OFFICE OF NAVAL RESEARCH

Contract N7onr-35801
NR-041-032

Technical Report No. 98

AXIALLY SYMMETRIC PLASTIC STRESS AND VELOCITY FIELDS

by

R. T. Shield

GRADUATE DIVISION OF APPLIED MATHEMATICS
BROWN UNIVERSITY
PROVIDENCE, R. I.
September, 1953
AXIALLY SYMMETRIC PLASTIC STRESS AND VELOCITY FIELDS

By

R. T. Shield¹

1. Introduction.

This note considers axially symmetric plastic stress and velocity fields in a perfectly plastic material which obeys Tresca's yield criterion of constant maximum shearing stress, k, during plastic deformation. Axial symmetry of the plastic stress field does not require the associated velocity field to be axially symmetric in general. In the following work, however, we shall assume that the velocity field also possesses axial symmetry.

2. The Yield Condition.

According to Tresca's yield criterion the maximum shearing stress, which is equal to one-half the difference between the maximum and minimum principal shearing stresses, has the constant value k during plastic deformation. States of stress can be represented by points in a space in which the principal stresses σ_1, σ_2, σ_3 are used as rectangular Cartesian co-ordinates. The states of stress which involve the maximum shearing stress k are represented by the points on the surface of a right prism which has a regular hexagon for its cross section. The axis of the prism is equally inclined to the σ_1, σ_2, σ_3 axes and passes through the origin. The section of the prism by a plane perpendicular to the σ_3-axis is shown in Fig. 1. The points on the hexagon A B C D E F

¹Research Associate in Applied Mathematics, Brown University.
represent states of stress with the maximum shearing stress k and the centre G of the hexagon has the co-ordinates (c_1, c_2, c_3).

Plastic flow can occur under states of stress represented by points on the surface of the prism, that is by points on the hexagon in Fig. 1. The material is isotropic so that the principal axes of the plastic strain rate coincide with the principal axes of stress. The principal components of the plastic strain rate in the c_1, c_2, c_3 directions will be denoted by ε_1, ε_2, and ε_3 respectively. The plastic strain rate can be represented in principal stress space by a ray with direction cosines proportional to ε_1, ε_2, ε_3. The concept of perfect plasticity requires that the ray representing the plastic flow which could occur under the state of stress represented by a point on the prism is normal to the side of the prism on which the stress point lies. If the stress point lies on a corner of the prism, the ray must lie between the normals to the two sides of the prism which meet at the corner. Since the axis of the prism is equally inclined to the c_1, c_2, c_3 axes, it follows that the incompressibility condition

$$\varepsilon_1 + \varepsilon_2 + \varepsilon_3 = 0$$

must hold. The projection of the ray onto the plane of Fig. 1 is a ray with direction cosines proportional to ε_1, ε_2 and perpendicular to the side of the hexagon on which the stress point lies. For a stress point coinciding with the vertex A, for example, the ray must lie in the angular space shown by the arrows in Fig. 1.
The projection of the ray onto Fig. 1 determines the plastic strain rate to within an arbitrary factor since ε_3 can be found from (1) when ε_1 and ε_2 are known.

We now list the various relations which hold between the stresses and between the strain rates as the stress point moves around the hexagon ABCDEF. In the following, λ, μ, and ε denote non-negative arbitrary parameters. We shall assume that $\sigma_1 \geq \sigma_2$ so that we need only consider points to the right of the line $O'B$.

(i) Stress point at B.
\[
\sigma_1 = \sigma_2 = \sigma_3 + 2k, \quad \varepsilon_1 : \varepsilon_2 : \varepsilon_3 = \lambda : \varepsilon : -\lambda - \varepsilon.
\]

(ii) Stress point on AB.
\[
\sigma_1 = \sigma_3 + 2k, \quad \sigma_1 \sigma_2 \sigma_3. \quad \varepsilon_1 : \varepsilon_2 : \varepsilon_3 = \lambda : 0 : -\lambda.
\]

(iii) Stress point at A.
\[
\sigma_1 = \sigma_3 + 2k, \quad \sigma_2 = \sigma_3. \quad \varepsilon_1 : \varepsilon_2 : \varepsilon_3 = \lambda + \mu : -\mu : -\lambda.
\]

(iv) Stress point on AF.
\[
\sigma_1 = \sigma_2 + 2k, \quad \sigma_2 < \sigma_3 < \sigma_1. \quad \varepsilon_1 : \varepsilon_2 : \varepsilon_3 = \mu : -\mu : 0.
\]

(v) Stress point at F.
\[
\sigma_1 = \sigma_2 + 2k, \quad \sigma_1 = \sigma_3. \quad \varepsilon_1 : \varepsilon_2 : \varepsilon_3 = \mu : -\mu : -\varepsilon : \varepsilon.
\]

(vi) Stress point on EF.
\[
\sigma_2 = \sigma_3 - 2k, \quad \sigma_3 > \sigma_1 > \sigma_2. \quad \varepsilon_1 : \varepsilon_2 : \varepsilon_3 = 0 : -\varepsilon : \varepsilon.
\]

(vii) Stress point at E.
\[
\sigma_1 = \sigma_2 = \sigma_3 - 2k. \quad \varepsilon_1 : \varepsilon_2 : \varepsilon_3 = -\lambda : -\varepsilon : \lambda + \varepsilon.
\]
3. **Axial Symmetry.**

We take the axis of symmetry to be the z-axis and use cylindrical co-ordinates \((r, \theta, z)\). Axial symmetry implies that the non-zero stresses are \(\sigma_r, \sigma_\theta, \sigma_z\), and the equations of equilibrium become

\[
\begin{align*}
\frac{\partial \sigma_r}{\partial r} + \frac{\partial \tau_{rz}}{\partial z} + \frac{\sigma_r - \sigma_\theta}{r} &= 0, \\
\frac{\partial \tau_{rz}}{\partial r} + \frac{\partial \sigma_z}{\partial z} + \frac{\tau_{rz}}{r} &= 0.
\end{align*}
\]

The \(\theta\)-direction is a principal stress direction so that the principal stresses \(\sigma_1, \sigma_2, \sigma_3\) are given by

\[
\sigma_1 = \frac{\sigma_r + \sigma_z}{2} + \left\{ \frac{(\sigma_r - \sigma_z)^2}{4} + \frac{\tau_{rz}^2}{\sigma_z} \right\}^{\frac{1}{2}},
\]

\[
\sigma_2 = \frac{\sigma_r + \sigma_z}{2} - \left\{ \frac{(\sigma_r - \sigma_z)^2}{4} + \frac{\tau_{rz}^2}{\sigma_z} \right\}^{\frac{1}{2}},
\]

\[
\sigma_3 = \sigma_\theta,
\]

where we have taken the third principal stress direction to be the \(\theta\)-direction and have taken \(\sigma_1 \geq \sigma_2\).

We denote the velocity components in the \((r, \theta, z)\) directions by \(u, v, w\) respectively. Since the velocity field is axially symmetric, we have

\[
u = u(r, z), \quad v = 0, \quad w = w(r, z),
\]

and the non-zero plastic strain components are given by
The incompressibility condition (1) becomes

\[\frac{\partial u}{\partial r} + \frac{u}{r} + \frac{\partial w}{\partial z} = 0. \]

(6)

The principal components of the plastic strain rate are given by

\[\varepsilon_1 = \frac{\varepsilon_r + \varepsilon_z}{2} + \frac{1}{2} \left\{ \left(\varepsilon_r - \varepsilon_z \right)^2 + \gamma_{rz}^2 \right\}^{\frac{1}{2}}, \]

\[\varepsilon_2 = \frac{\varepsilon_r + \varepsilon_z}{2} - \frac{1}{2} \left\{ \left(\varepsilon_r - \varepsilon_z \right)^2 + \gamma_{rz}^2 \right\}^{\frac{1}{2}}, \]

\[\varepsilon_3 = \varepsilon_0. \]

In the following sections we examine the restrictions imposed by axial symmetry upon the plastic stress field and associated velocity field in states of stress represented by points on the hexagon in Fig. 1.

4. **Stress Point at B or E.**

For the stress points B and E we have

\[\sigma_1 = \sigma_2 = \sigma_3 = 2k, \]

where the upper sign refers to the stress point B. The condition \(\sigma_1 = \sigma_2 \) gives immediately from (3),

\[\sigma_r = \sigma_z, \tau_{rz} = 0. \]

The equations of equilibrium (2) are therefore, since \(\sigma_3 = \sigma_0 \),
Thus, for this field we have

\[
\frac{\partial \sigma_r}{\partial r} + \frac{2k}{r} = 0, \\
\frac{\partial \sigma_r}{\partial z} = 0.
\]

Thus, for this field we have

\[
\sigma_r = \sigma_z = \sigma_0 + 2k = \pm 2k \log \frac{A}{r},
\]

where \(A\) is a constant and where the upper and lower signs refer to the stress points B and E respectively.

The plastic strain rates must be such that

\[
\varepsilon_1 : \varepsilon_2 : \varepsilon_0 = \pm \lambda : \pm \varepsilon : \mp \lambda \mp \varepsilon,
\]

using the same convention for the signs. Since \(\varepsilon_0 = u/r\), it follows that

\[
u < 0 \text{ for } B \text{ and } u > 0 \text{ for } E.
\]

The components \(u\) and \(w\) must be such that

\[
|\varepsilon_r + \varepsilon_z| \geq \left((\varepsilon_r - \varepsilon_z)^2 + \gamma_{rz}^2 \right)^{1/2} \text{ for } B,
\]

\[
|\varepsilon_r + \varepsilon_z| \geq \left((\varepsilon_r - \varepsilon_z)^2 + \gamma_{rz}^2 \right)^{1/2} \text{ for } E,
\]

since \(\varepsilon_1, \varepsilon_2\) are both positive for B and both negative for E.

A discontinuity in the velocity field can only occur across a surface on which the shearing stress has the maximum value \(k\). The shearing stress in the \(r,z\) plane is everywhere zero so that the components \(u,w\) must be continuous functions.
5. **Stress Point on AB or EF.**

For states of stress represented by points on AB, we have

\[\varepsilon_1 : \varepsilon_2 : \varepsilon_0 = \lambda : 0 : - \lambda. \]

It follows from (5) and (7) that

\[u \leq 0, \frac{\varepsilon_r + \varepsilon_z}{2} - \frac{1}{2} \left((\varepsilon_r - \varepsilon_z)^2 + \gamma_{rz}^2 \right)^{\frac{1}{2}} = 0. \]

Thus, \(u \) and \(w \) are to be determined from the equations

\[
\begin{align*}
\frac{\partial u}{\partial r} + \frac{u}{r} + \frac{\partial w}{\partial z} &= 0, \\
\frac{u_r^2}{r^2} &= (\frac{\partial u}{\partial r} + \frac{\partial w}{\partial z})^2 = (\frac{\partial u}{\partial r} - \frac{\partial w}{\partial z})^2 + (\frac{\partial u}{\partial z} - \frac{\partial w}{\partial r})^2
\end{align*}
\]

and the condition \(u \leq 0 \). The field is therefore kinematically determinate in the sense that there are two differential equations for the two components of velocity. When the velocity field is known, the stress field is obtained from the two equations of equilibrium, the yield condition

\[\sigma_1 = \sigma_3 + 2k, \quad \sigma_1 > \sigma_2 > \sigma_3, \]

and the condition that the principal axes of stress must coincide with the principal axes of the strain rate.

Analogous remarks apply when the stress point lies on EF. \(u \) and \(w \) are determined from equations (8) and the condition \(u \geq 0 \).

The velocity components \(u, w \) must be continuous since the shearing stress in the \(r, z \) plane is less than \(k \).
6. **Stress Point on AE.**

In this case,

\[\varepsilon_1 : \varepsilon_2 : \varepsilon_0 = \mu : -\mu : 0. \]

Since \(\varepsilon_0 = u/r \), this gives immediately \(u = 0 \). The incompressibility condition then shows that \(\partial w/\partial z = 0 \) so that \(w = w(r) \). The strain components are therefore

\[\varepsilon_r = \varepsilon_z = \varepsilon_0 = 0, \quad \gamma_{rz} = \frac{dw}{dr}. \]

Since the principal axes of stress and strain coincide we must have

\[\sigma_r = \sigma_z. \]

Also \(\sigma_1 = \sigma_2 + 2k \), so that \(\tau_{rz} = \pm k \) using (3). The equations of equilibrium (2) become

\[
\begin{align*}
\frac{\partial \sigma_r}{\partial r} + \frac{\sigma_r - \sigma_0}{r} &= 0, \\
\frac{\partial \sigma_r}{\partial z} + \frac{k}{r} &= 0,
\end{align*}
\]

and have the solution

\[
\begin{align*}
\sigma_r &= -\frac{kz}{r^2} + f(r), \\
\sigma_0 &= \frac{kz}{r^2} + f(r) + \frac{kz^2}{r} + rf'(r) = \frac{1}{r} \frac{\partial}{\partial r} \left(\frac{r}{f(r)} \right).
\end{align*}
\]

The function \(f(r) \) is restricted by the condition

\[\sigma_r - k < \sigma_0 < \sigma_r + k. \]
7. **Stress Point at A or F.**

The hypothesis of Haar and von Kármán [2] postulates that during axially symmetric plastic flow the circumferential stress σ_θ is equal to one of the principal stresses σ_1, σ_2 in the r,z plane. In certain problems, the stress field is statically determinate under this hypothesis. Ishlinsky [3] has used the hypothesis to calculate the indentation pressure in the indentation of a plane surface by a flat circular punch. The author obtained a plastic stress field around the punch but it was not shown that the field could be extended throughout the body in a satisfactory manner. Also it remains to be shown whether a velocity field can be associated with the stress field or not.

At the stress points A and F the circumferential stress is equal to the minimum or maximum principal stress in the r,z plane respectively, as in the hypothesis. We consider first the stress point F.

For states of stress represented by the point F,

$$\sigma_1 = \sigma_2 + 2k, \quad \sigma_1 = \sigma_3$$

so that, from (3),

$$\frac{1}{4} (\sigma_r - \sigma_z)^2 + \tau_{rz}^2 = k^2, \quad \sigma_\theta = \frac{\sigma_r + \sigma_z}{2} + k.$$ \hspace{1cm} (9)

We put

$$p = -\frac{1}{2} (\sigma_r + \sigma_z)$$

and denote by φ the angle of inclination of the first shear line.
in the \(r, z\) plane to the \(r\)-axis, as shown in Fig. 2. From the yield condition (9) it follows that

\[
\begin{align*}
\sigma_r &= -p - k \sin 2\phi, \\
\sigma_z &= -p + k \sin 2\phi, \\
\tau_{rz} &= k \cos 2\phi, \\
\sigma_\phi &= -p + k.
\end{align*}
\]

(10)

It can be shown that the shear lines are the characteristic lines of the hyperbolic system of differential equations (3) and (9), and the following relations hold

\[
\begin{align*}
dp + 2k \, d\phi + k \left(1 + \tan \phi \right) \frac{dr}{r} &= 0 \text{ on an } \alpha \text{-line,} \\
dp - 2k \, d\phi + k \left(1 + \cos \phi \right) \frac{dr}{r} &= 0 \text{ on an } \beta \text{-line.}
\end{align*}
\]

(11)

In the relations (10) the first and second shear lines are called \(\alpha\)- and \(\beta\)-lines respectively.

The plastic strain rates satisfy

\[\varepsilon_1 : \varepsilon_2 : \varepsilon_3 = \mu : -\mu - \varepsilon : \varepsilon\]

so that we have, with (5) and (7),

\[\varepsilon_r + \varepsilon_z = -\varepsilon, \quad \frac{\mu}{r} = \varepsilon_\phi = \varepsilon, \quad \left(\varepsilon_r - \varepsilon_z\right)^2 + \gamma_{rz}^2 \frac{1}{\gamma} = \varepsilon + 2\mu,\]

where \(\mu\) and \(\varepsilon\) are positive. Thus the velocity field must be such that
The velocity components are determined from the incompressibility condition (6) and the condition that the principal axes of stress and strain coincide, i.e.

$$\frac{\partial u}{\partial z} + \frac{\partial w}{\partial r} - \frac{\partial u}{\partial r} + \frac{\partial w}{\partial z} = -\cot 2\varphi.$$

It is found that the characteristics of the velocity field coincide with the characteristics of the stress field. The relations along the characteristics are

$$du + \tan\varphi dw + \frac{u}{2\cos^2\varphi} \frac{dr}{r} = 0 \text{ on an } \alpha\text{-line,}$$

$$du - \cot\varphi dw + \frac{u}{2\sin^2\varphi} \frac{dr}{r} = 0 \text{ on a } \beta\text{-line.}$$

If \(u_\alpha\), \(u_\beta\) denote the velocity components along the \(\alpha\), \(\beta\) lines so that

$$u_\alpha = u \cos \varphi + w \sin \varphi,$$

$$u_\beta = -u \sin \varphi + w \cos \varphi,$$

the relations (11) can be written

$$du_\alpha - u_\beta d\varphi = \frac{-u}{2\cos^2\varphi} \frac{dr}{r} = \frac{-u}{2r} ds_\alpha \text{ on an } \alpha\text{-line,}$$

$$du_\beta + u_\alpha d\varphi = \frac{u}{2\sin^2\varphi} \frac{dr}{r} = \frac{-u}{2r} ds_\beta \text{ on a } \beta\text{-line,}$$

where \(ds_\alpha\), \(ds_\beta\) are the elements of length along the \(\alpha\), \(\beta\) lines.
The velocity field is determined from equations (13) or (14) and conditions (12).

The situation at the stress point A is very similar. The first of equations (9) and the first three of equations (10) hold while

\[\frac{\partial \sigma_{ij}}{\partial z} = k = -p - k. \]

The relations along the characteristic lines (the shear lines) are now

\[\begin{align*}
 dp + 2k \frac{d\varphi}{dz} - k (1 - \tan \varphi) \frac{dr}{r} &= 0 \text{ on an } \alpha\text{-line}, \\
 dp - 2k \frac{d\varphi}{dz} - k (1 - \cot \varphi) \frac{dr}{r} &= 0 \text{ on a } \beta\text{-line.}
\end{align*} \tag{15} \]

The velocity components must be such that

\[u \leq 0, \left(\frac{\partial u}{\partial r} - \frac{\partial w}{\partial z} \right)^2 + \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial r} \right)^2 > \frac{u^2}{r^2}, \tag{16} \]

and along the characteristics the relations (13) and (14) hold.

It can be seen from above that the equations for the stress and velocity components are similar, although more complicated, to the corresponding equations for plastic flow under conditions of plane strain. The conditions (12) or (16) are analytical statements of the condition that the rate of doing plastic work during the deformation must be positive. The corresponding condition for plane-strain plastic flow has been occasionally overlooked in the literature.
8. **A Simple Example.**

In this section a simple example will be given of an axially symmetric stress field with an associated velocity field.

In Fig. 3, the circular cylinder OAD is compressed by a flat smooth punch on the end OA. The curved surface of the cylinder is stress free and the plastic stress field is simply a longitudinal compression of amount $2k$ and zero radial and circumferential stresses. In the terminology of this note, stress field is everywhere at the stress point F in Fig. 1. The shear lines are straight lines inclined at 45 degrees to the axis of the cylinder; AB is an α-line, BD is a β-line.

The velocity boundary conditions are that the end of the cylinder OA moves as a plane surface so that w has a constant value on OA. The shear rate γ_{rz} must be zero, since τ_{rz} is zero, so that in view of the incompressibility condition (6) the conditions (12) will be satisfied if $u \geq 0$ and if $\partial u/\partial r$, $\partial w/\partial z$ are of different sign. If the region of plastic flow is restricted to the region OAC, a velocity field satisfying these conditions and the velocity boundary conditions cannot be found. We outline a velocity field which involves plastic flow in the region OADB.

In OAB the velocity components are taken to be given by

$$u = 1/2r, \quad w = 1 - z, \quad (17)$$

where the length of OB is the unit of length and the upward velocity of the punch is taken to be unity. The velocity field (17) satisfies
incompressibility, the boundary conditions on OA, the condition \(\gamma_{rz} = 0 \), and the conditions (12) for positive plastic work. The velocity field in the region ABC is determined from the equations (13) and the velocity conditions across BD, AB. On the characteristic BD, which separates the material at rest from the material in motion, we must have \(u = w \), and since the velocity is zero at B, the velocity components are zero along BD, from the first of equations (13). The normal velocity across AB is known from the velocity field in OAB, and it is found that the velocity field is continuous across AB. The field determined in this way in region ABD is found to satisfy the conditions (12). Thus the velocity field is compatible with the stress field. Fig. 4 shows the deformation of a square grid in the \(r, z \) plane which would occur if the incipient velocity field was maintained for a short period of time.

Reversing the sign of the stress \(\sigma_z \) and the signs of the velocity component gives a solution to the case when the end OA is subject to a uniform tension 2k. The stress field is then represented by the stress point A.
REFERENCES

Fig. 1. Tresca yield condition

Fig. 2. Lines of maximum shear
FIG. 3. FLAT PUNCH ON END OF CIRCULAR CYLINDER

FIG. 4. RESULTING DEFORMATION OF SQUARE GRID IN r, z PLANE IF INCIPIENT VELOCITY FIELD IS MAINTAINED FOR SHORT TIME
APPROVED DISTRIBUTION LIST FOR UNCLASSIFIED TECHNICAL REPORTS

Issued by
BROWN UNIVERSITY
Contract N7onr-358, T.O. 1
NR 041 032

Office of Naval Research
Washington 25, D. C.

M-2
Attn: Mathematics Branch (Code 432)
Mechanics Branch (Code 438)
Physics Branch (Code 421)
Metallurgy Branch (Code 423)

M-2
Commanding Officer
Office of Naval Research Branch Office
150 Causeway Street
Boston, Massachusetts

M-1
Commanding Officer
Office of Naval Research Branch Office
346 Broadway
New York, New York

M-1
Commanding Officer
Office of Naval Research Branch Office
844 North Rush Street
Chicago 11, Illinois

M-1
Commanding Officer
Office of Naval Research Branch Office
1000 Geary Street
San Francisco 9, California

M-1
Commanding Officer
Office of Naval Research Branch Office
1030 East Green Street
Pasadena 1, California

M-18
Officer-in-Charge
Office of Naval Research
Navy #100
Fleet Post Office
New York, New York

M-9
Director
Naval Research Laboratory
Washington 20, D. C.
Attn: Scientific Information Division

M-2
Library (Code 2021)

M-1
Applied Mathematics Branch (Code 3830)
Shock and Vibrations Section (Code 3850)
Structures Branch (Code 3860)
Frankford Arsenal
Pitman-Dunn Laboratory
Philadelphia 37, Pennsylvania
M-1
Attn: Dr. Herbert I. Fusfeld

Picatinny Arsenal
Dover, New Jersey
M-1
Attn: Dr. L. Gilman

Commanding General
Wright Air Development Center
Wright-Patterson Air Force Base
Dayton, Ohio
M-4
Attn: WCACD

Department of Commerce
Office of Technical Service
Washington 25, D. C.
M-1
Attn: Library Section

National Advisory Committee for Aeronautics
1724 P. Street NW
Washington 25, D. C.
M-1
Attn: Chief of Aeronautical Intelligence

Langley Aeronautical Laboratory
Langley Field, Virginia
M-1
Attn: Library

Lewis Flight Propulsion Laboratory
Cleveland Airport
Cleveland 11, Ohio
M-1
Attn: Library

National Bureau of Standards
Washington, D. C.
M-1
Attn: Dr. W. R. Ramberg

Director of Research
Sandia Corporation
Albuquerque, New Mexico
M-1
Attn: Dr. S. C. Hight

Brooklyn Polytechnic Institute
85 Livingston Street
Brooklyn, New York
R-1
Attn: Dr. N. J. Hoff
R-1
Dr. H. Reissner
M-1
Dr. P. G. Hodge, Jr.
M-1
Dr. F. S. Shaw (Dept. Aero. Engr. & Appl. Mech.)

Brown University
Providence 12, Rhode Island
M-1
Attn: Chairman, Graduate Division of Applied Mathematics
California Institute of Technology
Pasadena, California
R-1 Attn: Dr. J. G. Kirkwood
R-1 Dr. P. Duwez
R-1 Dr. H. S. Tsien

University of California
Berkeley, California
M-1 Attn: Dr. J. E. Dorn
R-1 Dr. H. Hultgren
R-1 Dr. C. C. Evans
M-1 Dr. C. F. Garland

University of California
Los Angeles, California
R-1 Attn: Dr. I. S. Sokolnikoff
R-1 Dr. D. Rosenthal

Carnegie Institute of Technology
Pittsburgh, Pennsylvania
R-1 Attn: Dr. J. S. Koehler
R-1 Dr. G. H. Hendelman
M-1 Dr. E. Saibel
R-1 Dr. H. J. Greenberg
R-1 Dr. E. D'Appolonia

Case Institute of Technology
Cleveland, Ohio
M-1 Attn: Dr. W. M. Baldwin, Jr., Metals Research Laboratory
R-1 Dr. O. Hoffman

Catholic University of America
Washington, D. C.
M-1 Attn: Dr. F. A. Biberstein
R-1 Dr. K. Hertzfeld

University of Chicago
Chicago, Illinois
R-1 Attn: Dr. C. S. Barrett

Columbia University
New York, New York
M-1 Attn: Dr. R. D. Mindlin
M-1 Dr. H. Bleich
M-1 Dr. B. A. Boley
R-1 Dr. M. Gensamer

Cornell University
Ithaca, New York
R-1 Attn: Dr. H. S. Sack
R-1 Dr. A Kantrowitz

University of Florida
Gainesville, Florida
M-1 Attn: Dr. C. G. Smith
Harvard University
Cambridge 38, Massachusetts

R-1
Attn: Dr. F. Birch, Dunbar Laboratory

M-1
Dr. George F. Carrier, 309 Pierce Hall

Illinois Institute of Technology
Chicago, Illinois

R-1
Attn: Dr. L. H. Donnell

M-1
Dr. E. Sternberg

R-1
Dr. W. Osgood

University of Illinois
Urbana, Illinois

M-1
Attn: Dr. N. M. Newmark

R-1
Engineering

T. J. Dolan

R-1
Dr. F. Seitz, Department of Physics

M-1
Department of Theoretical and Applied Mathematics, Attn: Prof. M. C. Steele

Indiana University
Bloomington, Indiana

M-1
Attn: Dr. T. Y. Thomas

Institute for Advanced Study
Princeton, New Jersey

R-1
Attn: Dr. J. von Neumann

Iowa State College
Ames, Iowa

R-1
Attn: Dr. G. Murphy

R-1
Dr. D. L. Holl

Johns Hopkins University
Baltimore, Maryland

M-1
Attn: Dr. W. H. Hoppman, II

M-1
Director, Applied Physics Laboratory
Johns Hopkins University
8621 Georgia Avenue
Silver Spring, Maryland

Lehigh University
Bethlehem, Pennsylvania

R-1
Attn: Mr. Lynn S. Beedle

Massachusetts Institute of Technology
Cambridge 39, Massachusetts

R-1
Attn: Dr. F. B. Hildebrand

R-1
Dr. J. M. Lessels

R-1
Dr. W. M. Hurray

R-1
Dr. E. Reissner

R-1
Dr. M. Cohen, Rm. 8-413, Dept. of Metallurgy

R-1
Dr. E. L. Averbach, Department of Metallurgy

R-1
Dr. J. T. Norton

R-1
Dr. E. Urowan

M-1
Dr. R. Bisplinghoff, Dept. Aero. Engr.
University of Michigan
Ann Arbor, Michigan
M-1 Attn: Dr. Bruce G. Johnston
M-1 Dr. Paul Nagdhi, Dept. of Engineering Mechanics
R-1 Dr. N. Coburn
R-1 Dr. W. Kaplan

New York University
Institute for Mathematics & Mechanics
45 Fourth Avenue
New York 3, New York
R-1 Attn: Professor R. Courant
R-1 Dr. G. Hudson

New York University
New York 53, New York
R-1 Attn: Dr. C. T. Wang, Dept. of Aeronautics

Northwestern University
Evanston, Illinois
R-1 Attn: Dr. M. M. Hetenyi

University of Notre Dame
Notre Dame, Indiana
R-1 Attn: Dr. P. A. Beck

Pennsylvania State College
State College, Pennsylvania
R-1 Attn: Dr. J. A. Sauer
R-1 Dr. Joseph Marin
R-1 Dr. J. W. Fredrickson

Princeton University
Princeton, New Jersey
R-1 Attn: Dr. S. Lefschetz
R-1 Dr. L. Lees
R-1 Dr. J. V. Charyk

Purdue University
Lafayette, Indiana
M-1 Attn: Dr. C. A. Eringen

Rensselaer Polytechnic Institute
Troy, New York
R-1 Attn: Library
R-1 Dr. Paul Leiber
R-1 Dr. C. O. Dohrenwend
R-1 Dr. G. H. Lee

Santa Clara University
Santa Clara, California
M-1 Attn: Dr. R. M. Hermes
Stanford University
Stanford, California
Attn: Dr. L. Jacobsen
Dr. A. Phillips, Dept. of Mechanical Engineering
Dr. J. N. Goodier

Stevens Institute of Technology
Hoboken, New Jersey
Attn: Dr. E. G. Schneider

Swarthmore College
Swarthmore, Pennsylvania
Attn: Capt. W. P. Roop
Dr. S. T. Carpenter

University of Texas
Austin 12, Texas
Attn: Dr. A. A. Topractsoglou

University of Utah
Salt Lake City, Utah
Attn: Dr. R. Eyring

Washington State College
Pullman, Washington
Attn: Dr. B. Fried

Wheaton College
Norton, Massachusetts
Attn: Dr. H. Geiringer

Aerojet, Inc.
Azusa, California
Attn: F. Zwickly

Aluminum Company of America
New Kensington, Pennsylvania
Attn: R. L. Templin
H. N. Hill, Aluminum Research Laboratory

Armstrong Cork Company
Lancaster, Pennsylvania
Attn: J. W. Scott

Bell Telephone Laboratories
Murray Hill, New Jersey
Attn: C. Herring
D. P. Ling
W. P. Mason

Corning Glass Company
Corning, New York
Attn: J. T. Littleton
R-1 Professor G. Wästlund
Cement & Concrete Research Institute
Royal Institute of Technology
Stockholm 70, SWEDEN

M-1 Professor John E. Goldberg
Department of Structural Engineering
Purdue University
Lafayette, Indiana

R-1 Milad F. Hanna
% F.S.S.B.
Massachusetts Institute of Technology
Cambridge 39, Massachusetts

R-1 Dr. W. Freiberger
Department of Supply
Aeronautical Research Laboratories
Box 4331 GPO
Melbourne, AUSTRALIA

M-1 Professor B. W. Shaffer
Department of Mechanical Engineering
New York University
New York 53, New York

M-1 Professor G. Sachs
Division of Metallurgical Research
Engineering & Science Campus
East Syracuse 4, N. Y.

R-1 Professor Aziz Ghali
Head, Structural Analysis Department
Fonad University
Giza, EGYPT

M-1 Professor Hugh Ford
Mechanical Engineering Department
Imperial College of Science & Technology
London, S.W.7
ENGLAND

R-1 Dr. R. H. Wood
D.S.I.R. Building Research Station
Garston, Watford, Herts
ENGLAND