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Abstract. Stochastic models are valuable and sometimes essential tools for investigating the
behavior of complex phenomena. In seismology, stochastic models can be used to describe
velocity heterogeneities that are too small or too numerous to be described deterministically.
Where analytic approaches are often infeasible, synthetic realizations of such models can be used
in conjunction with finite difference algorithms to systematically investigate the response of the
seismic wavefield to complex heterogeneity. This paper represents a continuing effort at
formulating a complete and robust stochastic model of lithologic heterogeneity within the crust,
and the means of generating synthetic realizations; "complete" implies that the model is flexible
enough to describe all types of random heterogeneity within the crust, while "robust" implies
sufficiently constrained parameterization that an inversion problem may be well-posed. We use
as a basis for investigation geologic maps of crustal exposures and petrophysically inferred
velocities. Earlier efforts at stochastic modeling have focused on characterization of the
univariate probability density function, which is typically modal (i.e., binary, ternary, etc.), and
the covariance function, which is typically fit with a von Kdrmrn function. Here we provide a
means of characterizing the property of "sinuous connectivity" and for generating realizations
that possess this property. Sinuous connectivity is the tendency for individual lithologic units to
be continuous over long and highly contorted paths; there is no means in the earlier modeling of
either characterizing or synthesizing this property. We first demonstrate that binary sinuously
connective realizations can be generated by mapping alternating contour sets from a Gaussian-
distributed surface (a "normal equivalent field") into the two values comprising the binary
probability density. There is tremendous non-uniqueness in this operation, with wide classes of
mapping functions and normal equivalent statistics resulting in model fields that are statistically
identical. We infer from these observations that the property of sinuous connectivity can be
represented by a simple binary yes-or-no parameter.

Keywords: lithospheric heterogeneity, sinuous connectivity, covariance modeling, stochastic
models
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Previous work on mapped crustal exposures has
I. Introduction focused on combined modeling of the covariance

Investigations of the wavefield response to function and probability density function (PDF) of
heterogeneous media (finite difference or otherwise) the velocity field (as inferred from petrophysical
can be of a deterministic (i.e., the exact particulars) or conversion of the lithographic field). The covariance
stochastic (i.e., ensemble properties) nature. The function has often been successfully modeled using
choice of one or the other is a matter of scale, the von Kdrmdn [1948] model [e.g., Holliger et al.,
numbers, and resolution. The deterministic approach 1993; Levander et al., 1994]. The PDF has often
is typically used when the structures within the been modeled by a simple modal distribution (e.g.,
velocity field are few in number and large compared binary, ternary, etc.) [Holliger et al., 1993; Levander
to the seismic wavelength. In such cases a well- et al., 1994; Goff et al., 1994], which reflects the
posed inverse problem may be formulated to estimate observation that mapped crustal exposures, even
the velocity field by, for example, matching a morphologically complex ones, typically consist of a
synthetic wavefield to the observed wavefield [e.g., small number of distinct lithologic units of relatively
Jervis et al., 1995]. The stochastic approach is constant velocity. Synthetic realizations generated
necessary when structures within the velocity field from these models successfully reproduce many of
are numerous and/or small compared to the the important physical properties of the observed
wavelength. Large numbers of scattering features field, including the modal PDF, characteristic scales,
tend to make the wavefield complex (i.e., structural anisotropy, and fractal dimension.
deterministically unpredictable) through both single However, one property clearly seen on many of the
and multiple forward and backward scattering. Small crustal exposures has thus far remained beyond the
scales make deterministic resolution of structures grasp of stochastic characterization: "sinuous
difficult or impossible. Recent studies have used connectivity", the subject of this report.
finite difference algorithms to investigate the seismic Sinuous connectivity is a difficult property to
wavefield response to synthetic realizations of define in words, but simple to demonstrate. Figure la
stochastic velocity models [e.g., Frankel and is a digitized section of the Lewisian gneissic terrain
Clayton, 1986; Fisk et al., 1992; Holliger et al., 1993; (Scotland), an exposed section of the middle crust
Levander et al., 1994a,b]. So far these efforts have consisting primarily of amphibolite dikes (black) and
only been directed toward the forward problem, gneiss (white) (gray = no data). The gneiss has a
where a velocity model is assumed and the wavefield petrophysically inferred p-wave velocity of 6.2
response computed. Qualitative comparisons of km/sec, and the amphibolite 6.75 km/sec. Levander
seismic data with finite-difference seismograms et al., [1994a] formulated a stochastic model based
generated in a variety of realistic circumstances on analysis of the PDF and covariance structure for
suggest that the seismogram is sensitive to variations the grid shown in Figure 1, and a synthetic realization
in the stochastic character of the medium. Efforts are from a refined version of this model is presented in
now being directed towards establishing Figure lb. The grids shown in Figures la and lb
quantitatively meaningful model/data comparisons to have essentially identical PDF and covariance, and
pose the inverse problem of estimating stochastic those physical attributes characterized by those
properties of a velocity field from observations of the functions are well-matched; i.e., the percentage of
seismic wavefield. gneiss and amphibolite, the characteristic scales, and

This report is one in a series of efforts to establish the fractal dimension (the overall degree of
a "robust" and "complete" stochastic model for roughness). Nevertheless the comparison is not
crustal heterogeneity through analysis of mapped satisfactory. The amphibolite in the geologic map is
crustal exposures. Though modified by the act of highly connected and sinuous, whereas in the
exhumation, crustal exposures represent our only synthetic field it is disconnected and blob-like.
direct multidimensional sampling of crustal rocks In this paper we present a method for
from depth. They provide invaluable information on incorporating sinuous connectivity into stochastic
lithologies and their spatial relationships. The models for lithologic (i.e., modal) heterogeneity, and
principal goal of working with this data is not to the means by which to generate a sinuously
establish precisely the stochastic nature of the crust, connective synthetic realization that honors the
but rather to ascertain the types of stochastic models covariance and PDF structure specified by the
that are appropriate. By "robust" we intend a model stochastic model. The success of this approach is
with few-enough parameters that an inversion demonstrated in Figure lc, which displays a
problem may be well-posed. By "complete" we sinuously connective synthetic field with identical
intend a model that can reproduce, through synthetic PDF and covariance structure to the synthetic shown
realization, all the important physical properties of in Figure lb. The comparison between this synthetic
the field. There is a delicate balance between these to the Lewisian data in Figure la is clearly superior;
two concerns. If we have too few parameters in the we believe that this stochastic model, incorporating
desire for robustness, then the model may not be PDF (modal or otherwise), covariance, and sinuous
flexible enough to characterize the variety of connectivity characterization, represents as complete
stochastic morphology observed. If we favor a model as might be necessary for characterizing
completeness we may require more parameters than seismic velocity heterogeneity within the earth. The
we can ever hope to solve for in an inverse problem. robustness of this model, as applied to seismic

inversion, will be the topic of future investigation.
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a Lewisian Complex b Lewisian Binary Synthetic Realization
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Figure 1. (a) Digitized map of the Lewisian gneiss complex, Scotland [Levander et al., 1994]. Also mapped but not
shown are intermediate schist, which comprise only 1% of the total and so were ignored as insubstantial. Map is
78% gneiss (6200 m/sec inferred p-wave velocity) and 22% amphibolite (6750 m/sec). The grid spacing is 0.0268
km, with 100 rows and 109 columns. (b) Synthetic realization based on PDF and covariance modeling of the
Lewisian complex. (c) Synthetic realization based on PDF and covariance modeling of the Lewisian complex and
including the property of sinuous connectivity.

628



Covariance modeling is typically accomplished by
II. PDF and Covariance Modeling and Synthetics fitting a parameterized functional model to the

Details regarding PDF and covariance modeling sample covariance estimated from the digital
based on crustal exposure maps are given in Holliger exposure map using forward modeling [e.g., Holliger
et at. [1993] and Levander et at. [1994a]. Heretofore et al., 1993; Levander et al., 1994a; Holliger and
covariance modeling has been accomplished by Levander, 1994] or a least-squares inversion [Goff
forward-model fitting of the von K~rmn/m function to and Jordan, 1988]. The von Kdrmdn [1948]
the data covariance. Here we apply the inversion covariance model [e.g., Wu and Aki, 1985; Frankel
algorithm of Goff and Jordan [ 1988] converted to use and Clayton, 1986; Fisk et at., 1992; Holliger et at.,
with gridded data. The method for generating 1993; Levander et at., 1994a, Holliger and Levander,
synthetic realizations from such models is given in 1994] represents a class of monotonically decaying
Goffet al [1994]. In this section we provide a brief (i.e., aperiodic) functions, and includes as a subset the
overview of the salient points from these references. exponential form. The singular advantage of the von

KIrmAn model is that it explicitly includes the fractal
PDF Modeling dimension as a variable. Goff and Jordan [1988]
In the case of a modal field, modeling the PDF is modified the von K~rnmn covariance function to

robust and straightforward: the PDF simply describes account for structural anisotropy in 2-dimensions
the percentage of each unit present in the field. For (easily expanded to 3-dimensions). The following
example, in the Lewisian section described above, parameters specify the 2-D anisotropic von Kirmin
78% of the map is gneiss, and the remaining 22% is model:
amphibolite (Figure 2a). 1. The rms velocity H is the average variation

about the mean velocity.
Covariance Modeling 2. The lineament orientation Os is strike of
The covariance function, or its Fourier equivalent direction of maximum correlation; structures will

the power spectrum, represents our primary tool for tend to be oriented along this direction.
characterizing spatial roughness properties. It is 3. The scale parameter controls the rate of decay
defined by: of the covariance. In one dimension the scale

parameter is specified by ko. In two dimensions there
Chh (x) = E[h(x 1 )h(x1 + x)], (1) are two principal scale parameters: kn in the normal-

to-strike direction, and ks in the along-strike
where h(xl) is a zero-mean, homogeneous random direction; kn > ks.
field specified at vector location xl, and E[o] 4. The aspect ratio a is the characteristic planar
represents the expectation function [e.g., Feller, shape of structures, defined by the ratio knlks.
1971]. The variable x is defined as the lag vector. 5. The Hausdorff (fractal) dimension D is a
Where h is sampled on a m by n grid specified by measure of roughness.
discrete (columnrow) locations (ij), the discrete An inversion procedure for parameter estimation
covariance function Chh(k s can be estimated by also provides estimates of uncertainties. Estimated

Lewisian model parameters are, with 1-a

n-k rn-1 uncertainties: H = 234 ± 4 m/sec, Os = 85.00 ± 0.40,
n-kl= 1m-I +kn = 24.5 ± 1.0 km- 1, ks = 6.0 ± 0.3 kin" 1, and D =

(n- (r, 1)hkN,jh+k,j+l. (2) 2.54 ± 0.04. Figure 2b displays the best fit von
(n - k)(m -1) 1 1 Krmfn model to the 1-D sample covariance in the

i=l j=1 row direction (Chh(i,O)).
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Figure 2. (a) PDF for the Lewisian stochastic model. (b) Comparison of Lewisian data (solid) and best-fit model
(dashed) 1-D covariances for the row direction (Chh(i,O)).
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Synthetic Fields Lewisian map of Figure la. The covariance
Realizations of the stochastic model described parametefs for the normql equivalent field are: kn =

above can be synthesized by first generating a 21.6 km-i, ks = 5.28 km- , Os= 85. 0 *, and D = 2.00.
Gaussian-distributed field, which we term a "normal As stated in the Introduction, comparison between
equivalent" field, and then mapping it into a new Figures lb, the synthetic realization of the stochastic
field, the "model" field, that conforms to the PDF model, and Figure La, the data from which the
specified in the model. This algorithm includes the stochastic model is derived, indicates both successes
following steps [Goff et al., 1994]: and failures of the stochastic model. The success of

1. A mapping function is created which specifies the model is that it correctly describes the physical
the conversion of a Gaussian PDF with zero mean properties that it is designed to describe; i.e.,
and unit variance to the PDF p(h) specified by the probability of units, scales of structures, orientation,
stochastic model. Specifically, for each possible and roughness. The failure of the model is that it is
value g sampled from a Gaussian PDF PG(g), we not complete; i.e., it cannot reproduce the pattern
find a new value h such that: which is visually obvious to the eye: the sinuous

connectivity of the units.

II. Sinuous Connectivity Modeling and

fp(h')dh' = fPG (g')dg' .(3) Synthetics
Till now we have employed a stochastic modeling

technique which requires joint characterization of the

For a simple binary field, where unit I has total PDF and covariance of the field of interest. A great

probability pl, and unit 2 has total probability p2 = 1 advantage of this technique is that estimation of

- pl, equation (3) is equivalent to identifying a cutoff model parameters can be performed through direct

Gaussian value gc, where every value less than gc is inversion of sample data. An entirely equivalent,

mapped to unit 1, and every value greater than gc is though indirect, stochastic modeling technique would

mapped to unit 2, and be joint specification of a PDF mapping and the
covariance function of a normal equivalent: i.e., the
"recipe" for generating synthetic realizations. In the
case of the Lewisian model discussed above, this type

P, = PG (g')dg'. (4) of stochastic model would be specified by the notmal
equivalent cqvariance parameters kn = 21.6 kmi , ks

-= = 5.28 km-1, Os = 85.00, and D = 2.00, and the
Gaussian-to-binary PDF mapping function with

For the Lewisian PDF, gc = 0.75. Hence, for the separation scale gc = 0.75.
Lewisian model field, any Gaussian value less than The rationale for adopting the latter approach to
0.75 is mapped to gneiss, and everything else to stochastic modeling is that it provides an added
amphibolite. dimension to characterization not available in the

2. The covariance for the normal equivalent field, former: the PDF mapping. The PDF mapping
Cgg((x), is determined such that when the PDF presented earlier is, in fact, only the simplest possible
mapping described above is performed, the model case of a Gaussian-to-binary mapping. The only real
field conforms to the model covariance Chh(x). constraint that is placed on this mapping is that the
Where both normal equivalent and model fields have total probability of unit 1 (gneiss) is 0.78, and the
zero mean and unit variance, the relationship is given total probability of unit 2 (amphibolite) is 0.22.
by Christakos [1992; page 332, equation 3]. In Instead of finding a single value gc which separates
general this equation must be solved by numerical the Gaussian PDF into regions of 0.78 and 0.22
integration. probability, we can formulate a more complex

3. Generate a synthetic normal equivalent mapping into alternating bands of unit 1 and unit 2,
realization g(ij) conforming to covariance Cg (kl) ensuring that the sum of all unit 1 probability is 0.78,
by Fourier methods [e.g., Goff and Jordan, 998 8; and the sum of all unit 2 probability is 0.22. This
1989a]. operation will map the alternating units onto contour

4. For each discrete value of the normal equivalent sets of the normal equivalent surface; we therefore
g(ij), determine the value of the model field h(ij) apply the term "contour set mapping" to this type of
using the PDF mapping described in step 1. PDF mapping. As anyone who has seen a contour

map of topography will quickly intuit, contour set
The Lewisian Data/Synthetic Comparison, mapping should generate a binary surface possessing

Take 1 the property of sinuous connectivity.
The Lewisian 2-D stochastic model is summarized

as follows: (1) The PDF is a binary distribution of Contour Set Mapping Synthetics
78% gneiss (6.2 km/s) and 22% amphibolite (6.75 More formally, we specify a binary contour set
km/s); (2) the covariance is modeled by a von mapping in the following way:
KtrrApdn function specified by parameters kn = 24.5
kmn 1, ks = 6.0 km- 1, 0s = 85.0' (where 0' represents
vertical lineament orientation), and D = 2.54. Figure
lb displays a full two-dimensional synthetic
realization of the stochastic model estimated from the
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instead of a simple decay with increasing lag, the
covariance of these fields exhibits two scales of
decay. The flexibility allowed in the contour set

H 2 , 9 3 g(X 0 "-94mapping is instrumental in reproducing these more
h(x) H, g3 <g(x) < g4 (5) complicated covariance structures.

) H1, 92 < g(x) < 93 Figure 3 displays a series of four model fields

H2 , g1 <(X0)< g 2  generated using progressively thinner contour sets,
labeled as model fields 1-4. The contour set

H1, go =--c <g(xl) < g mappings are also shown, displayed graphically as
black and white areas below the Gaussian PDF. Each

where HI and H2 represent the values given to units model field PDF and covariance correspond to the
1 and 2 respectively. Each interval defined by the stochastic model described earlier for the Lewisian
boundary values g-1 to gi is defined as a "contour map (Figure la). Model field 1 is just a simple
set", and the difference gi - gi- 1 is defined as the Gaussian-to-binary mapping presented earlier as
"contour set thickness". Total probabilities for each Figure lb. All the normal equivalent fields were
unit are computed by the following: generated with identical random phase spectra, which

enhances visual recognition of structural similarities.
Our primary observation derived from Figure 3 is

that contour set mappings successfully produce
Ai PG (' )dg', sinuous connectivity in the model field. In particular,Y,..f model field 3 is identical to the synthetic realization

i odd gi- 1  (6) in Figure Ic, which was compared to the data field
g, "(Figure la) in the Introduction. As noted earlier, this

'•- °i , comparison is visually superior to the comparison of
P2 = 1- Pi = _ JPG(')dg' Figure lb (simple Gaussian-to-binary mapping) to

ee Figure La.i even g,-,

The Sinuous Connectivity Parameter
The boundary values gi must be chosen so that Pl Now that we've established a method for
and P2 satisfy our total probability constraints (for characterizing and synthesizing fields that possess the
the Lewisian case, Pl must equal 0.78 and P2 must property of sinuous connectivity, we ask ourselves if
equal 0.22). Beyond that, however, the values of gi it is possible to quantify sinuous connectivity itself.
are arbitrary, unfortunately resulting potentially in an In other words, might it possible to state that one field
infinite number of additional parameters to the has more or less sinuous connectivity than another
model. Limitations on parameters will be discussed field? By stepping through progressively thinner
below. contour set thicknesses, Figure 8 was designed to

While contour set mapping must satisfy total address this question. If sinuous connectivity were a
probability constraints, the covariance of the normal quantifiable property, then we would expect a general
equivalent field must be chosen so that the model increase in this property as we decrease in contour set
field corresponds to the model covariance. While we thickness in the PDF mapping. However, this does
cannot at this time make formal statements of not appear to be the case. While there is a strong
uniqueness, it is nevertheless clear from our contrast in character going from the model field 1 to
experience in forward modeling that, for a given PDF model field 2 in Figure 3, beyond that there is little
mapping, this is a strong constraint, noticeable change in character with decreasing

Before presenting examples of synthetic contour set thickness. The apparent invariance of
realizations generated with contour set mappings, we sinuous connectivity characteristics is likely
must remark that von Kdrmin normal equivalent attibutable to the self-similarity property of the fractal
covariances do not strictly imply von Krrmdn model normal equivalent fields [e.g., Mandelbrot, 1981].
covariances, as was the case for simple Gaussian-to- The important implication of the above
binary mappings [Goff et al., 1994]. This is observation is that wide classes of stochastic models
particularly true where contour sets for either unit 1 based on contour set mappings and normal equivalent
or unit 2 or both are not of uniform thickness. Where covariances are redundant, or non-unique. On the
unit 1 thickness are uniform and unit 2 thicknesses one hand this is problematic, since it implies that this
are uniform, the model covariance resulting from a technique for stochastic modeling will not be useful
von Kdrm~n normal equivalent covariance can be in an inversion problem. On the other hand, this
reasonably approximated by a von Kdrm~in function. observation is very powerful, because it vastly
The correspondence between the model covariance simplifies the parameterization that is necessary: the
and a best-fitting von K'rmdn function in these cases stochastic model is complete just by specifying its
is not always exact, but misfit, where it occurs, is PDF, covariance, and whether or not it is sinuously
concentrated at the larger lags where resolution of the connective.
covariance estimated from data is very poor (i.e.,
either will fit the data just as well). However, in
some cases, two of which will be highlighted in the
following section, the covariance estimated from the
data field is not well-fit by the von Krm6.n function;
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Figure 3. A series of 4 model fields, all with identical PDF and covariance (the Lewisian stochastic model), generated with
contour set mappings of decreasing contour set thickness. To the right of each model field, normal equivalent covariance
parameters are. All normal equivalent fields had identical H (1.0) and Os (85°). Also shown are to the right are graphical
representations of the contour set mapping; any value sampled from the normal equivalent field that fell within the white
regions was mapped to unit 1, and any sample that fell within the black regions was mapped to unit 2. In Model fields 2
through 4, the contour set thickness changes by a factor of 2 at each step. Model fields 1 and 3 are identical to model field
presented in Figures la and lb respectively.
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a Franciscan Complex b Franciscan Sinuously Connective Synthetic Realization
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Figure 4. (a) Digitized map of the Franciscan complex, northern California (B.M. Page, 1994, unpublished). A
small percentage of volcanic units within the map were ignored as insubstantial. Map is 66% sandstone and 34%
melange. While sandstone will have a nearly uniform seismic velocity of -5.8-5.9 kmi/s, melange is expected to
exhibit a range of velocities from -5.0-6.4 km/s. There are two problems in stochastic modeling associated with the
Franciscan: the interaction between melange and sandstone, and the properties of the melange. For the present we
concentrate on the former, and simply identify sandstone and melange with proxy values -1 and +1. (b) Synthetic
realization based on PDF and covariance modeling of the Franciscan complex, including 2-scaled contour set
mapping and the property of sinuous connectivity. Normal equivalent parameters are listed in text. (c) Graphical
representation of the Franciscan contour set mapping; any value sampled from the normal equivalent field that fell
within the white regions was mapped to unit 1 (sandstone), and any sample that fell within the black regions was
mapped to unit 2 (melange). (d) Comparison of the Franciscan I-D column-direction (Chh(Oj)) data covariance
(solid) with the model covariance (dashed) computed for the 2-scaled, sinuously connective field.
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a b

Hafafit Complex Hafafit Sinuously Connective Synthetic Realization
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Figure 5. (a) Digitized map of the Hafafit complex, eastern Egypt [Greiling and EI-Ramly, 1990; Rashwan, 199 1]
The gneissic psammites and gneissic granodiorites have only incidental contact, and so were considered as one unit
to increase coverage. A small percentage of granites were ignored as insubstantial. Where it was clearly obvious to
do so, units were interpolated where covered by wadi alluvium. Map contains 50% gneiss and 50% metagabbro.
Petrophysical data are not known, so proxy values of -1 and +1 were assigned respectively to the gneiss and
metagabbro. It is certain, however, that the metagabbro will have a faster seismic velocity than the gneiss. (b)
Synthetic realization based on PDF and covariance modeling of the Hafafit complex, including 2-scaled contour set
mapping and the property of sinuous connectivity. Normal equivalent parameters are listed in text. (c) Graphical
representation of the Hafafit contour set mapping; any value sampled from the normal equivalent field that fell
within the white regions was mapped to unit I (gneiss), and any sample that fell within the black regions was
mapped to unit 2 (metagabbro). (d) Comparison of the Hafafit 1-D row-direction (Chh(iO)) data covariance (solid)
with the model covariance (dashed) computed for the 2-scaled, sinuously connective field.
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IV. Complex Examples El-Ramly, M. F., and R. 0. Greiling,Wadi Hafafit Area,
Two more examples of sinuous connectivity 1988.

modeling are presented in Figures 4 (Franciscan Feller, W., An Introduction to Probability Theory and Its
formation) and 5 (Hafafit gneiss complex). These Applications, vol. 2, 669 pp., John Wiley, New York,
examples are more complex than the Lewisian 1971.
example because their covariance functions were not Fisk, M. D., E. E. Charrette, and G. D McCartor, A
well-fit by a von Kdrmin model. In particular, we comparison of phase screen and finite difference
required two superposed scales of decay. This calculations for elastic waves in random media, J.
behavior can be matched, however, in the contour set Geophys. Res., 97, 12,409-12,423, 1992.
mapping not by formulating a complex normal Frankel, A., and R.W. Clayton, Finite difference
equivalent field, but rather by using complex simulations of seismic scattering: Implications for the
combinations of contour thicknesses. Normal propagation of short-period seismic waves in the crust
equivalent field parameters for the Franciscan are: kn and models of crustal heterogeneity, J. Geophys. Res.,
= 0.144 km-1, ks = 0.052 km- 1 , 0s = -26.3-, and D = 91, 6465-6489, 1986.
2.00. Normal equivalent field parameters for the Goff, J. A., and T.H. Jordan, Stochastic modeling of
Hafafit are: kn = 0.43 krn-', ks = 0.080 km- , 0s = seafloor morphology: Inversion of Sea Beam data for
91.1V, and D = 2.10. second-order statistics, J. Geophys. Res., 93, 13,589-

13,608, 1988.
V. Conclusions Goff, J. A., K. Holliger, and A. Levander, Modal fields: A

Previous work in stochastic modeling of lithologic new method for characterization of random seismic
heterogeneity has involved joint characterization of velocity heterogeneity, Geophys. Res. Lett., 21, 493-
the PDF, which is usually modal (i.e., binary, ternary, 496, 1994.
etc.), and the covariance function, which is often Greiling, R.O., and M.F. El-Ramy, Wadi Hafafit Area -
well-represented by the von Kdrmin function. In this Structural Geology, Geologic map, German Ministry of
paper we have built upon that earlier work by Research and Technology, Technische Fachhochschule
incorporating, in addition to PDF and covariance Berlin, Germany, 1990.
characterization, a method for modeling fields that Holliger, K., A. Levander, and J. A. Goff, Stochastic
possess the property of sinuous connectivity. This modeling of the reflective lower crust: petrophysical and
method involves defining a Gaussian-to-binary geological evidence from the Ivrea Zone (Northern
contour set mapping and a normal equivalent field Italy), J. Geophys. Res., 98, 11,967-11,980, 1993.
such that, when the normal equivalent field is mapped Holliger, K., and A. Levander, Seismic strcture of
to the binary model field, the PDF and covariance of gneissic/granitic upper crust: geological and
the model field honor the stochastic model. This petrophysical evidence from the Strona-Ceneri zone
modeling scheme also constitutes a recipe for (northern Italy) and implications for crustal seismic
generating sinuously connective synthetic realizations exploration, Geophysical Journal International, 119,
of the stochastic model. 497-510, 1994.

An important observation derived from synthetic Jervis, M., M. K. Sen, and P. L. Stoffa, Optimization
realizations is that, owing to the self similarity methods in 2D migration velocity estimation,
property of the fractal normal equivalent fields, Geophysics, in press, 1995.
sinuous connectivity modeling is highly non-unique. Levander, A., R.W. England, S.K. Smith, R.W. Hobbs, J.A.
Wide classes of contour set mappings/normal Goff, and K. Holliger, Stochastic characterization and
equivalent fields will generate statistically identical seismic response of upper and middle crustal rocks
model fields. It is suggested, therefore, that the based on the Lewisian gneiss complex, Scotland,
property sinuous connectivity can be characterized by Geophys. J. Int., 119, 243-259, 1994a.
a binary parameter: either the field is sinuously Levander, A., S.K. Smith, R.W. Hobbs, R.W. England,
connective or it is not. D.B. Snyder, and K. Holliger, The Crust as a

Stochastic models and synthetic realizations of Heterogeneous "Optical" Medium, or "Crododiles in the
lithologic heterogeneity should play a critical role in Mist", Tectonphysics, 232, 281-297, 1994b.
modeling seismic wave propagation through a Mandelbrot, B. B., The Fractal Geometry of Nature, 468
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