THIS REPORT HAS BEEN DELIMITED
AND CLEARED FOR PUBLIC RELEASE
UNDER DOD DIRECTIVE 5200.20 AND
NO RESTRICTIONS ARE IMPOSED UPON
ITS USE AND DISCLOSURE.

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED.
UNCLASSIFIED

AD 241159

Reproduced
by the

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA
NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.
DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
On a Problem of Tarski

J. Richard Büchi

Under Contract With:

Department of the Army
U. S. Army Signal Supply Agency
Contract No. DA 36-039-sc-78057
Fort Monmouth, New Jersey

and

Department of the Navy
Office of Naval Research
Contract No. Nonr-1224 (21)
Washington, D.C.

Administered by:

July 1960

THE UNIVERSITY OF MICHIGAN RESEARCH INSTITUTE • ANN ARBOR
Technical Note

ON A PROBLEM OF TARSKI

J. Richard Büchi

UMRI Projects 2794 and 03105

under contract with:

DEPARTMENT OF THE ARMY
U. S. ARMY SIGNAL SUPPLY AGENCY
CONTRACT NO. DA 36-039-sc-78057
FORT MONMOUTH, NEW JERSEY
and
DEPARTMENT OF THE NAVY
OFFICE OF NAVAL RESEARCH
CONTRACT NO. Nonr-1224(21)
WASHINGTON, D. C.

administered by:

THE UNIVERSITY OF MICHIGAN RESEARCH INSTITUTE ANN ARBOR

July 1960
On a problem of Tarski

by J. Richard Büchi

Let SC (sequential calculus) be the interpreted formalism which makes use
of individual variables \(t, x, y, z, \ldots\) ranging over natural numbers, monadic
predicate variables \(q(), r(), s(), i(), j(), \ldots\) ranging over arbitrary
sets of natural numbers, the individual symbol \(o\) for zero, the function sym-
bol \(\cdot\), denoting the successor function, propositional connectives, and quanti-
fiers for both types of variables.

The purpose of this note is to outline an effective method for deciding
truth of sentences in \(SC\). This, according to R. M. Robinson, answers a
question of Tarski's. In addition, a rather complete understanding of defin-
ability in \(SC\) will be obtained.

1. Notations. \(\langle\rangle\) denotes a \(n\)-tuple of predicate variables. Expressions like
\(A[q(o)], B[i(t), j(t')]\) denote propositional formulas in the indicated constitu-
ents. \(\Sigma_1, \pi_1\), denote the classes of formulas of SC of the following type,

\[
\Sigma_1: (\exists x) \cdot A[q(o)] \land (\forall t) \cdot B[i(t), r(t), r(t')] \land (\exists t) \cdot C[r(t)]
\]

\[
\pi_1: (\forall x) \cdot A[q(o)] \lor (\exists t) \cdot B[i(t), r(t), r(t')] \lor (\forall t) \cdot C[r(t)]
\]

The quantifiers \((\exists t)^{\chi} A(t)\) for \((\forall t) [x \leq t < y \land A(t)]\), \((\forall t)^{\chi} A(t)\) for
\((\forall t)[x \leq t < y \lor A(t)]\), \((\Sigma t)^{\chi} A(t)\) for \((\forall x)(\exists t) [x < t \land A(t)]\), \((\forall \alpha t)^{\chi} A(t)\) for
\((\forall x)(\forall t)[x < t] A(t)\), \((\Sigma j)^{\chi} A(j)\) for \((\forall x)(\exists j) [(\exists \alpha t) j(t) \land A(j)]\) can be defined
in SC. The classes \(\Sigma_1^{\omega}\) and \(\pi_1^{\omega}\) of formulas are defined as follows,

\[
\Sigma_1^{\omega}: (\exists x) \cdot A[q(o)] \land (\forall t) B[i(t), r(t), r(t')] \land (\exists t) C[r(t)]
\]

\[
\pi_1^{\omega}: (\forall x) \cdot A[q(o)] \lor (\exists t) B[i(t), r(t), r(t')] \lor (\forall t) C[r(t)]
\]

1. The author is much indebted to Dr. J. B. Wright. The work was done under
a grant from the National Science Foundation to the Logic of Computers
Group, and with additional assistance through contracts with the Office
of Naval Research, Office of Ordnance Research, and the Army Signal Corps.
Let \(i \) be a \(k \)-tuple of predicates. The \(2^k \) states of \(i \) are the \(k \)-tuples of truth-values. \(i \) may be viewed as an infinite sequence \(i(0) \ i(1) \ i(2) \ldots \) of states. The variables \(\underline{w}, \underline{v}, \underline{x}, \ldots \) will be used for words (i.e., finite sequences) of states. \(\underline{w} \underline{v} \) denotes the result of juxtaposing \(\underline{w} \) and \(\underline{v} \). A congruence-relation is an equivalence relation \(\underline{u} \sim \underline{v} \) on words such that \(\underline{u} \sim \underline{v} \) implies \(\underline{u} \underline{w} \sim \underline{v} \underline{w} \) and \(\underline{w} \underline{u} \sim \underline{w} \underline{v} \). An equivalence relation is of finite rank if it partitions the words into finitely many classes.

Also the following classes of formulas will play an essential role,

\[
\Sigma_{\text{reg}} : (\exists \underline{x}) \cdot A[\underline{y}(x)] \wedge (\forall \underline{y}) \cdot B[\underline{i}(t), \underline{y}(t), \underline{y}(t')] \wedge C[\underline{r}(y)]
\]

\[
\Pi_{\text{reg}} : (\forall \underline{x}) \cdot A[\underline{r}(x)] \vee (\exists \underline{y}) \cdot B[\underline{i}(t), \underline{y}(t), \underline{y}(t')] \vee C[\underline{r}(y)].
\]

These may be called regular formulas. Note that for a regular formula, \(R(i,x,y) \) depends only on the word \(i(0) \ i(1) \ldots \ i(y-1) \). If \(R \) is the set of all words \(i(0) \ i(1) \ldots \ i(h) \) such that \(R(i,0,h+1) \), then the formula \(R(i,x,y) \) is said to determine the set of words \(R \).

2. **A fundamental lemma on infinite sequences.** The working of the decision-method for SC is based on induction and a rather more sophisticated property of infinity, namely Theorem A of Ramsey [9]. Essential parts of this theorem can actually be formulated in SC, in the form of a surprising assertion about the division of infinite sequences into consecutive finite parts.

Lemma 1. Let \(i \) be any \(k \)-tuple of predicates, and let \(E_0, \ldots, E_n \) be a partition of all words on states of \(i \) into finitely many classes. Then there exists a division \(i(0) \ i(1) \ldots \ i(x_1-1), i(x_1) \ i(x_1+1) \ldots \ i(x_2-1), i(x_2) \ i(x_2+1) \ldots \ i(x_3-1), \ldots \) of \(i \) such that all words \(i(x_p) \ i(x_p+1) \ldots \ i(x_q-1) \) belong to one and the same of the classes \(E_0, \ldots, E_n \).

Proof: Assume \(i, E_0, \ldots, E_n \) are as supposed in lemma 1. For \(0 \leq c \leq n \) let \(P_c \) consist of all \(i(y_1,y_2) \) such that \(y_1 < y_2 \) and \(i(y_1) \ i(y_1+1) \ldots \ i(y_2-1) \in E_c \). Then \(P_0, \ldots, P_n \) clearly is a partition of all 2-element sets of natural numbers. By Ramsey's theorem A it follows that there is an infinite sequence \(x_1 < x_2 < x_3 < \ldots \) and a \(0 \leq c \leq n \), such that \((x_p,x_q) \in P_c \) for all \(x_p < x_q \). By definition of \(P_c \) this yields the conclusion of lemma 1.

3. **Automata-theory.** The following concepts and results are borrowed from the theory of finite automata, and play a very essential role in the study of SC.

2. The usefulness of the "Unendlichkeitslemma" of König [5] (also known as "fan-theorem" in its intuitionistic version) in related problems of automata-theory was first observed by Dr. J. B. Wright. Because of its affinity to König's lemma the present application of Ramsey's theorem was suggested.
The reader is referred to Büchi [1], where some of the details are carried out in similar form, and where further references to the mathematical literature on automata are given.

Lemma 2. The following are equivalent conditions on a set R of words:

1) R is regular.

2) $R = E_1 \cup \ldots \cup E_n$, whereby E_1, \ldots, E_n are some of the congruence classes modulo a congruence relation of finite rank on words.

3) R is the set of words determined by a formula $F(i,x,y)$ belonging to Σ_{reg}.

4) R is the set of words determined by a formula $G(i,x,y)$ belonging to π_{reg}.

5) There is an "automata-recursion" $r(0) = 1$, $r(t') = j[r(t), r(t)]$ and an "output" $U[r(t)]$ such that a word $i(0) i(1) \ldots i(x-1)$ belongs to R just in case the recursion produces an $r(x)$ such that $U[r(x)]$ holds.

The reader who is not familiar with the concept of regularity of Kleene [4] may take $1 \leftrightarrow 2$ of the lemma as its definition (note the analogy to ultimately periodic sets of natural numbers). $3 \leftrightarrow 5$ is shown in essence by Myhill's "subset-construction" [6]; nearly in the present form the details are carried out in Büchi [1], lemma 7. By duality one gets $4 \leftrightarrow 5$. The assertions $5 \rightarrow 3'$ and $5 \rightarrow 4'$ are trivial. A proof of $2 \leftrightarrow 3'$ is contained essentially in Rabin and Scott [8].

Lemma 3. If the formulas $R(i,x,y)$, $S(i,x,y)$ determine regular sets of words, then so do the formulas $(\forall t) R(i,t,x,y)$, $(\forall t) R(i,t,y)$, $R(i,x,y) \land S(i,x,y)$, $R(i,x,y) \lor S(i,x,y)$, and $\neg R(i,x,y)$.

This follows by lemma 2 and Skolem's method of replacing bounded quantifiers by recursions.

Lemma 4. If the formula $R(i,x,y)$ determines a regular set, then one can find formulas $D(i)$ and $E(i)$ in Σ_1 (in Σ_1) such that $D(i) \equiv (\forall t) R(i,0,t)$ and $E(i) \equiv (\exists t) R(i,0,t)$.

This follows by $1 \leftrightarrow 5$ of lemma 2. The following lemma will provide the basis for the decision method of SC. It was suggested by, and its proof is typical for, automata theory.

Lemma 5. There is an effective method for deciding truth of sentences A in Σ_1^0.

Proof: Let $C(x)$ be a formula of form $K[x(o)] \land (\forall t) R[x(t), x(t')] \land (x_0^t)$ $L[x(t)]$. Suppose x is a k-tuple of predicates such that $C(x)$ holds. Then there are $x_1 < x_2 < \ldots$ such that $L[x_1], L[x_2], \ldots$. Because x has but a finite number of states, there must be a repetition $x_p = x_q$ of some state U. 3
Therefore, \((\exists r) \subseteq (\exists r')\) implies the assertion,

\[(1) \text{ There are words } x = X_0X_1 \ldots X_a \text{ and } y = Y_1Y_2 \ldots Y_b \text{ of states and a state } U \text{ such that } L[U], \text{ and } K[X_0] \land H[X_0, X_1] \land \ldots \land H[X_{a-1}, X_a] \land H[X_a, U], \text{ and } H[U, Y_1] \land H[Y_1, Y_2] \land \ldots \land H[Y_{b-1}, Y_b] \land H[Y_b, U].\]

Conversely (1) implies \((\exists r) \subseteq (\exists r')\), because one has but to let \(r = xUyUyUy \ldots\) Thus, a method I decides, for given propositional formulas \(K, H, L\) and given state \(U\), whether or not (1) holds, will also be a method for deciding truth of \(\Sigma_0\)-sentences \((\exists r) \subseteq (\exists r')\). Clearly such a method I can be composed from a method II which, for given propositional formula \(H[X, y]\) and given states \(V\) and \(W\), decides whether or not,

\[(2) \text{ There is a word } x = X_0X_1 \ldots X_a \text{ such that } H[V, X_1] \land H[X_1, X_2] \land \ldots \land H[X_{a-1}, X_a] \land H[X_a, W].\]

Let \(n = 2^k\) be the number of states, and note that in a word \(x = X_0X_1 \ldots X_a\) of length \(a > n\) there must occur a repetition \(X_p = X_q\), \(p < q < a\). Clearly if \(x\) satisfies (2), then so does the shorter word \(y = X_0X_1 \ldots X_pX_{q+1}X_{q+2} \ldots X_a\). Therefore, to establish whether or not (2) holds it suffices to check among the finitely many words \(x\) of length \(\leq n\). This remark clearly yields a method II for (2), whereby lemma 5 is established.

4. Reduction of formulas of SC. The following lemma is obtained by methods similar to those in Sichichi [1], lemma 1.

Lemma 6. To every formula \(A(i)\) of SC one can obtain an equivalent formula \(B(i)\) belonging to some \(\Sigma_n\) (to some \(\pi_n\)).

Based on lemmas 1 to 4 one now can prove the fundamental fact on reduction of formulas in SC.

Lemma 7. To every formula \(A(i)\) in \(\Sigma_1^\omega\) (in \(\pi_1^\omega\)) one can obtain an equivalent formula \(B(i)\) in \(\pi_1^\omega\) (in \(\Sigma_1^\omega\)).

Proof: Suppose \(A(i)\) is in \(\Sigma_1^\omega\), say

\[(1) \quad A(i) : (\exists r) \cdot K[X(0)] \land (\forall t) \cdot H[i(t), r(t), r(t')] \land (\exists^\omega t) \cdot L[r(t)].\]

If \(V, W\) are states of \(r\) and \(x = X_0X_1 \ldots X_h\) is a word of states of \(i\) then define,

\[\[V, x, W_1 : \bigvee_{U_1 \ldots U_h} H[X_0, V, U_1] \land H[X_1, U_1, U_2] \land H[X_2, U_2, U_3] \land \ldots \land H[X_h, U_h, W] \]

\[\[V, x, W_2 : \bigvee_{U_1 \ldots U_h} H[X_0, V, U] \land \ldots \land H[X_h, U_h, W] \land [L[U_1] \lor \ldots \lor L[U_h]].\]

\[\]
(Read $[\]_j$ as "there is an H-transition through L from V by x to W.") Next define the binary relation \simeq on words of states of \mathfrak{J}:

$$x \simeq y : \bigwedge_{VW} ([V, x, W]_1 = [V, y, W]_1 \lor \bigwedge_{VW} ([V, x, W]_2 = [V, y, W]_2)$$

If m is the number of states of \mathfrak{J}, then clearly \simeq is the intersection of $m^2 + m$ dichotomies. Therefore, (2) \simeq is an equivalence relation of finite rank $\leq 2^{2m^2}$. Furthermore, using the definitions of $[\]_1$ and $[\]_2$ one obtains,

(3) \simeq is a congruence relation on words. By (2), (3), and lemma 2 it follows that one can find formulas $E_1(\mathfrak{i}, x, y), \ldots, E_a(\mathfrak{i}, x, y)$ such that

(4) E_1, \ldots, E_a are regular formulas (i.e., belong to Σ_{reg}).

(5) E_1, \ldots, E_a determine the congruence classes of \simeq.

Next one applies lemma 1 to the partition E_1, \ldots, E_a. If follows that for any \mathfrak{i},

(6) $\bigvee (\forall s)(\forall y)(\forall x) [s(x)s(y) E_1(\mathfrak{i}, x, y)] \lor \ldots \lor \bigvee (\forall s)(\forall y)(\forall x) [s(x)s(y) E_a(\mathfrak{i}, x, y)]$.

If one defines for $1 \leq c, d \leq a$,

$$F_{c,d}(i) : = (\forall s)(\forall y)(\forall x) [s(x) \wedge E_c(\mathfrak{i}, o, x)] \wedge (\forall y)(\forall x) [s(x)s(y) \supset E_d(\mathfrak{i}, x, y)]$$

then clearly each disjunct of (6) is equivalent to a disjunction of $F_{c,d}$'s. Therefore,

(7) $1 \leq c, d \leq a \quad F_{c,d}(i)$, holds for all i.

Suppose now that $F_{c,d}(i)$ and $F_{c,d}(j)$. Then, by definition of $F_{c,d}$ and by (5) there are $x_1 < x_2 < x_3 < \ldots$ and $y_1 < y_2 < y_3 < \ldots$ such that

$$i(o) \ldots i(x_{p-1}) \supset j(o) \ldots j(y_{p-1})$$

$$i(x_p) \ldots i(x_{p+1}) \supset j(y_p) \ldots j(y_{p+1})$$

Because of the definition of \supset and (1) it therefore follows that $A(i) = A(j)$. Thus, if $F_{c,d}(i) \wedge F_{c,d}(j)$ then $A(i) = A(j)$. Or restating this result,

(8) $\forall i [F_{c,d}(i) \supset A(i)] \lor \forall i [F_{c,d}(i) \supset \neg A(i)]$, for any $1 \leq c, d \leq a$.

If one now defines the set ϕ of pairs $1 \leq c, d \leq a$ by,

(9) $\phi(c, d) \equiv \neg (\exists i) [A(i) \wedge F_{c,d}(i)]$, for $1 \leq c, d \leq a$

it follows by (7) and (8) that
By (4), lemma 3, and lemma 4 it follows that there are formulas $D_c(i,s)$ and $G_d(i,s)$ in Σ_1 which are equivalent respectively to $(\exists x)(s(x) \land F_c(i,o,x))$ and $(\forall y)(\forall x)(s(x)s(y) \supset E_d(i,x,y))$. Referring to the definition of E_c,d this yields,

$$F_c,d(i) = (3s) \cdot (d^0 t) s(t) \land D_c(i,s) \land G_d(i,s)$$

Because D_c and G_d are in Σ_1 it follows,

$$(11) \quad F_c,d(i) = (3s) \cdot (d^0 t) s(t) \land D_c(i,s) \land G_d(i,s)$$

for some matrices $I(p(o),q(o),J[i(t),s(t),q(t),p(t),q(t'),p(t')],M[q(t)],N[p(t)]$. Note that $(\exists t)(\exists t) M(t) \land (\exists t) N(t) \land S^x t s(t)$ may be replaced by $(\exists x)(\exists x) M(t) \land (\exists x) N(t) \land s(x)$, and this in turn may be replaced by $(3h)[-j(o) \land (\forall t)(j(t)) = j(t) \lor M(t)] \land (\forall t)[h(t') = h(t) \lor N(t)] \land (S^x t)[j(t) \land h(t) \land s(t)]$. The corresponding substitution in (11) then shows that, for any $1 \leq c,d \leq a$, the formula $F_c,d(i)$ is equivalent to a formula $J_c,d(i)$ in Σ_1. By (10) it follows that $A(i)$ is equivalent to a formula in Σ_1, and therefore $A(i)$ is equivalent to a formula $B(i)$ in Σ_1^w. This ends the proof of lemma 7.

Theorem 1. The hierarchy of relations on predicates definable by formulas of Σ_n, π_n collapses at $n=2$. To every formula $A(i)$ of SC one can find a formula $B(i)$ of Σ_1^w (of π_1, Σ_2, π_2) which is equivalent to $A(i)$.

Proof: Let $C(i) : (\exists x)[K(o) \land (\forall t) H(t) \land (\exists t) L(t)]$ be any formula of Σ_1. Then $C(i) \equiv (\exists x)[K(o) \land (\forall t) H(t) \land (\exists x)(\exists t) L(t)]$. If the term $(\exists t) L(t)$ is dealt with as shown at the end of the proof of lemma 7, this yields a formula $D(i)$ in Σ_1^w which is equivalent to $C(i)$. Using this remark part one of theorem 1 easily follows by an induction of n and the use of lemma 7. By lemma 6 the other part of theorem 1 follows.

Remarks: 1. The set U consisting of all infinite i can be defined by a Σ_1^w (a Σ_1) formula, but not by a π_1^w (a π_1) formula. This shows that theorem 1 cannot be much improved.

2. Using theorem 1 one easily shows that also formulas $A(i, x_1, \ldots, x_n)$ of SC, containing individual variables can be put into a normal form, namely

$$(\exists x)[K(x) \land (\forall t) H(t,x), L(t,x), M(t,x), \ldots, N(t,x)]$$

This yields rather complete information on definability in SC. For example,

3. A conjecture of Robinson [10]: A relation $R(x_1, \ldots, x_n)$ on natural numbers is definable in SC if and only if it is definable in SC_{fin}, which is like SC except that the variables $1, j, r, \ldots$ range over finite sets of natural numbers. This follows from remark 2 by methods similar to those in the proof of lemma 5. For complete discussion of definability in SC_{fin} see Büchi [1].
4. A relation \(R(i_1, ..., i_n) \) on finite sets of natural numbers is definable in \(SC \) if and only if it is definable in \(SC_{\text{fin}} \).

5. Analyzing the proof of lemma 7 one obtains: A set \(R \) of \(n \)-tuples \(i \) of predicates is definable in \(SC \) if and only if \(R = S_1 \cup ... \cup S_k \) whereby each \(S_c \) is of the form \(A \equiv B \equiv ... \), \(A \) and \(B \) being regular sets of words.

Lemmas 2, 3, 4, 6 can be stated and proved in a strong constructive version. To see that this also holds for lemma 7, it remains to ascertain that the finite set \(\Phi \) of pairs, defined by (9) in the proof of 7, may be obtained effectively for a given \(A(j) \). This follows by lemma 5, if one observes that \(A(j), F_c, d(j) \) and therefore \((\exists j)[A(j) \land F_c, d(j)] \) are equivalent to \(\Sigma^0 \) formulas. It now follows that theorem 1 can also be proved in an effective version. In particular, to every sentence \(A \) of \(SC \) one can effectively construct an equivalent one belonging to \(\Sigma^0 \). Applying lemma 5 again this yields,

Theorem 2. There is an effective method for deciding truth of sentences in \(SC \).

The strength of these results is best seen by noting some very special cases which occur in the literature and have been obtained by rather divergent methods:

1. The decidability of \(\Sigma^0 \)-sentences of \(SC \) contains the result of Friedman [3], and implies the existence of various other algorithms of finite automata theory as programmed by Church [2]. It also implies some of the results of Wang [11].

2. In \(SC \) one can define \(x = y, x < y, x \equiv y \pmod{k} \) (for \(k=1,2,... \)). The decidability of \(SC \) therefore considerably improves a result of Putnam [7].

3. In \(SC \) one can define "i is finite." Theorem 2 therefore implies the decidability of \(SC_{\text{fin}} \), which was also proved in Büchi [1], and according to Robinson [10] is due to A. Ehrenfeucht.

4. The decidability of the first order theory of \(\lbrack \mathbb{N}, +, \mathbb{P} \rbrack \) follows from theorem 4 and improves the classical result of Presburger.

5. Theorem 2 is closely related to another classical result, namely the decidability of the monadic predicate calculus of second order, proved first by Th. Skolem and later by H. Behmann. A modified form of lemma 6 yields a rather simple solution to this problem.

