \(4f\)-electrons leave the niobium atom to go into the linkage.

BIBLIOGRAPHY

8. Korsunskiy, M. I., and Genkin, Ya. Ye. - The Possibility of Determining the Distribution of Electrons among the \(d_{3/2}\) and \(d_{5/2}\) States by Means of the Relationship among the Intensities of the Lines of the L-Series. Article in present Collection, p. 163