This document is the property of the United States Government. It is furnished for the duration of the contract and shall be returned when no longer required, or upon recall by ASTIA to the following address: Armed Services Technical Information Agency, Document Service Center, Knott Building, Dayton 2, Ohio.

NOTICE: WHEN GOVERNMENT OR OTHER DRAWINGS, SPECIFICATIONS OR OTHER DATA ARE USED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY RELATED GOVERNMENT PROCUREMENT OPERATION, THE U. S. GOVERNMENT THEREBY INCURS NO RESPONSIBILITY, NOR ANY OBLIGATION WHATSOEVER; AND THE FACT THAT THE GOVERNMENT MAY HAVE FORMULATED, FURNISHED, OR IN ANY WAY SUPPLIED THE SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA IS NOT TO BE REGARDED BY IMPLICATION OR OTHERWISE AS IN ANY MANNER LICENSING THE HOLDER OR ANY OTHER PERSON OR CORPORATION, OR CONVEYING ANY RIGHTS OR PERMISSION TO MANUFACTURE USE OR SELL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO.
AN EXPANSION OF THE KUMMER FUNCTION

\[\text{\textsc{M}E\textsc{R}I\textsc{T}}\text{A}S \]

By

Gordon Kent

March 5, 1956

Technical Report No. 234

Cruft Laboratory
Harvard University
Cambridge, Massachusetts
Office of Naval Research
Contract N5ori-76
Task Order No. 1
NR-372-012

Technical Report
on
An Expansion of the Kummer Function \(_1F_1(\alpha; \frac{1}{2}; \beta x^2) \)
by
Gordon Kent

March 5, 1956

The research reported in this document was made possible through support extended Cruft Laboratory, Harvard University, jointly by the Navy Department (Office of Naval Research), the Signal Corps of the U. S. Army and the U. S. Air Force, under ONR Contract N5ori-76, T.O. 1.

Technical Report No. 234

Cruft Laboratory
Harvard University
Cambridge, Massachusetts
An Expansion of the Kummer Function $\mathbf{1F_1}(a;\frac{1}{2};\beta x^2)$

by

Gordon Kent

Division of Engineering and Applied Physics

Harvard University

Cambridge, Massachusetts

In recent years the confluent hypergeometric or Kummer functions have become useful in the treatment of a vast variety of problems in mathematical physics. The Kummer function expansion presented here was developed by the author for the solution of an electron beam problem. Although its form is not the most convenient for this and for similar applications, it has the virtue that the terms of the expansion are easily calculated and are expressible in elementary functions.

The Kummer function $\mathbf{1F_1}(a;\frac{1}{2};\beta x^2)$ is defined by the series

$$\mathbf{1F_1}(a;\frac{1}{2};\beta x^2) = \sum_{n=0}^{\infty} \frac{\Gamma(a+n)}{\Gamma(a)} \frac{(4\beta x^2)^n}{(2n)!}$$

(1)

The behavior of the function under the conditions

$$|a| \to \infty$$

$$|\beta| \to 0$$

$$|a\beta| \text{ is finite}$$

is to be determined. Evidently, the parameter β is only a scale factor and could be eliminated; but it is more convenient to keep the parameter so that the conditions (2) do not have to be imposed on the variable, which may be
permitted to be of the order of unity without invalidating the results.

Inspection of the \(n \)'th term of the Kummer series, (1), reveals that it contains a finite sum of terms of descending orders of magnitude, specifically of orders \((4a\beta)^n, \beta (4a\beta)^{n-1}, \ldots (4\beta)^{n-1}(4a\beta)\). If the terms of the Kummer series, which is absolutely and uniformly convergent, can be rearranged, then these orders of magnitude can be separated. To accomplish this rearrangement, let

\[
\frac{\Gamma(a + n)}{\Gamma(a)} = \sum_{k=0}^{k=n} a_k(n)\alpha^k.
\]

and substitute (3) into (1). When the order of summation is reversed, there results the expression

\[
{1}F{1}(a; \frac{1}{2}; \beta x^2) = \sum_{m=0}^{\infty} b_m(x)(4\beta)^m,
\]

where

\[
b_m = \sum_{n=0}^{\infty} \frac{(4a\beta)^{n-m}a_{n-m}(n)n!}{2^nn!}.
\]

It can be seen by examination of (3) that

\[
a_n(n) = 1
\]

\[
a_{n-m}(n) = 0, \text{ for } m \geq n
\]

\[
a_p(q) = 0, p \geq q
\]

and the general expression for \(a_{n-m}(n) \) is

\[
a_{n-m}(n) = \sum_{k_1=0}^{n-1} \sum_{k_2=0}^{k_1-1} \sum_{k_3=0}^{k_2-1} \ldots \sum_{k_m=0}^{k_{m-1}-1} k_1k_2k_3\ldots k_m.
\]

With the use of the functional equation for \(\Gamma(a + n) \) and (6) the validity of
(7) can be proved by induction.

For computational purposes, it is more convenient to write (7) in the form

\[a_{n-m}(n) = \sum_{k=m}^{n-1} k a_{k+1-m}(k), \quad m=1, 2, 3, \ldots \quad (8) \]

Since \(a_n(n) = 1 \), the expressions for \(a_{n-m}(n) \) for subsequent values of \(m \) can be calculated with the aid of the following two relations from combinatorial analysis:

\[\sum_{k=0}^{n-1} \binom{n}{k} = \binom{n}{k+1} \quad (9) \]

and

\[n \binom{n}{m} = (m+1)n \binom{n}{m+1} + m \binom{n}{m} \quad (10) \]

The first four of these coefficients are

\[
\begin{align*}
a_n(n) &= 1, \\
a_{n-1}(n) &= \binom{n}{2}, \\
a_{n-2}(n) &= 3 \binom{n}{4} + 2 \binom{n}{3}, \\
a_{n-3}(n) &= 15 \binom{n}{6} + 20 \binom{n}{5} + 6 \binom{n}{4}.
\end{align*}
\]

The first four coefficients of \((4\beta)^m \) in (4) may now be written

\[
\begin{align*}
b_0 &= \sum_{n=0}^{\infty} \frac{q^n}{(2n)!}, \\
b_1 &= \frac{1}{4\alpha\beta} \sum_{n=0}^{\infty} \frac{q^n}{(2n)!} \binom{n}{2},
\end{align*}
\]
in which the new variable \(q = 4a\beta x^2 \). These coefficients may be expressed in closed form in terms of \(b_0(q) \) and its derivatives. The expressions are

\[
\begin{align*}
b_0 &= \cosh \sqrt{q} , \\
b_1 &= \left(\frac{4\alpha\beta x^4}{2!} \right) b_0^{(2)} , \\
b_2 &= \frac{3(4\alpha\beta)^2 x^8}{4!} b_0^{(4)} + \frac{2(4\alpha\beta)x^6}{3!} b_0^{(3)} , \\
b_3 &= \frac{15(4\alpha\beta)^3 x^{12}}{6!} b_0^{(6)} + \frac{20(4\alpha\beta)^2 x^{10}}{5!} b_0^{(5)} + \frac{6(4\alpha\beta)x^8}{4!} b_0^{(4)} ,
\end{align*}
\]

where \(b_0^{(k)} \) indicates the \(k \)th derivative of \(b_0(q) \) with respect to \(q \).

It is apparent that the procedure by which (13) was developed can be applied to as many terms as desired, and that all the coefficients will be expressible as a linear combination of derivatives of \(b_0(q) \).

The first four terms of the expansion of the Kummer function obtained by completing the operations indicated in (13) are

\[
\begin{align*}
{1}F{1}(a; \frac{1}{2} ; \beta x^2) &= \cosh kx + \left(\frac{\beta x^2}{2} \right) \left(\cosh kx - \frac{\sinh kx}{kx} \right) \\
&+ \frac{1}{2!} \left(\frac{\beta x^2}{2} \right)^2 \left\{ \left[1 - \frac{1}{(kx)^2} \right] \cosh kx - \left[\frac{2}{3} - \frac{1}{(kx)^2} \right] \frac{\sinh kx}{kx} \right\} \\
&+ \frac{1}{3!} \left(\frac{\beta x^2}{2} \right)^3 \left\{ \left[1 - \frac{7}{(kx)^2} - \frac{15}{(kx)^4} \right] \cosh kx + \left[1 - \frac{12}{(kx)^2} + \frac{15}{(kx)^4} \right] \frac{\sinh kx}{kx} \right\} \\
&+ O(\beta^4) ,
\end{align*}
\]
where for convenience $k^2 = 4a \beta$. Analysis shows that the terms in the brackets vanish uniformly as $x \to 0$. For small values of x, these terms, in the order given in (14), approach the forms

$$\begin{align*}
\frac{2}{3} (kx)^2, \\
\frac{7}{18} (kx)^2, \\
\frac{107}{120} (kx)^2,
\end{align*}$$

Thus it appears that in the neighborhood of the origin the approximation is extraordinarily good.

References

DISTRIBUTION LIST

Technical Reports

Chief of Naval Research
Department of the Navy
Washington 25, C. C.

2 427
1 460
1 421

6 Director (Code 5250)
Naval Research Laboratory
Washington 25, D. C.

2 Commanding Officer
Office of Naval Research Branch Office
150 Causeway Street
Boston, Massachusetts

1 Commanding Officer
Office of Naval Research Branch Office
1000 Geary Street
San Francisco 9, California

1 Commanding Officer
Office of Naval Research Branch Office
1030 E. Green Street
Pasadena, California

1 Commanding Officer
Office of Naval Research Branch Office
The John Crerar Library Building
86 East Randolph Street
Chicago 1, Illinois

1 Commanding Officer
Office of Naval Research Branch Office
346 Broadway
New York 13, New York

3 Officer-in-Charge
Office of Naval Research
Navy No. 100
Fleet Post Office
New York, New York

Chief, Bureau of Ordnance
Navy Department
Washington 25, D. C.

1 Re4-1
1 AD-3

-1-
Technical Reports

<table>
<thead>
<tr>
<th>Commanding General</th>
<th>Wright Air Development Center</th>
<th>Wright-Patterson Air Force Base, Ohio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>WCRRH</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>WCLR</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>WCLRR</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Technical Library</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commander</th>
<th>Wright Air Development Center</th>
<th>Wright-Patterson Air Force Base, Ohio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RCREC-4C</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>RCR-1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>RCRW</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commanding General</th>
<th>Air Force Cambridge Research Center</th>
<th>230 Albany Street</th>
<th>Cambridge 39, Massachusetts</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>CRR</td>
<td>Technical Library</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Director</th>
<th>Air University Library</th>
<th>Maxwell Air Force Base, Alabama</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Commander</td>
<td>Patrick Air Force Base</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cocoa, Florida</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chief, European Office</th>
<th>Air Research and Development Command</th>
<th>Shell Building</th>
<th>60 Rue Ravenstein</th>
<th>Brussels, Belgium</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>U. S. Coast Guard (EEE)</td>
<td>1300 E Street, N. W.</td>
<td>Washington, D. C.</td>
<td></td>
</tr>
</tbody>
</table>

| Assistant Secretary of Defense | (Research and Development Research and Development Board Department of Defense | Washington 25, D. C. |
Technical Reports

Chief, Bureau of Aeronautics
Navy Department
Washington 25, D. C.
1 EL-1
1 EL-4

Chief, Bureau of Ships (810)
Navy Department
Washington 25, D. C.
1

Chief of Naval Operations
Navy Department
Washington 25, D. C.
1 Op-413
1 Op-20
1 Op-32

Director
Naval Ordnance Laboratory
White Oak, Maryland
1

Commander
U. S. Naval Electronics Laboratory
San Diego, California
2

Commander(AAEL)
Naval Air Development Center
Johnsville, Pennsylvania
1

Librarian
U. S. Naval Post Graduate School
Monterey, California
1

Transportation Officer
Building 151
Squier Signal Laboratory
Fort Monmouth, New Jersey
Attn: Director of Research
50

Commanding General
Air Research and Development Command
Post Office Box 1395
Baltimore 3, Maryland
3 RDTRRP
3 RDDDE

Commanding General(WCRR)
Wright Air Development Center
Wright-Patterson Air Force Base, Ohio
1
Technical Reports

Commanding General
Wright Air Development Center
Wright-Patterson Air Force Base, Ohio

1 WCRRH
2 WCLR
1 WCLRR
2 Technical Library

2 Commander
Wright Air Development Center
Attn: WCREO
Wright-Patterson Air Force Base, Ohio

Commanding General
Rome Air Development Center
Griffiss Air Force Base
Rome, New York

1 RCREC-4C
1 RCR-1
2 RCRW

Commanding General
Air Force Cambridge Research Center
230 Albany Street
Cambridge 39, Massachusetts

6 CRR
1 Technical Library

2 Director
Air University Library
Maxwell Air Force Base, Alabama

1 Commander
Patrick Air Force Base
Cocoa, Florida

1 Chief, European Office
Air Research and Development Command
Shell Building
60 Rue Ravenstein
Brussels, Belgium

1 U. S. Coast Guard (EEE)
1300 E Street, N. W.
Washington, D. C.

1 Assistant Secretary of Defense
(Research and Development
Research and Development Board
Department of Defense
Washington 25, D. C.

-iii-
<table>
<thead>
<tr>
<th></th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Armed Services Technical Information Agency</td>
</tr>
<tr>
<td></td>
<td>Document Service Center</td>
</tr>
<tr>
<td></td>
<td>Knott Building</td>
</tr>
<tr>
<td></td>
<td>Dayton 2, Ohio</td>
</tr>
<tr>
<td>1</td>
<td>Office of Technical Services</td>
</tr>
<tr>
<td></td>
<td>Department of Commerce</td>
</tr>
<tr>
<td></td>
<td>Washington 25, D. C.</td>
</tr>
<tr>
<td>1</td>
<td>Commanding Officer and Director</td>
</tr>
<tr>
<td></td>
<td>U. S. Underwater Sound Laboratory</td>
</tr>
<tr>
<td></td>
<td>New London, Connecticut</td>
</tr>
<tr>
<td>1</td>
<td>Federal Telecommunications Laboratories, Inc.</td>
</tr>
<tr>
<td></td>
<td>Technical Library</td>
</tr>
<tr>
<td></td>
<td>500 Washington Avenue</td>
</tr>
<tr>
<td></td>
<td>Nutley, New Jersey</td>
</tr>
<tr>
<td>1</td>
<td>Librarian</td>
</tr>
<tr>
<td></td>
<td>Radio Corporation of America</td>
</tr>
<tr>
<td></td>
<td>RCA Laboratories</td>
</tr>
<tr>
<td></td>
<td>Princeton, New Jersey</td>
</tr>
<tr>
<td>1</td>
<td>Sperry Gyroscope Company</td>
</tr>
<tr>
<td></td>
<td>Engineering Librarian</td>
</tr>
<tr>
<td></td>
<td>Great Neck, L. I., New York</td>
</tr>
<tr>
<td>1</td>
<td>Watson Laboratories</td>
</tr>
<tr>
<td></td>
<td>Library</td>
</tr>
<tr>
<td></td>
<td>Red Bank, New Jersey</td>
</tr>
<tr>
<td>1</td>
<td>Professor E. Weber</td>
</tr>
<tr>
<td></td>
<td>Polytechnic Institute of Brooklyn</td>
</tr>
<tr>
<td></td>
<td>99 Livingston Street</td>
</tr>
<tr>
<td></td>
<td>Brooklyn 2, New York</td>
</tr>
<tr>
<td>1</td>
<td>University of California</td>
</tr>
<tr>
<td></td>
<td>Department of Electrical Engineering</td>
</tr>
<tr>
<td></td>
<td>Berkeley, California</td>
</tr>
<tr>
<td>1</td>
<td>Dr. E. T. Booth</td>
</tr>
<tr>
<td></td>
<td>Hudson Laboratories</td>
</tr>
<tr>
<td></td>
<td>145 Palisade Street</td>
</tr>
<tr>
<td></td>
<td>Dobbs Ferry, New York</td>
</tr>
<tr>
<td>1</td>
<td>Cornell University</td>
</tr>
<tr>
<td></td>
<td>Department of Electrical Engineering</td>
</tr>
<tr>
<td></td>
<td>Ithaca, New York</td>
</tr>
<tr>
<td>1</td>
<td>University of Illinois</td>
</tr>
<tr>
<td></td>
<td>Department of Electrical Engineering</td>
</tr>
<tr>
<td></td>
<td>Urbana, Illinois</td>
</tr>
<tr>
<td>1</td>
<td>Technical Reports</td>
</tr>
<tr>
<td>---</td>
<td>-------------------</td>
</tr>
</tbody>
</table>
| 1 | Johns Hopkins University
 Applied Physics Laboratory
 Silver Spring, Maryland |
| 1 | Professor A. von Hippel
 Massachusetts Institute of Technology
 Research Laboratory for Insulation Research
 Cambridge, Massachusetts |
| 1 | Director
 Lincoln Laboratory
 Massachusetts Institute of Technology
 Cambridge 39, Massachusetts |
| 1 | Mr. A. D. Bedrosian
 Room 22A-209
 Signal Corps Liaison Office
 Massachusetts Institute of Technology
 Cambridge, Massachusetts |
| 1 | Mr. Hewitt
 Massachusetts Institute of Technology
 Document Room
 Research Laboratory of Electronics
 Cambridge, Massachusetts |
| 1 | Stanford University
 Electronics Research Laboratory
 Stanford, California |
| 1 | Professor A. W. Straiton
 University of Texas
 Department of Electrical Engineering
 Austin 12, Texas |
| 1 | Yale University
 Department of Electrical Engineering
 New Haven, Connecticut |
| 1 | Mr. James F. Trosch, Administrative Aide
 Columbia Radiation Laboratory
 Columbia University
 538 West 120th Street
 New York 27, New York |
| 1 | Dr. J. V. N. Granger
 Stanford Research Institute
 Stanford, California |
| 1 | Library
 Central Radio Propagation Laboratory
 National Bureau of Standards
 Boulder, Colorado |
<table>
<thead>
<tr>
<th></th>
<th>Name of the Institution and Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Library of the College of Engineering
New York University
University Heights Library
University Heights 33, New York</td>
</tr>
<tr>
<td>1</td>
<td>Documents and Research Information Section
Raytheon Manufacturing Company
Engineering Equipment Division
148 California Street
Newton 58, Massachusetts</td>
</tr>
<tr>
<td>1</td>
<td>Professor Henry G. Booker
School of Electrical Engineering
Cornell University
Ithaca, New York</td>
</tr>
<tr>
<td>1</td>
<td>M. A. Krivanich, Technical Advisor to Deputy Chief
Ballistics Research Laboratory
White Sands Annex
White Sands P.G., New Mexico</td>
</tr>
<tr>
<td>1</td>
<td>Doris P. Baster
Head, Document Section
Technical Information Division
Naval Research Laboratory
Washington 25, D. C.</td>
</tr>
<tr>
<td>1</td>
<td>Dr. C. H. Papas
Department of Electrical Engineering
California Institute of Technology
Pasadena, California</td>
</tr>
<tr>
<td>1</td>
<td>Airborne Instrument Laboratory
Mineola
New York</td>
</tr>
<tr>
<td>1</td>
<td>Radiation Laboratory
Johns Hopkins University
1315 St. Paul Street
Baltimore 2, Maryland</td>
</tr>
<tr>
<td>1</td>
<td>Mr. Robert Turner
General Electric Company
Advanced Electronics Center
Cornell University
Ithaca, New York</td>
</tr>
</tbody>
</table>
Technical Reports

1 Acquisitions Officer
 ASTIA Reference Center
 The Library of Congress
 Washington 25, D. C.

1 Librarian
 National Bureau of Standards Library
 Connecticut Avenue and Van Ness Street, N. E.
 Washington 25, D. C.

1 Secretary
 Working Group on Semiconductor Devices, AGET
 346 Broadway, 8th Floor
 New York 13, N. Y.

1 Professor R. E. Norberg
 Washington University
 St. Louis, Missouri