DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
EXPLOSIVES RESEARCH LABORATORY

RESEARCH ON THE FIRE AND EXPLOSION HAZARDS ASSOCIATED WITH NEW LIQUID PROPELLANTS

Progress Report No. 9
(Final Report)
May 1 to August 31, 1961

This is not an official publication. It is distributed for the purpose of information and coordination only.

BUREAU OF MINES, PITTSBURGH, PA.
UNITED STATES
DEPARTMENT OF THE INTERIOR
BUREAU OF MINES
Pittsburgh 13, Pennsylvania

RESEARCH ON THE FIRE AND EXPLOSION HAZARDS
ASSOCIATED WITH NEW LIQUID PROPELLANTS

Progress Report No. 9
(Final Report)

May 1 to August 31, 1961

Project Coordinators

David Burgess
Joseph Grumer
Michael G. Zabetakis

Approved:

Michael G. Zabetakis (Acting)
Robert W. Van Dolah, Chief
Explosives Research Laboratory
INTRODUCTION

This is the ninth in a series of quarterly progress reports by the Bureau of Mines on studies of fire and explosion hazards associated with new liquid propellants. Under normal procedure this would have been the final report summarizing all work since April 1959. However, it proved awkward to combine a detailed reporting of new experimental results obtained during the present report period with a summary of old material. Therefore a separate summary report is being prepared and this will be processed for publication as a Bureau of Mines Report of Investigations.

The objectives of the research are outlined in Government Order NAomr-6-61. Briefly, the work includes three phases:

Phase I: Ignition.
Phase II: Flame Propagation, Pressure Rise Rates, and Detonability.
Phase III: Liquid Burning and Extinguishment.

The following fuels and oxidants have been used in this program: hydrazine, monomethyl hydrazine (MMH), unsymmetrical dimethyl hydrazine (UDMH), the mixed amine fuels MAF-1 and MAF-3, red fuming nitric acid (RFNA), nitrogen tetroxide, and air with various diluents.

RESULTS AND DISCUSSION

Phase I: Ignition - H. E. Perlee

Spontaneous Ignition

The spontaneous ignition temperatures (S.I.T.) of monomethyl hydrazine (MMH) vapor-air mixtures and unsymmetrical dimethyl hydrazine (UDMH) vapor-air mixtures in contact with 100 percent \(\text{NO}_2 \) were determined in the I-8 apparatus. These tests were conducted in the same manner as described previously.\(^1\) The results of these tests are shown in figure 1. These show that for the same combustible concentrations the MMH has lower S.I.T.'s than does UDMH up to a concentration of

\(^1\) \(\text{NO}_2 \) represents the equilibrium mixture of \(\text{NO}_2 \) and \(\text{N}_2\text{O}_4 \).

\(^2\) This research, Progress Report No. 7, November 1, 1960, to January 31, 1961.
6.8 percent combustible; above this concentration the reverse is true. A similar phenomenon was observed\(^2\) for the S.I.T.'s of the liquids when they were injected into \(\text{NO}_2^*\)-air atmospheres. Further S.I.T. tests were conducted with these combustibles using mixtures of \(\text{NO}_2^*\) and air as the oxidizing atmosphere in place of the pure \(\text{NO}_2^*\). The results of these tests using two \(\text{NO}_2^*\)-air mixtures (50 percent \(\text{NO}_2^*\) and 10 percent \(\text{NO}_2^*\)) are shown in figures 2 and 3 for \(\text{MMH}\) and \(\text{UDMH}\), respectively. As can be seen from the figures, the S.I.T.'s appear to approach a minimum in each case, with the exception of \(\text{UDMH}\) in 100 percent \(\text{NO}_2^*\).

During the course of these and previous experiments, we had observed considerable scatter in our results (± 1 percent fuel). For the tests involving the vaporization of the liquid amines in an air atmosphere, this scatter was attributed to the heterogeneous oxidation of the combustibles. However, for the tests where liquid combustible was injected into an atmosphere of \(\text{NO}_2^*\) and air, an explanation for this scatter was not so apparent. Early investigations had indicated that this scatter could not be attributed to any of the more readily controllable (extensive) parameters, e.g., concentration fluctuations, temperature fluctuations, or mechanism of fuel injection. Therefore, we surmised that this scatter was due to more subtle factors which are probably intrinsic properties of the combustion process and not readily controlled by the experimenter. In order to justify this conclusion, a series of 600 tests was conducted to determine the probability of an ignition when liquid \(\text{UDMH}\) is injected into a known mixture of \(\text{NO}_2^*\) and air at 25°C. These tests were conducted as carefully as possible in order to minimize the error due to the extensive parameters. The results of these tests are shown in figure 4 where the probability of an ignition of liquid \(\text{UDMH}\) is plotted against the concentration of \(\text{NO}_2^*\) in the \(\text{NO}_2^*\)-air mixture at 25°C. The size of the circles in the figure represents the probable error due to the extensive properties. These results show that there is a gradual transition from a region of ignition to one of no ignition. The width of this transition zone (in this case 2 percent \(\text{NO}_2^*\)) is probably temperature-dependent for any specific fuel.

Phase II: Flame Propagation, Pressure Rise Rates, and Detonability - E. Litchfield

This phase of the program involves a study of the detonabilities of the hydrazoid and mixed amine fuels as pure vapors and in mixtures with air and with oxygen. It is not possible to premix these fuel vapors with \(\text{NO}_2^*\) and to hold such mixtures unreacted for testing; indeed, there are difficulties brought about by the reactivity of \(\text{UDMH}\) with air or oxygen as will be developed below.
Figure 5 is a plot of requisite energies for initiation of detonation of UDMH-oxygen-nitrogen mixtures. The data representing initial pressures of 1/4-atmosphere were taken from the previous report for comparative purposes. Measurements at 1/2-atmosphere initial pressures are new. These new data show that the pressure scaling relationship in the neighborhood of the energy minimum is approximately inverse cubic. Stoichiometric UDMH-oxygen mixtures at 1/2-atmosphere were initiated to detonation by a very weak exploding wire source having a stored energy of only 1.2 joules. Tests on the fuel-lean side of stoichiometric were conducted with both UDMH-oxygen mixtures and with mixtures in which the excess oxygen was replaced by nitrogen; no gross effect on energy requirement being observed. Only rough values were obtained in these tests which were regarded as preliminary to tests at one atmosphere.

The most peculiar feature of the half-atmosphere tests was that detonations could be obtained with relatively small energies in mixtures containing down to 12 percent UDMH, while no detonations were achieved with less than 10 percent UDMH. The peak reflection pressure observed from the detonation of 12 percent UDMH was 700 p.s.i. From considerations of the available bombs, it was decided to limit the tests at 1 atmosphere initial pressure to mixtures containing 12 percent UDMH or less. However, detonation was not obtained with such mixtures at one atmosphere even though a 12 percent mixture detonated readily at 1/2-atmosphere.

To this point, all detonation testing had been accomplished with mixtures made by the method of partial pressures; and all test results had been consistent and reproducible. The trouble was first assumed to have developed from condensation of fuel vapor and on this basis a flow system was then assembled for use in preparing mixtures at atmospheric pressure. The results obtained in this portion of the investigation were not too satisfactory; however, mixtures of UDMH and oxygen, indicated by sampling to be about 5.5 percent UDMH, were successfully initiated to detonation. When these mixtures were prepared in the same way with air rather than with oxygen, the tests gave no indication of detonation under comparable conditions. Despite uncertainties arising from decomposition of the mixtures on handling, the difference between mixtures with air and with oxygen, for UDMH concentrations approximating stoichiometric, is quite real and is in agreement with previously reported test results.

Additional UDMH-air mixtures were then prepared by the method of partial pressures and subjected to tests with stored energies up to about 580 joules. Again, no detonations were obtained although certain of the results are worthy of further consideration. Figure 6A may be taken as a qualitative illustration of these results. There is the
large pressure step on the rear of the record. Since the large step occurs at late times and not at early times, it clearly does not represent a shock formed in the initial discharge of the stored energy. If it be assumed that the wave is formed at the center of the bomb, it then follows that the mean velocity of such wave is about one-third of sonic velocity and is considerably in excess of anticipated normal flame velocities. For comparison, figure 6B is a pressure-time record on different scales of the events following discharge of the same 580 joules stored energy into air at ambient pressure.

There would seem to be little question but that mixtures of UDMM with air can be detonated at one atmosphere. Direct initiation of such mixtures was not accomplished by the energies used here; but records such as figure 6A give a rather clear indication that deflagration to detonation transitions can occur. Larger stored energies were not utilized as no comparison data exist as yet for larger energies with conventional fuels. For similar reasons explosive initiation was not used.

Phase III: Liquid Burning and Extinguishment

Extinguishment of UDMM Fires by High Expansion Foams - E. Grumer and A. Bruszak

It was decided at an earlier stage in this project that the extinguishment of UDMM and MAP fires by foams would be outside the scope of our work. However, on watching a demonstration of fire fighting with high expansion foam,3 we were persuaded that such a foam constitutes an attractive research tool; since the individual bubbles are very nearly of one size, one can administer water quite evenly to a small fire without much question as to the total quantity of water which is utilized. For this reason we resurrected a small foam-forming apparatus which has been used here in the development of suitable foams for combating coal mine fires. This apparatus, along with a one-foot diameter tray in which fuel was burned, constituted a standard setup for testing the relative extinguishability of various flames by addition of water.

A 0.7 percent solution of Maprofix (ammonium lauryl sulfate) in water was sprayed into a 1/8-inch mesh cotton net which sloped away from the spray nozzle at a 45° angle. Air was passed through the continuously wetted net to yield 1/2- to 1-1/2-inch diameter bubbles which moved as a honeycomb through a short length of one-foot diameter stovetube to the edge of the fire. The rate of air flow and of foam production was controlled by use of interchangeable orifices at the intake of a blower (see table 1). Measurements were made by stopwatch of the times required for extinction of one-foot diameter flames.

3/ This research, Progress Report No. 8, page 3.
The immediate finding was that fires supported by UDMH and other slow-burning fuels were remarkably difficult to extinguish as compared with fires of the faster burning hydrocarbons. This is shown by the data given in Table 2 and by Figure 7, which also includes reported addition rates of dry powders to accomplish extinguishment of hydrocarbon fires. Table 3 summarizes information which we consider pertinent to an interpretation of the results.

Flames of the three hydrocarbons, benzene, hexane, and xylene, are characterized by small values of the fraction, $\Delta H_v/\Delta H_c$, of their heat of combustion fed back to the liquid surface, which is given in column 2 of Table 3. Therefore the flame zones may position themselves far away from the liquids and transmit heat to the liquid almost exclusively by radiation. As foam approaches the edge of such a flame, bubbles break and water is entrained in the radial draft of the fire, causing a decrease in flame temperature and a momentary lengthening of the flame, both of which factors decrease the radiation to the liquid. Foam almost immediately floats out onto the liquid surface providing a radiation shield. Thus all factors contribute to quick and easy extinguishment. As shown by the last two columns of Table 3, the amount of water required for extinguishment is less than one would calculate to bring all parts of a steady-burning flame to a nonflammable concentration.

The three slow-burning fuels of Table 3 are characterized by higher values of $\Delta H_v/\Delta H_c$ and by flames positioned closer to the liquid so as to transmit back a larger fraction of their evolved heat. We have estimated that convection accounts for about 75 percent of the total heat transfer with methanol at one foot diameter and the flame sweeps back and forth within a few millimeters of the fuel surface. As foam approaches such fires the water is entrained in the burned gases above the flame zone but with little discernible effect on the flame zone itself. In several instances the fire continued to burn when completely covered with foam; eventually, extinguishment must occur through sheer dilution of the fuel by droplets of water. The fourth column of Table 3 is meaningless as applied to these fuels.

Since high expansion foam would not be considered as an extinguishing agent for HAF flames, the significance of the above results lies in the direct parallel with extinguishment of fires by water sprays. Rasbash speaks of the critical importance of a spray's

penetrating to the "sust of the fire" and calculates that heat transfer requirements for extinction are much lower if one cools the fuel than if one cools the flame. In discussion following the referenced paper, Rasbash stated that flame extinguishment by sprays is mostly a matter of combating the convective heat transfer process, a conclusion with which our results with small fires are in complete accord.

The conclusion from the above results and discussion is that fires supported by UDMH vapors will be much more difficult to control by water sprays or by inert gases than would appear from their burning rates and thermal output rates. However the possibility of extinguishment by flooding the fuel surface with several volumes of water per volume of fuel is in no way affected.

Burning Rates of MAP-1 and MAP-3 in Wind - A. Strasser and T. A. Kubala

The burning rates of MAP-1 and MAP-3 were determined on a windy day, with average wind speed of 10 m.p.h. and gusts ranging to 20 m.p.h. Under these conditions the overall burning rate of MAP-1 was 0.20 cm./min. and that of MAP-3, 0.14 cm./min. in a 122 cm. diameter tray. We can compare this with values of 0.18 cm./min. for MAP-1 and 0.10 cm./min. for MAP-3 burning in still air in a 76 cm. tray. It may thus be observed that the burning rates of MAP-1 and MAP-3 are but little affected by ambient winds since the increase observed may be attributed in great part to increased tray diameter. DETA alone increases in burning rate by 35 percent when tray diameter is increased from 76 cm. to 122 cm. although the burning rate of pure UDMH is relatively insensitive to the same change of tray diameter. It is thus not surprising that MAP-3, which contains more DETA, showed a larger relative increase in rate than MAP-1.

The effect of the wind on radiation from the flames is indicated by the fact that in the run with MAP-3, for example, the percentage of total power which was radiated during the run was down to an apparent value of 11 percent while previous data for this fuel indicate a value of the order of 40 percent of total power radiated. The random blowing about of the flame by ambient wind was observed to change the area of the flame by factors which would greatly affect total radiation. The photographs in figure 8 indicate the differences in the flame of MAP-1 at two different times, 10 minutes apart in the midst of a 30 minute run—one in nearly quiescent air, the other during a gust of wind. Although similar effects were observed with MAP-3, the flame was not bright enough to photograph well in daylight.
Comparison of Convective and Radiative Heat Transfer - Z. Cook

Hottel postulated an equation which describes the contributions of the various modes of heat transfer from flame to liquid as a function of burning rate. This equation and observed burning rates in large trays (more than 30 cm. in diameter) were used to determine the relative significance of convection and radiation terms. Values were calculated for the coefficient of convection, the shape factor for the radiation, and the extinction coefficient in Hottel's equation. Conditions assumed for the calculation were an initial temperature of 338° K. (near the boiling points of the fuels) and a flame temperature of 1600° K. Table 4 indicates the results which, in general, show that the heat transfer by radiation is far more effective than that by convection. In even the most favorable case for convection, that of methanol, radiation accounts for about three times as much heat transfer as convection in large fires, although the reverse is true at small diameters as noted on page 5.

Table 1.--Control of foam flow by orifices.

<table>
<thead>
<tr>
<th>Orifice diameter, inches</th>
<th>Foam flow rate, gals./sec.</th>
<th>Expansion ratio</th>
<th>Water output, lbs./sec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4.7</td>
<td>650</td>
<td>0.060</td>
</tr>
<tr>
<td>1-1/2</td>
<td>2.3</td>
<td>625</td>
<td>0.031</td>
</tr>
<tr>
<td>1</td>
<td>1.4</td>
<td>825</td>
<td>0.014</td>
</tr>
</tbody>
</table>

Table 2.--Average elapsed times for extinguishing flames above one-foot diameter tray using three flow rates of foam.

<table>
<thead>
<tr>
<th>Fuel</th>
<th>0.060 lbs./sec.</th>
<th>0.031 lbs./sec.</th>
<th>0.014 lbs./sec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>sec.</td>
<td>sec.</td>
<td>sec.</td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>9.8</td>
<td>11.3</td>
<td>28.9</td>
</tr>
<tr>
<td>Xylene</td>
<td>8.0</td>
<td>15.2</td>
<td>36.3</td>
</tr>
<tr>
<td>Hexane</td>
<td>16.4</td>
<td>50.3</td>
<td>--</td>
</tr>
<tr>
<td>Acetone</td>
<td>125</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>UDMH</td>
<td>80</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Methanol</td>
<td>113</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
Table 1.--Water requirements for extinguishing flames with high expansion foam.

<table>
<thead>
<tr>
<th>Fuel</th>
<th>(\Delta H_f/\Delta H_c)</th>
<th>Molar water (^2)</th>
<th>Holes fuel</th>
<th>Limiting oxygen index (^2)</th>
<th>Limiting flammability limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene</td>
<td>0.0122</td>
<td>5.0</td>
<td>18.0</td>
<td>4/ 13.9</td>
<td></td>
</tr>
<tr>
<td>Xylene</td>
<td>0.0142</td>
<td>11.1</td>
<td>16.9</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Hexane</td>
<td>0.0106</td>
<td>6.9</td>
<td>17.9</td>
<td>4/ 14.5</td>
<td></td>
</tr>
<tr>
<td>Acetone</td>
<td>0.020</td>
<td>33</td>
<td>(7.5)</td>
<td>4/ 15.6</td>
<td></td>
</tr>
<tr>
<td>UDMH</td>
<td>0.022</td>
<td>42</td>
<td>(6.2)</td>
<td>5/ 6.3</td>
<td></td>
</tr>
<tr>
<td>Methanol</td>
<td>0.061</td>
<td>47</td>
<td>(2.7)</td>
<td>6/ 14.1</td>
<td></td>
</tr>
</tbody>
</table>

1/ See table 1, Progress Report No. 5, this research.
2/ Minimum ratio for extinguishment as judged from figure 7 and from known burning rates.
3/ Minimum oxygen percentage for flame propagation.
4/ From Coward, H. F., and Jones, G. W., Limits of Flammability of Gases and Vapors (Bureau of Mines Bulletin 503), judged from data with CO\(_2\) as diluent.
5/ From figure 1, Annual Report, April 1959 - April 1960, this research, applying to measurements at 150° C.
6/ From data given in Progress Report No. 7, this research.
Table 4.—Relative Significance of Convective and Radiative Heat Transfer from Flame to Liquid.

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Largest tray diameter used, cm.</th>
<th>Apparent coefficient of convection, joules/cm.2sec.$^\circ$K.</th>
<th>Shape factor</th>
<th>k, cm.$^{-1}$</th>
<th>Convective heat transfer, joules/cm.2sec.</th>
<th>Radiative heat transfer, joules/cm.2sec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methanol</td>
<td>180</td>
<td>5.7×10^{-4}</td>
<td>0.056</td>
<td>0.16</td>
<td>0.73</td>
<td>2.32</td>
</tr>
<tr>
<td>Diethylene triamine</td>
<td>122</td>
<td>3.6×10^{-5}</td>
<td>0.17</td>
<td>0.0091</td>
<td>0.941</td>
<td>0.91</td>
</tr>
<tr>
<td>Xylene</td>
<td>91.5</td>
<td>0</td>
<td>0.089</td>
<td>0.038</td>
<td>0</td>
<td>3.17</td>
</tr>
<tr>
<td>Unsymmetrical dimethyl hydrazine</td>
<td>91.5</td>
<td>0</td>
<td>0.18</td>
<td>0.064</td>
<td>0</td>
<td>2.70</td>
</tr>
<tr>
<td>Hexane</td>
<td>91.5</td>
<td>0</td>
<td>0.1</td>
<td>0.021</td>
<td>0</td>
<td>3.08</td>
</tr>
</tbody>
</table>
Figure 1.—Spontaneous ignition temperature of MMH-air and UDMH-air mixtures in NO₂.
Figure 2.-Spontaneous ignition temperatures of MMH-air mixtures in various NO$_2$-air mixture at 25° C. as a function of MMH concentration.
Region of spontaneous ignition

10% NO$_2^\text{a}$ - 90% air

50% NO$_2^\text{a}$ - 50% air

100% NO$_2^\text{a}$ - 0% air

Figure 3.- Spontaneous ignition temperatures of UDMH-air mixtures in various NO$_2^\text{a}$-air mixtures at 25° C. as a function of UDMH concentration.
Figure 4.- The probability of ignition of liquid UDMH on contact with NO$_2^*$-air mixtures at 25°C as a function of NO$_2^*$ concentration.
Figure 5.—Stored energy required for direct detonation of UDMH-oxygen mixtures. (Exploding wire in 1 liter bomb).
Figure 6. -- Pressure-time records of events at the wall of the one liter bomb. Auxiliary sweep indicates a deflection resulting from a 2.00 p.s.i. pressure increase. One atm. pressure.
A. Discharge of 170 joules stored energy into mixture of 7 percent UDMH + 93 percent air. Sweep rate 2 milliseconds per major division.
B. Discharge of 580 joules stored energy into air. Sweep rate 1/2-millisecond per major division.
Figure 7.- Water and dry chemical flow rate requirements for extinguishment of liquid fuel fires.
Figure 8.--Burning of HAP-1 in 122 cm. diameter tray. Photographs taken 10 minutes apart.
<table>
<thead>
<tr>
<th>Address</th>
<th>No. of copies</th>
</tr>
</thead>
</table>
| Chief of Naval Research
Department of the Navy
Washington 25, D.C.
Attn: Code 426 | 2 |
| Chief, Bureau of Aeronautics
Department of the Navy
Washington 25, D.C.
Attn: PP-223
SI-721
CH-31
PD-113 | 1
1
1
1 |
| Chief, Bureau of Ordnance
Department of the Navy
Washington 25, D.C.
Attn: ReW3a
AD3
MAY
ResD | 1
1
1
1 |
| Chief, Bureau of Ships
Department of the Navy
Washington 25, D.C.
Attn: 639 | 3 |
| Chief, Bureau of Yards and Docks
Department of the Navy
Washington 25, D.C.
Attn: D-410 | 10 |
| U.S. Naval Civil Engineering Laboratory
Port Hueneme, California | 2 |
| Director
U.S. Naval Research Laboratory
Washington 25, D.C.
Attn: Mr. R. L. Tuve, Code 6222 | 2 |
| Commanding Officer
Liquid Rocket Propulsion Laboratory
Picatinny Arsenal
Dover, New Jersey | 2 |
| Office of Director of Defense (R&E)
Office of Fuels, Materials, and Ordnance
Equipment and Supplies Division
The Pentagon
Washington 25, D.C. | 1 |
National Bureau of Standards
Department of Commerce
Washington 25, D. C.
Attn: Dr. A. F. Robertson

2

Liquid Propellant Information Agency
Applied Physics Laboratory
8621 Georgia Avenue
Silver Spring, Maryland

1

Armed Services Technical Information Agency
Arlington Hall Station
Arlington 12, Virginia

10

Commanding Officer
Office of Naval Research Branch Office
346 Broadway
New York 13, New York

1

Materials Laboratory
New York Naval Shipyard
Brooklyn, New York

2

Wright Air Development Division
WADD - Library
Wright-Patterson Air Force Base, Ohio

1

Commanding Officer
U. S. Naval Ordnance Test Station
China Lake, California
Attn: Code 45

1

Commander
Naval Missile Center
Point Mugu, California
Attn: Code 5400

2

Reaction Motors Division
Thiokol Chemical Corporation
Denville, New Jersey

2

Commander
U. S. Naval Proving Ground
Dahlgren, Virginia

2

The Martin Company
Orlando, Florida
Attn: Bullpup Project Engineer

1

Stanford Research Institute
Menlo Park, California
Attn: Dr. H. Wise (Chemical Physics)

1
Address

Raytheon Manufacturing Corporation
Waltham, Massachusetts
Attn: Sparrow Project Engineer

The Martin Company
Baltimore, Maryland
Attn: Dr. I. Tuhy

Temco Aircraft Company
Dallas, Texas
Attn: Corvus Project Engineer

Dr. Paul F. Berr
Food Machinery Chemical Corporation
P. O. Box 8
Princeton, New Jersey

National Academy of Sciences
2101 Constitution Avenue, N. W.
Washington 25, D. C.
Attn: Mr. D. W. Thornhill, Exec. Secretary
Committee on Fire Research

Commanding Officer
Naval Air Engineering Facility (SI)
Philadelphia, Pennsylvania
Attn: SE 245

Grinnell Company
Providence 1, Rhode Island
Attn: Mr. R. E. Percival
I.S. Department

Illinois Institute of Technology
Dept. of Fire Protection and Safety Engineering
Chicago 16, Illinois
Attn: Prof. W. G. Labes

Wyandotte Chemical Corporation
Wyandotte, Michigan
Attn: D. J. Craig

McConnoll Aircraft Corporation
P. O. Box 516
St. Louis 66, Missouri
Attn: R. D. Dotrich
Department 644
<table>
<thead>
<tr>
<th>Addressee</th>
<th>No. of copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlantic Research Corporation</td>
<td>1</td>
</tr>
<tr>
<td>Alexandria, Virginia</td>
<td></td>
</tr>
<tr>
<td>Attn: Dr. Raymond Friedman</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Librarian</td>
<td></td>
</tr>
<tr>
<td>Lockheed Aircraft Corporation</td>
<td>1</td>
</tr>
<tr>
<td>Lockheed Missiles and Space Division</td>
<td></td>
</tr>
<tr>
<td>Technical Information Center (CU201)</td>
<td></td>
</tr>
<tr>
<td>P. O. Box 504</td>
<td></td>
</tr>
<tr>
<td>Sunnyvale, California</td>
<td></td>
</tr>
<tr>
<td>Headquaters</td>
<td>1</td>
</tr>
<tr>
<td>Air Force Flight Test Center</td>
<td></td>
</tr>
<tr>
<td>Air Research and Development Command</td>
<td></td>
</tr>
<tr>
<td>Edwards Air Force Base, California</td>
<td></td>
</tr>
<tr>
<td>Attn: FTDF</td>
<td></td>
</tr>
<tr>
<td>United Aircraft Corporation</td>
<td>1</td>
</tr>
<tr>
<td>400 Main Street</td>
<td></td>
</tr>
<tr>
<td>East Hartford 8, Connecticut</td>
<td></td>
</tr>
<tr>
<td>Attn: Library</td>
<td></td>
</tr>
<tr>
<td>Dr. A. R. King</td>
<td>1</td>
</tr>
<tr>
<td>Head, Bushfire Research Section</td>
<td></td>
</tr>
<tr>
<td>CSIRO, Melbourne</td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td></td>
</tr>
<tr>
<td>Commander</td>
<td>1</td>
</tr>
<tr>
<td>Wright Air Development Division</td>
<td></td>
</tr>
<tr>
<td>Wright-Patterson Air Force Base, Ohio</td>
<td></td>
</tr>
<tr>
<td>Attn: B. P. Botteri, WWRMFE-3</td>
<td></td>
</tr>
<tr>
<td>Southern Forest Fire Laboratory</td>
<td></td>
</tr>
<tr>
<td>U. S. Department of Agriculture</td>
<td></td>
</tr>
<tr>
<td>P. O. Box 1421</td>
<td></td>
</tr>
<tr>
<td>Macon, Georgia</td>
<td></td>
</tr>
<tr>
<td>Attn: Mr. Walter Fons</td>
<td>1</td>
</tr>
<tr>
<td>Intermountain Forest and Range Experiment Station</td>
<td></td>
</tr>
<tr>
<td>U. S. Department of Agriculture</td>
<td></td>
</tr>
<tr>
<td>Ogden, Utah</td>
<td></td>
</tr>
<tr>
<td>Attn: Mr. J. S. Barrows</td>
<td>1</td>
</tr>
<tr>
<td>Address</td>
<td>No. of copies</td>
</tr>
<tr>
<td>--</td>
<td>--------------</td>
</tr>
<tr>
<td>Pacific Southwest Forest and Range Experiment Station</td>
<td></td>
</tr>
<tr>
<td>U. S. Department of Agriculture</td>
<td>1</td>
</tr>
<tr>
<td>P. O. Box 245</td>
<td></td>
</tr>
<tr>
<td>Berkeley, California</td>
<td></td>
</tr>
<tr>
<td>Attn: Dr. A. Broido</td>
<td></td>
</tr>
<tr>
<td>Battelle Memorial Institute</td>
<td>1</td>
</tr>
<tr>
<td>505 King Avenue</td>
<td></td>
</tr>
<tr>
<td>Columbus 1, Ohio</td>
<td></td>
</tr>
<tr>
<td>Attn: Dr. Abbott Putnam</td>
<td></td>
</tr>
<tr>
<td>Rocketdyne</td>
<td>1</td>
</tr>
<tr>
<td>6633 Canoga Avenue</td>
<td></td>
</tr>
<tr>
<td>Canoga Park, California</td>
<td></td>
</tr>
<tr>
<td>Attn: Mr. R. L. Moore</td>
<td></td>
</tr>
<tr>
<td>The Martin Company</td>
<td></td>
</tr>
<tr>
<td>Denver 1, Colorado</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Mr. Vance Haynes</td>
<td></td>
</tr>
<tr>
<td>Mail No. A-288</td>
<td></td>
</tr>
<tr>
<td>American Gas Association</td>
<td>1</td>
</tr>
<tr>
<td>420 Lexington Avenue</td>
<td></td>
</tr>
<tr>
<td>New York 17, New York</td>
<td></td>
</tr>
<tr>
<td>Attn: Mr. E. P. Fracker</td>
<td></td>
</tr>
</tbody>
</table>