<table>
<thead>
<tr>
<th>UNCLASSIFIED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AD NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD003326</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NEW LIMITATION CHANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TO</td>
</tr>
<tr>
<td>Approved for public release, distribution unlimited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FROM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distribution authorized to U.S. Gov’t. agencies and their contractors; Administrative/Operational Use; Feb 1953. Other requests shall be referred to Office of Naval Research, 800 North Quincy Street, Arlington, VA 22217-5660.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AUTHORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>ONR ltr, 26 Oct 1977</td>
</tr>
</tbody>
</table>

THIS PAGE IS UNCLASSIFIED
A CONTRIBUTION TO THE THEORY OF UPWELLING

Office of Naval Research
Contract N7 on 487 T.O. 2
Bureau of Ships
NE 120219 5

Navy Department
Project NR 083 056
Technical Report No. 6
February 1953

Koji Hidaka

Research Conducted for the
Texas A&M Research Foundation
COLLEGE STATION, TEXAS
THE AGRICULTURAL AND MECHANICAL COLLEGE OF TEXAS
Department of Oceanography
College Station, Texas

Research conducted for the
Texas A. & M. Research Foundation

Project 24

A CONTRIBUTION TO THE THEORY OF UPWELLING

Project 24 is an Oceanographic Survey of the Gulf of Mexico sponsored by the Office of Naval Research (Project NR 023 036, Contract 17 enr-487 T. O. 2) and the Bureau of Ships (US 12012-5). Presentation of material in this report is not considered to constitute final publication.

Report prepared February 23, 1953
by
Koji Hidaka
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tables and Figures</td>
<td>iii</td>
</tr>
<tr>
<td>Abstract</td>
<td>iv</td>
</tr>
<tr>
<td>1. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2. Theory</td>
<td>1</td>
</tr>
<tr>
<td>3. Upwelling in a Deep Sea</td>
<td>7</td>
</tr>
<tr>
<td>4. A Numerical Example</td>
<td>9</td>
</tr>
<tr>
<td>5. Coastal Currents</td>
<td>12</td>
</tr>
<tr>
<td>6. Acknowledgements</td>
<td>12</td>
</tr>
<tr>
<td>References</td>
<td>15</td>
</tr>
</tbody>
</table>
TABLES

I. Numerical Values of the Stream Function in the Vertical Plane Perpendicular to the Coast...... 10

FIGURES

1. Schematic Diagram of Wind to Coast Relationship for the Development of Upwelling in the Northern Hemisphere 13
2. Upwelling as Induced by a Wind Parallel to the Coast 14
A CONTRIBUTION TO THE THEORY OF UPWELLING

BY

KOJI HIDAKA

ABSTRACT

A theory of upwelling is presented taking into account the effects of the earth's rotation and vertical and horizontal mixing. It can be shown by this theory that upwelling is possible very close to a coast along which, in the Northern hemisphere, a wind blows in such a manner that the coast is on the left hand side of an observer who looks in the direction of the wind. A numerical computation indicates that the speed of upwelling is about 20 meters per month for a steady wind blowing at a speed of 5 to 6 meters per second. In addition to this vertical motion, there are horizontal currents parallel and perpendicular to the coast, the speeds of which are roughly 1000 times that of the speed of upwelling.
1. Introduction. There have been several descriptions of the upwelling noticed off California, Peru, West Africa and other coasts by Thorade (1909), McEwen (1912), Gunther (1936), Defant (1936), Sverdrup (1938) and Sverdrup and Fleming (1941). The explanation of this process given by Sverdrup in 1938 is worth attention. According to Sverdrup and Fleming, it is known from the analysis of the water masses that the water taking part in the process of upwelling off the coast of Southern California originates mostly in the layers from 200 to 300 meters below the surface. These are, however, all qualitative discussions and it has not been possible to explain this phenomenon theoretically and predict the velocity and width of the coastal current produced by the prevailing winds. Very recently Defant (1952) made a theoretical explanation assuming a sea consisting of two layers of water with different density. The present research is an attempt to solve this problem mathematically and to draw some quantitative conclusions concerning this process which is very important in all fields of oceanography.

The explanation of the upwelling seems to be satisfactory only by treating this problem thermodynamically as well as hydrodynamically. The following discussion will, however, be made only from a purely hydrodynamical standpoint, on the assumption that the seawater is of uniform density. This is a necessary consequence for simplifying the mathematics, but the author believes to have been able to obtain some results which are consistent with certain facts observed in this process.

It has been noticed that the upwelling takes place most favorably when, in the northern (southern) hemisphere, a wind blows in such a manner that the coast is on the left-hand (right-hand) side of an observer who looks in the direction of the wind. Thus the upwelling off the coast of California is most remarkable in early summer when northwesterly winds prevail for several weeks nearly parallel to the coast.

In this investigation the effect of the Earth’s rotation and the frictional forces due to both vertical and horizontal mixing are taken into consideration. And it may be stressed that the horizontal mixing seems to play the most important role in the theoretical explanation of the process of upwelling.

2. Theory. Consider an infinitely long straight coast coincident with the axis of \(z \), and take \(x \)-axis perpendicular to it in the offshore direction. (Fig. 1). Suppose a wind of constant force and direction is blowing steadily and uniformly in a belt of limited width \(L \) parallel to the coast from negative to positive direction of \(y \). This is a disposition favorable for the upwelling to actually occur. Take the \(z \)-axis vertically downwards.

In a steady state which is attained after a sufficiently long time since the wind began to blow constantly, the motion of water will be independent of \(y \). This means that all the vertical and horizontal components of the currents can be determined as functions of \(x \) and \(z \) only. Moreover, the surface of the sea will not be a plane, but have a slope in
the \(x \) -direction. In such a case, the hydrodynamical equations of motion of sea water are, after several reasonable simplifications,

\[
\frac{\partial}{\partial t} \frac{\partial u}{\partial x} + \frac{A_v}{\rho} \frac{\partial^2 u}{\partial z^2} + 2 \omega \sin \phi \, u - g \frac{\partial \zeta}{\partial x} = 0
\]

where \(u \) and \(v \) are the horizontal components of the current velocity in the \(x \) and \(y \) directions, \(\zeta \) the surface elevation depending on \(x \) only, \(\rho \) the density, \(A_v \) and \(A_h \) the coefficients of vertical and horizontal mixing, of sea water, \(\omega \) the angular velocity of the Earth and \(\phi \) the geographic latitude. In addition to these, we have the equation of continuity in the form:

\[
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial z} = 0
\]

where \(v \) is the vertical component of currents and represents the intensity of the upwelling, and because \(\frac{\partial v}{\partial y} = 0 \).

Suppose the wind blows in the positive direction of \(y \) in a belt between the coast \(x = 0 \) and \(x = L \). The wind velocity may vary in the offshore or \(x \) -direction. The conditions to be satisfied on the surface of the sea are therefore at

\[
Z = 0: \begin{cases}
- A_v \frac{\partial u}{\partial z} = 0 \\
- A_v \frac{\partial v}{\partial z} = \tau \quad \text{for} \quad c \leq x \leq L \\
\quad = 0 \quad \text{for} \quad L < x < \infty
\end{cases}
\]
where τ may be either a constant or a function of χ. On the bottom we must have, no motion because of the vertical friction at

$$Z = h : \quad u = v = 0. \quad (4)$$

and along the coast which is considered to consist of vertical cliffs, we have because of the horizontal friction at

$$x = 0 : \quad u = v = 0. \quad (5)$$

In the region very far from both the coast and wind region, we have at

$$x = \infty : \quad u = v = \frac{\partial \xi}{\partial x} = 0. \quad (6)$$

Let us define D_v and D_h by

$$D_v = \pi \sqrt{\frac{A_v}{\rho \omega \sin \phi}} \quad ; \quad D_h = \pi \sqrt{\frac{A_h}{\rho \omega \sin \phi}}. \quad (7)$$

D_v is the depth of frictional influence defined by Ekman (1905) in his theory of ocean currents, and D_h is a quantity having a dimension of a length and may be called "frictional distance". This is a measure of the horizontal turbulence. Then the equations (1) now become

$$\frac{\partial^2 u}{\partial \tau^2} + D_v \frac{\partial^2 u}{\partial z^2} + 2 \pi^2 u - \frac{\pi^2 \rho \omega \sin \phi}{\omega \sin \phi} \frac{\partial \xi}{\partial \tau} = 0, \quad (8)$$

$$\frac{\partial^2 v}{\partial \tau^2} + D_v \frac{\partial^2 v}{\partial z^2} - 2 \pi^2 u = 0.$$
In order to solve the equations (5), suppose
\[u = \frac{2}{\pi} \int_0^\infty u_i(\lambda) \sin \lambda \, d\lambda, \]
\[u_i(\lambda) = \int_0^\infty u(\alpha, \tau) \sin \alpha \, d\alpha \] (10)
\[v = \frac{2}{\pi} \int_0^\infty v_i(\lambda) \sin \lambda \, d\lambda, \]
\[v_i(\lambda) = \int_0^\infty v(\alpha, \tau) \sin \alpha \, d\alpha \] (11)
\[\frac{\partial \xi}{\partial \tau} = \frac{2}{\pi} \int_0^\infty \xi(\lambda) \sin \lambda \, d\lambda, \]
\[\xi(\lambda) = \int_0^\infty \frac{3}{\partial \alpha} \sin \lambda \alpha \, d\alpha \] (12)

Next assume for the wind stress
\[-A \nu \frac{\partial \nu}{\partial \lambda} = \frac{2}{\pi} \int_0^\infty \tau(\lambda) \sin \lambda \, d\lambda \] (13)

and
\[\tau(\lambda) = \int_0^\infty (-A \nu \frac{\partial \nu}{\partial \alpha}) \sin \lambda \alpha \, d\alpha \]
\[= \int_0^\infty \frac{1}{\partial \alpha} \tau \sin \lambda \alpha \, d\alpha \]
\[= \frac{1 - \cos(\lambda \frac{\partial}{\partial \alpha})}{\lambda} \tau \] (14)

if \(\tau \) is independent of \(\chi \).

Substituting (10), (11) and (12) into (5) and writing
\[u, + i v_i = \overline{w} \] (15)

- 4 -
the two equations (5) are combined into

\[D_k^2 \frac{d^2 \overline{W}}{d x^2} - (\lambda^2 + 2 \pi^2 i) \overline{W} - \frac{\overline{\gamma}}{\omega \sin \phi D_k} \gamma(\lambda) = 0 \]

(16)

and the conditions to be satisfied along the boundaries now become

\[z = 0 : \quad -A_n \frac{d \overline{W}}{d z} = \frac{1 - \cos \left(\frac{1}{\lambda} : \overline{C}_k \right)}{A} \quad ; \quad \tau \]

(17)

and

\[\tau = h : \quad \overline{W} = 0 \]

(18)

The solution of the equation (16) subject to the conditions (17) and (18) is

\[\overline{W} = \frac{\pi^2 \beta \delta(\beta)}{(\lambda^2 + 2 \pi^2 i) \sin \phi D_k} \left\{ 1 - \frac{\cosh \left(\frac{\sqrt{\lambda^2 + 2 \pi^2 i}}{D_k} \right)}{\cosh \left(\frac{\sqrt{\lambda^2 + 2 \pi^2 i}}{D_k} \right)} \right\} \]

\[+ \frac{iz}{\sqrt{\lambda^2 + 2 \pi^2 i}} \frac{D_n / A_n \cdot (1 - \cos (\lambda D_k)) \cdot \sinh \left(\frac{\sqrt{\lambda^2 + 2 \pi^2 i}}{D_k} \right)}{D_n / A_n \cdot \cosh \left(\frac{\sqrt{\lambda^2 + 2 \pi^2 i}}{D_k} \right)} \]

(19)

If we separate the real part \(P \) of \(\sqrt{\lambda^2 + 2 \pi^2 i} \) from the imaginary part \(Q \), we have

\[P = \sqrt{\frac{\lambda^2 + 4 \pi^2 + \lambda^2}{2}} ; \quad Q = \sqrt{\frac{\lambda^2 + 4 \pi^2 - \lambda^2}{2}} \]

(20)

Thus the real part of \(\sqrt{\lambda^2 + 2 \pi^2 i} \) is always greater than \(\Pi \). Hence, if the depth of the sea is sufficiently large (\(\frac{h}{D_n} > 2 \)), the expression (19) can be given very accurately by
Now we have, for the vertical component \(w \),

\[
\begin{align*}
\bar{W} &= \frac{\pi^2 \bar{\tau} r(\lambda)}{(\lambda^2 + 2 \pi^2 \lambda \sin \varphi D_h)} \left(1 - e^{-\sqrt{\lambda^2 + 2 \pi^2 \lambda} \frac{h-Z}{D_v}} \right) \\
+ \frac{1 \cdot D_v}{A_v} \frac{1}{\sqrt{\lambda^2 + 2 \pi^2 \lambda}} \left(1 - \cos \left(\frac{L}{D_v} \right) \right) e^{-\sqrt{\lambda^2 + 2 \pi^2 \lambda} \frac{Z}{D_v}}.
\end{align*}
\tag{21}
\]

This determines the relation between the wind stress \(\bar{\tau} \) and slope of the sea surface induced by the former. Substitution of (24) in (21) gives

\[
\gamma(\lambda) = \frac{\frac{\pi^2 \bar{\tau}}{\rho}}{2 \pi^2 \left(\frac{h}{\rho z + C^z} D_v \right)} \left(1 - \frac{Q}{\rho z + C^z} D_v \right) \frac{h-Z}{D_v}.
\tag{24}
\]

This determines the relation between the wind stress \(\bar{\tau} \) and slope of the sea surface induced by the former. Substitution of (24) in (21) gives
\(U_i \), and \(V_i \). The substitutions of \(U_i \), \(V_i \), and \(\tau(\lambda) \) thus obtained into (10), (11) and (12) give \(u \), \(v \) and the surface slope \(\frac{\partial u}{\partial x} \). The vertical velocity \(\omega \) can be derived from the equation of continuity (2) as

\[
\omega = -\frac{\partial}{\partial x} \int u \, dz
\]

(25)

3. Upwelling in a Deep Sea. When the sea is sufficiently deep and the ratio \(k/\sqrt{D_v} \) increased indefinitely, we have from (24)

\[\tau(\lambda) = 0 \]

(26)

and (21) becomes

\[
\frac{W}{\sqrt{\lambda + 2\pi^2}} = \frac{i\pi D_v A_v}{\sqrt{\lambda + 2\pi^2}} \left[-\cos \left(\frac{\lambda L_n}{D_n} \right) \right] \quad \text{as} \quad -\sqrt{\lambda + 2\pi^2} \frac{z}{\sqrt{D_v}}
\]

(27)

Then we have

\[
u(x,z) = \frac{2\pi}{\omega \sin \phi D_v} \int_0^\infty M(\lambda, z) R(\lambda, x) \, d\lambda
\]

(28)

\[
u(x,z) = \frac{2\pi}{\omega \sin \phi D_v} \int_0^\infty N(\lambda, z) R(\lambda, x) \, d\lambda
\]

(29)

\[
\omega(x,z) = \frac{2\pi}{\omega \sin \phi D_v} \int_0^\infty \frac{L_n(\lambda, z) S(\lambda, x)}{(D_n/D_v)} \, d\lambda
\]

(30)

where

\[
M(\lambda, z) = \frac{Q \cos(Q \sqrt{D_v} \lambda) + P \sin(Q \sqrt{D_v} \lambda)}{P^2 + Q^2} e^{-P \sqrt{D_v} \lambda}
\]

(31)
\[N(\lambda, z) = \frac{P \cos(Q \frac{x}{D_n}) - Q \sin(Q \frac{x}{D_n})}{P^2 + Q^2} e^{-\frac{P^2}{D_n}} \]

\[L(\lambda, z) = 2PQ \left\{ \cos(Q \frac{x}{D_n}) e^{-\frac{P^2}{D_n} - 1} + (P^2 - Q^2) \sin(Q \frac{x}{D_n}) - \frac{P^2}{D_n} \right\} \]

\[R(\lambda, x) = \sin(\lambda \frac{x}{D_n}) \cdot \left\{ 1 - \cos(\lambda \frac{x}{D_n}) \right\} \]

\[S(\lambda, x) = \cos(\lambda \frac{x}{D_n}) \cdot \left\{ 1 - \cos(\lambda \frac{x}{D_n}) \right\} \]

and \(P \) and \(Q \) are the real and imaginary part of \(\sqrt{A^2 + 2 \pi^2 A} \) whose expressions are given by (20).

These results show that, by the effect of the wind blowing parallel to the coast, we can expect a vertical circulation in the plane perpendicular to the coast in addition to a coastal current parallel to the direction of the wind. The vertical component of this circulation evidently represents the upwelling.

From the expressions (28), (29) and (30) for \(u, v \), and \(w \), it can be expected that the horizontal velocity of the water in this process is approximately \(\frac{D_h}{D_v} \) or \(\sqrt{A_h} \sqrt{A_v} \) times as large as the vertical velocity. This result will be very useful in estimating the approximate speed of upwelling. But this kind of vortical circulation can be noticed best in the case of a very deep sea where there is very little current produced by the slope of the surface of the sea.
If we define a function $\psi(x,z)$ as

$$\psi(x,z) = \frac{2\pi T}{P\omega \sin \phi} \int_0^\infty \frac{\sin \lambda x D_h (1-\cos \frac{z}{D_h})}{\lambda \sqrt{\lambda^2 + 2\pi^2}} \left(e^{-\frac{x^2 + 2\pi^2}{D_v^2}} \right) d\lambda \quad (36)$$

we can show that this is the stream function in the plane perpendicular to the coast and u and ω are given by

$$u = -\frac{\partial \psi}{\partial x}; \quad \omega = \frac{\partial \psi}{\partial x} \quad (37)$$

so that any curve

$$\psi(x,z) = \text{constant}$$

represents a stream line.

4. A Numerical Example. So far the author has elucidated the process of upwelling in a quantitative manner and obtained the expressions representing the motion of water produced by a wind blowing parallel to the coast in a belt of finite width. The stream-function $\psi(x,z)$ can be computed from the formula (36) for any distance x/D_h and for any depth z/D_v below the sea surface where D_h and D_v are the distance and depth specifying the intensity of the horizontal and vertical mixing respectively. The result of computation of the stream function is given in the Table I and illustrated by the diagram in Figure 2. The unit is given by

$$\frac{2\pi T}{P\omega \sin \phi} \quad (38)$$

From the table and diagram it can be easily shown that the vertical circulation is most strongly developed close to the coast and in the upper layers of the sea directly below the surface swept by the wind. An intense upwelling can be seen in the belt within $0.5 D_h$ from the coast-line and the stream-lines go down gradually outside the wind zone. This means that beyond the wind zone there occurs the process of sinking.
TABLE I
NUMERICAL VALUES OF THE STREAM FUNCTION
IN THE VERTICAL PLANE PERPENDICULAR TO THE COAST

\[
\left(\frac{2 \pi l^2}{\nu \int_{h}^{\infty}} \right)
\]

<table>
<thead>
<tr>
<th>(\frac{y}{D_{y}})</th>
<th>(\frac{z}{D_{y}})</th>
<th>0</th>
<th>0.1396</th>
<th>0.279</th>
<th>0.559</th>
<th>1.032</th>
<th>1.117</th>
<th>1.396</th>
<th>1.676</th>
<th>1.953</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-315</td>
<td>-313</td>
<td>-449</td>
<td>-445</td>
<td>-456</td>
<td>-425</td>
<td>-425</td>
<td>-310</td>
</tr>
<tr>
<td>0.2</td>
<td>0</td>
<td>-277</td>
<td>-499</td>
<td>-725</td>
<td>-748</td>
<td>-750</td>
<td>-734</td>
<td>-682</td>
<td>-496</td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>0</td>
<td>-321</td>
<td>-578</td>
<td>-843</td>
<td>-867</td>
<td>-866</td>
<td>-848</td>
<td>-788</td>
<td>-576</td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td>0</td>
<td>-334</td>
<td>-600</td>
<td>-871</td>
<td>-891</td>
<td>-887</td>
<td>-869</td>
<td>-808</td>
<td>-589</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>0</td>
<td>-352</td>
<td>-598</td>
<td>-865</td>
<td>-890</td>
<td>-873</td>
<td>-856</td>
<td>-797</td>
<td>-579</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>0</td>
<td>-352</td>
<td>-598</td>
<td>-865</td>
<td>-890</td>
<td>-873</td>
<td>-856</td>
<td>-797</td>
<td>-579</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>0</td>
<td>-329</td>
<td>-592</td>
<td>-862</td>
<td>-863</td>
<td>-853</td>
<td>-837</td>
<td>-782</td>
<td>-568</td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td>0</td>
<td>-327</td>
<td>-587</td>
<td>-844</td>
<td>-853</td>
<td>-843</td>
<td>-827</td>
<td>-773</td>
<td>-561</td>
<td></td>
</tr>
<tr>
<td>1.6</td>
<td>0</td>
<td>-326</td>
<td>-585</td>
<td>-840</td>
<td>-848</td>
<td>-837</td>
<td>-823</td>
<td>-769</td>
<td>-558</td>
<td></td>
</tr>
</tbody>
</table>
The fact that the expressions for the velocity components all include \(\sin \phi \) in the denominator shows that the lower the latitude the more intense will be the process of upwelling. Perhaps the strong upwelling off the Peruvian coast may be ascribed to this theoretical result.

It will be interesting and useful to compute the magnitude of the off-shore currents and the velocity of upwelling from the stream-function given by (36) and to compare them with the values formerly estimated from various sources.

It is of course not easy to estimate the magnitude of the coefficients of mixing. The vertical mixing coefficient may be estimated at something like 1000 c.g.s. If we adopt this value, \(D_v \) is about 162 meters for a latitude of 30°N. To estimate \(A_h \) is even more difficult. But actual oceanographic observations show that \(A_h/A_v = 10^4 \) approximately. This means that \(D_h \) is just about 1000 times as large as \(D_v \), or 162 kilometers. Furthermore, we do not know much about the width of the coastal wind belt. In this computation, the author tentatively assumed \(L = 2.0944D_h \) that is, about twice as large as \(D_h \); or at 339 kilometers.

It will be still more difficult to estimate the wind velocity of the northwesterlies prevailing off the coast of Southern California in the earlier summer months. The author took \(\tau = 1 \) c.g.s. This corresponds to a wind velocity between 5 and 6 m/s. If we consider the upwelling off the coast of Southern California and take \(\phi = 30^\circ \) N, we have

\[
\frac{2\pi \tau}{\omega \sin \phi} = 2.37 \times 10^5 \text{ sec}^{-1}
\]

From the table we can compute the average velocity between the surface and the layer 0.2 \(D_v \) deep by

\[
\frac{\Delta \psi}{\Delta z} = 2.37 \times 10^5 \times \frac{0.45}{0.2D_v} = 3.35 \text{ cm/sec}
\]

This is the maximum velocity of the offshore current in the layer between the surface and the 32.4 meters level.

The maximum vertical velocity can be estimated in a similar way, viz., at

\[
\frac{\Delta \psi}{\Delta x} = 2.37 \times 10^5 \times \frac{0.45}{0.14D_h} = -3.14 \text{ cm/sec (upward)}
\]

\[
= -2.7 \text{ m/day.}
\]
This speed of upwelling is just about 80 meters per month.

G. F. McEwen (1929) estimated the speed of upwelling off the coast of Southern California at about 10-20 meters per month. The present result appears to show a speed a little too high, but may be suggestive of the order of magnitude of ascending motion in the process of upwelling.

From the diagram in Figure 2, we can see that the water mass participating in this process comes up from the layers from $Z = D_x$ to $1.5 D_x$ or more. If we take $D_x = 162$ m, the layers from which the upwelled waters originate are located somewhere around the layers 200 meters or deeper. This also agrees with Sverdrup-Fleming's estimation derived from practical observations off the coast of Southern California.

5. Coastal Currents. In addition to the circulation in a vertical plane perpendicular to the coast, we have a current parallel to the coast. The author thinks that this will be another subject of major interest.

The model treated in this research is very simple, the winds being assumed always to blow parallel to the coast. But it may be considered that a certain pattern of water motion will always correspond to the wind of any direction. The investigation into this problem seems suggestive of the explanation of several facts observed close to the shore in relation to the motion of the water.

6. Acknowledgements. The author hereby expresses his sincerest appreciation to Dr. Dale F. Leipper, Head of the Department of Oceanography, Agricultural and Mechanical College of Texas, who encouraged the author in carrying out the present research and publishing the result during his stay in the department. He is also much obliged to Mr. Robert O. Reid and Dr. John T. Hurt who kindly discussed on the result.
SCHEMATIC DIAGRAM OF WIND TO COAST RELATIONSHIP FOR THE DEVELOPMENT OF UPWELLING IN THE NORTHERN HEMISPHERE

FIGURE 1
UPWELLING AS INDUCED BY A WIND PARALLEL TO THE COAST
(ILLUSTRATED BY THE STREAMLINES IN THE VERTICAL PLANE PERPENDICULAR TO THE COAST)

FIGURE 2
REFERENCES

Defant, A. 1936 Das Kaltwasserauftriebsgebiet von der Kuste
Sudwestafrikas - Landerkundliche Forschung, Festschrift
Norbert Krebs zur Vollendung des 60. Lebensjahres
dargebracht, p. 52-66.
1952. Theoretische Uberlegungen zur Phanomen des Windstaus
und des Auftriebes an oceanischen Kusten. Deutsches Hydrographisches

Gunthor, E. R. 1936 A report on oceanographical investigations in the

McEwen, G. F. 1912. The distribution of ocean temperatures along the
west coast of North America deduced from Ekman's theory of upwelling
of cold water from the adjacent ocean depths. Internationale
1929. A mathematical theory of the vertical distribution
or temperature and salinity in water under the action of radiation,
conduction, evaporation, and mixing due to the resulting convection,

Sverdrup, H. U. 1930. Some oceanographic results of the Carnegie's
work in the Pacific - The Peruvian Current. Amer. Geophys. Union
Vol. 1, pp. 155-164.
Sverdrup, H. U. and R. H. Fleming 1941. The water off the coast of
Southern California, March to July, 1937. Scripps Institution
<table>
<thead>
<tr>
<th>No.</th>
<th>Copies</th>
<th>Addressee</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Geophysical Laboratory of Department of Geology Columbia University New York, New York</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Code 551 U. S. Naval Electronics Laboratory San Diego 52, California</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Director Virginia Fisheries Laboratory College of William and Mary Gloucester Point, Virginia</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Director Louisiana State University Marine Laboratory Baton Rouge, Louisiana</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Director Institute of Fisheries Research University of North Carolina Morehead City, North Carolina</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Director Duke University Marine Laboratory Beaufort, North Carolina</td>
</tr>
</tbody>
</table>