THIS REPORT HAS BEEN DELIMITED AND CLEARED FOR PUBLIC RELEASE UNDER DOD DIRECTIVE 5200.20 AND NO RESTRICTIONS ARE IMPOSED UPON ITS USE AND DISCLOSURE.

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED.
NOTICE: WHEN GOVERNMENT OR OTHER DRAWINGS, SPECIFICATIONS OR OTHER DATA ARE USED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY RELATED GOVERNMENT PROCUREMENT OPERATION, THE U. S. GOVERNMENT THEREBY INCURS NO RESPONSIBILITY, NOR ANY OBLIGATION WHATSOEVER; AND THE FACT THAT THE GOVERNMENT MAY HAVE FORMULATED, FURNISHED, OR IN ANY WAY SUPPLIED THE SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA IS NOT TO BE REGARDED BY IMPlication OR OTHERWISE AS IN ANY MANNER LICENSING THE HOLDER OR ANY OTHER PERSON OR CORPORATION, OR CONVEYING ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE OR SELL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THEREETO.
The Critical Flow Rate and Zero Entropy of Helium Superfluid

by

William Band
The Department of Physics
The State College of Washington
Pullman, Washington

Prepared in July 1954 for circulation according to the distribution list for the project of the Office of Naval Research

This paper constitutes a technical report of work done under contract N7onr35005 of project NR 016-105, ex-NR 010-603.
The critical flow rate and zero entropy of helium superfluid

It is well known that the number of symmetrical eigenfunctions of an assembly of non-interacting Bose-Einstein systems with a distribution-in-energy specified by the set of numbers \(\{n_j\} \) is

\[
\mathcal{C} = \prod_j \frac{(n_j + m_j - 1)!}{n_j! (n_j - 1)!} \tag{1}
\]

where \(m_j \) is the degeneracy of the \(j \)th energy level. Assuming the eigenfunctions represent equally probable states, the assembly has entropy

\[
s = k \ln \mathcal{C} \tag{2}
\]

When the energy levels are non-degenerate

\[
m_j = 1, \quad \mathcal{C} = 1, \quad s = 0 \tag{3}
\]

the entropy of every energy distribution is identically zero.

Ordinarily one maximizes \(\ln \mathcal{C} \) to find the most probable distribution-in-energy using either the Stirling approximation to the factorials, or the Darwin-Fowler method of steepest descents, and derives the familiar expression for the most probable distribution numbers:

\[
\bar{n}_j = \frac{m_j}{\exp(\epsilon_j - \mu)/kT - 1} \tag{4}
\]

where \(T \) and \(\mu \) are determined by the total energy and number, \(E, N \). One then substitutes this into Eq.(1), uses the Stirling approximation and derives the entropy from Eq.(2), the result incidentally being

\[
s = \frac{(E - \mu N)}{m} - k \sum_j m_j \ln \left[1 - e^{(\mu - \epsilon_j)/kT} \right] \tag{5}
\]
If now one sets \(w_j = 1 \) in this result, it is by no means zero, and is therefore inconsistent with Eq.(3). In fact, while the distribution numbers of Eq.(4) are true for unit weights \(w_j \), Eq.(5) is valid only when \(w_j \gg 1 \).

In principle, for a Bose-Einstein gas in any ordinary container, \(w_j \) is indeed unity, any degeneracy being accidental, and the conventional calculation of entropy is therefore strictly false. The conventional calculation is saved by the Heisenberg Uncertainty Principle (1). The lifetime \(T' \) of any system in any one state is so short that the uncertainty in energy is greater than the spacing \(\Delta \epsilon \) between the non-degenerate levels, and the spectrum is effectively continuous. One can then accept a large number of levels \(w(\epsilon) \) in a small energy range \(d\epsilon \) and assume \(w(\epsilon)d\epsilon \gg 1 \). This validates the usual value of entropy in Eq.(5).

If under certain circumstances \(T' \) becomes anomalously long, this validity breaks down: it is suggested that this is what happens in helium superfluid. If the superfluid forms in globules (2) of linear dimensions \(L \) cm. as a result of statistical fluctuations in population, the energy levels are spaced according to the Bose-Einstein model of F. London with intervals roughly given by

\[
\Delta \epsilon \sim \frac{\hbar^2}{8\pi \rho \omega^2 L^2}
\]

(6)

On the relaxation picture of thermal resistance in liquid helium II developed by Meyer and Band in 1948 (3), the life-time of an atom in the superfluid state is coupled with the flow rate of the superfluid by the relation
\[\tau u_s^2 = 0.05 \text{ cm}^2/\text{sec} \text{ at } 2^\circ \text{K} \quad (7) \]

where \(u_s \) is the speed of the superfluid flow. If now

\[\Delta \xi \tau > h \quad (8) \]

the energy levels are too widely spaced for the uncertainty principle to blur them together and produce entropy. The entropy is therefore identically zero if

\[L u_s < 10^{-3} \text{ cm}^2/\text{sec} \quad (7) \]

an equation obtained by substituting Eqs. (6) and (7) into (8) and using \(m^* \) equal approximately to \(1.45 \cdot m_{\text{He}} \) for the effective mass.

Previous attempts to connect the critical flow rate with the uncertainty principle have been inspired by the observed fact that

\[L u_0 \sim h/m_{\text{He}} \quad (10) \]

an equation that is numerically equivalent to Eq. (9). Since \(L \) and \(u_0 \) are always perpendicular to each other, the uncertainty principle does not apply directly in the form of Eq. (10). Instead we are led by the present discussion to picture the filtering out of normal fluid at the entrance to a slit of width \(L \) as due to its ability to accept globules of superfluid at a speed not exceeding \(u_s \) given by Eq. (9). If the slit were larger, either normal fluid enters as such or the globules are too large to have zero entropy and therefore remain normal; if the speed were greater, then the lifetime \(\tau' \) is shortened by Eq. (7), and the levels blur together to restore normal entropy. At lower speeds and smaller
dimensions, the energy levels in the globules remain distinct and their entropy remains zero corresponding to the superfluid state.

A theoretical explanation of the relation (7), which is essential to the above reasoning, has been suggested before in terms of thermodynamics and three independent state variables for non-equilibrium states.(4)

References

NOTICE: WHEN GOVERNMENT OR OTHER DRAWINGS, SPECIFICATIONS OR OTHER DATA ARE USED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY RELATED GOVERNMENT PROCUREMENT OPERATION, THE U. S. GOVERNMENT THEREBY INCURS NO RESPONSIBILITY, NOR ANY OBLIGATION WHATSOEVER; AND THE FACT THAT THE GOVERNMENT MAY HAVE FORMULATED, FURNISHED, OR IN ANY WAY SUPPLIED THE SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA IS NOT TO BE REGARDED BY IMPLICATION OR OTHERWISE AS IN ANY MANNER LICENSING THE HOLDER OR ANY OTHER PERSON OR CORPORATION, OR CONVEYING ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE OR SELL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO.

Reproduced by
DOCUMENT SERVICE CENTER
KNOTT BUILDING, DAYTON, OHIO

UNCLASSIFIED