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Abstract

New methods for the analysis of three-component seismograms have been applied to data from
both continental and oceanic regions. Polarization anisotropy, manifested as the splitting of
surface, guided, and shear body waves, has been observed in all regions, but no significant
azimuthal anisotropy has been detected. This is expected if the local orientation of olivine
crystals in the upper mantle is incoherent on the scale of the path lengths used in these
experiments (A = 35°-50°). From a detailed study of trans-Australia paths, we have shown that
the shear-wave anisotropy in the western Australia craton averages 3-4% in the uppermost
mantle, but it terminates abruptly at a Lehmann (L) discontinuity near a depth of 250 km. Our
physical interpretation is that the L discontinuity beneath the ancient continental cratons marks
the transition from an anisotropic mechanical boundary layer to a more isotropic region of a thick
continental tectosphere. Above L, the temperatures have evidently remained cold enough to
freeze-in the small-scale anisotropic structures and tectonic fabrics generated in episodes of
orogenic compression associated with tectospheric stabilization. Below L, such structures were
either never generated or were annealed out subsequent to their formation. These hypotheses
about subcontinental structure have considerable bearing on a diverse set of geological and
geodynamical problems, ranging from formation of the cratons to kimberlite vulcanism.

To provide additional quantitative tests of these hypotheses, we have formulated stochastic
models that specify the small-scale heterogeneity of the continental upper mantle as samples of
Gaussian random fields with self-affine (fractal) scaling at high wavenumbers. We approximate
the spatial variations in elasticity C(x) as a hexagonal tensor field with a local axis of symmetry
given by a unit vector field s(x). We impose the structure of a stationary Gaussian random field
on s(x) and, from a deterministic functional relationship between C and s, calculate the
ensemble averages of C(x) that are needed to describe low-frequency wave propagation.
Solving forward problems of this type allows us to set up quantitative inverse problems for the
parameters of the stochastic distributions. In the modeling discussed here, s is assumed to have
transversely isotropic stochastic symmetry and to be specified by four statistical parameters: an
aspect ratio of the anisotropy, &, a characteristic horizontal wavenumber of the heterogeneity, £,
an aspect ratio of the heterogeneity, 7, and a fractal dimension, D. For & =1, the distribution of
s is isotropic in all three directions; in the limit & — , s5 equals zero with probability one, and
s is isotropically distributed in the horizontal plane. We show that the upper-mantle anisotropy
in Gaherty and Jordan's [1995] model AU3 is consistent with Voigt averages given by & = 2-3.
We discuss how better approximations to the effective elastic tensor can be obtained from a self-
consistent, second-order Born approximation.
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Objectives

The technologies of nuclear-monitoring seismology are built, in part, on studies of wave
propagation at regional distances (< 2000 km). One poorly understood aspect of regional
propagation is the forward scattering of high-frequency signals by small inhomogeneities. The
objectives of this research are threefold: (1) to formulate parameterized stochastic models of
small-scale heterogeneity that are suitable for assessing scattering effects at regional distances,
(2) to constrain the model parameters using broadband seismic data, and (3) to assess the
implications of these models for regional wave propagation related to nuclear monitoring.

Research Accomplishments: Observations and Modeling of Seismic Corridors

Our approach is to model small-scale heterogeneity by a bootstrap from low to high frequencies
[Jordan and Gaherty, 1994]. In the first phase of this program, we have used low-frequency
(< .05 Hz), phase-coherent waves to derive anisotropic, path-averaged models of crustal and
upper-mantle structure. We have developed methods for extracting phase delays and amplitudes
from three-component seismograms that have delivered new information about impedance
discontinuities and velocity gradients in the upper mantle [Revenaugh and Jordan, 1991; Gee and
Jordan, 1992}, and we have applied them to data from both continental [Gaherty and Jordan,
1995] and oceanic [Gaherty et al., 1995] regions. Polarization anisotropy, manifested as the
splitting of surface, guided, and shear body waves, has been observed in all regions, but no
significant azimuthal anisotropy has been detected. This is expected if the local orientation of
olivine crystals in the upper mantle is incoherent on the scale of the path lengths used in these
studies (A = 35°-50°). We have therefore modeled the splitting in terms of radially anisotropic,
but transversely isotropic, elasticity. From a detailed study of trans-Australia paths [Gaherty and
Jordan, 1995], we have shown that the shear-wave anisotropy in the western Australia craton
averages 3-4% in the uppermost mantle, but it terminates abruptly at a Lehmann (L)
discontinuity near a depth of 250 km. At the L transition, which occurs over a depth range of
less than 30 km, the average SV wavespeed increases and the average SH wavespeed decreases,
obtaining nearly equal values in the mantle layer between L and the 410-km discontinuity.

Our physical interpretation is that the L discontinuity beneath the ancient continental cratons
marks the transition from an anisotropic mechanical boundary layer to a more isotropic region of
a thick continental tectosphere [Revenaugh and Jordan, 1991; Gaherty and Jordan, 1995]. Above
L, the temperatures have evidently remained cold enough to freeze-in the small-scale anisotropic
structures and tectonic fabrics generated in episodes of orogenic compression associated with
tectospheric stabilization [Jordan, 1988; Silver and Chan, 1991]. Below L, such structures were
either never generated, perhaps because L coincides with a transition from dislocation to
diffusion creep [Karato, 1992], or were annealed out subsequent to their formation. These
hypotheses about subcontinental structure have considerable bearing on a diverse set of
geological and geodynamical problems, ranging from formation of the cratons to kimberlite
vulcanism [Gaherty and Jordan, 1995].
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Research Accomplishments: Stochastic Modeling of Fine-Scale Anisotropic Structures

In the current phase of our research program, we are focusing on the interpretation of
polarization anisotropy in terms of heterogeneity at subwavelength scales. We have formulated
stochastic models that specify the small-scale heterogeneity of the continental upper mantle as
samples of Gaussian random fields with self-affine (fractal) scaling at high wavenumbers, and
we have derived expressions relating the parameters of these models to the speeds of low-
frequency seismic waves. This report presents some of these results and outlines future research
activity related to this modeling.

We consider a medium governed by a linear stress-strain relation 0;; = C;j;€y, where the
elasticity tensor C has Cartesian components {C; jkgx): i,j,k,01=1273} that are functions of
three-dimensional position vector Xx. Theoretical calculations [Estey and Douglas, 1986] and
measurements on kimberlite xenoliths [Mainprice and Silver, 1993; Christensen, 1994] indicate
that the elasticity of upper-mantle peridotites has quasi-hexagonal symmetry on the hand-sample
scale. Therefore, it is reasonable to approximate C(x) as a hexagonal tensor field with a local
axis of symmetry given by the unit vector s(x) = s(x)/Is(x)l. This can be accomplished by
restricting the tensor field to be a functional of a vector field s(x): C(x) = C(s(x)). In
petrological terms, s(x) is largely determined by the local average orientation of the a axis of
olivine, which is aligned by mantle deformation [Estey and Douglas, 1986]. Our strategy is to
impose the structure of a Gaussian random field on s(x) and, from the functional relationship
C(s), to calculate the ensemble averages of C(x) that are needed to describe low-frequency
wave propagation. Solving this forward problem will allow us to assess the applicability of the
stochastic models to the continental upper mantle and, if justified, to set up quantitative inverse
problems for the parameters of the stochastic distributions.

Specification of the Vector Field. Within some region of the upper mantle, the Gaussian random
field s(x) is assumed to be stationary with zero mean, (s(x)) = 0, and thus specified by its
autocovariance matrix, C4(x) = (S(¥ )s’ (x' +X)). C,, is symmetric and positive definite and
admits the zero-lag eigenvector expansion

3
C..(0) =S = Eoﬁénéﬁ. 1)
n=1

We specialize this matrix in the following way: its last eigenvector is assumed to be vertical,
é3 =z, with dimensionless variance ;:2, and the variances of the other two eigenvectors are set
equal to unity. Hence, the s field is required to be statistically isotropic in the xy plane, with
principal components having root-mean-square (r.m.s.) variations given by

0 =0, =E0 = 1. @

We will call the dimensionless parameter & the aspect ratio of the anisotropy. In terms of the
coordinates s; = ssin Ocos@, s, = ssinfsing@, s; = scosf, the three-dimensional probability
density element (p.d.e.) for s can be written
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p(s)dv(s) = We dsy ds,ds;
E 212 x(s)eos?8 2 , . 0 1o 2 3
= Wc e s°dssin 8d0dg, K(s) = Es (1-&7). 3)

From this expression, it can be seen that the p.d.f. on a sphere of radius s corresponds to a
Watson distribution with dispersion parameter x(s) [Fisher et al., 1987]. For §=1, the
distribution of s is isotropic in all three directions. Where § < 1, the probability of s is
concentrated towards the vertical axis (bipolar distribution, x > 0); where & > 1, it is
concentrated towards the equatorial plane (girdle distribution, k¥ < 0). In the limit § — «, 553
equals zero with probability one, and s is isotropically distributed in the xy plane. For fixed &,
the conditional distribution p(s!s) becomes more isotropic as s — 0.

To specify the spatial correlation of the s field, we define the Riemannian length,

rA(x) = x"Qx, @

Q is a symmetric positive-definite matrix chosen, like S, to be transversely isotropic; i.e., to
have eigenvectors {e;, €5, e; = Z } and eigenvalues

kX =k} = n* ki = K. ()

We adopt an autocovariance matrix of the form

Ces(x) = 8§ p(r(x)), ©)
where p(r) is a scalar-valued autocorrelation function such that p(0) = 1 and lim p(r) =0. A
convenient and useful function with these properties is e

pr) = 27" VK (nIT(v), O0<r<® 0sv<l @)

Here K, (r) is the modified Bessel function of the second kind and I'(v) is the gamma function.
This anisotropic autocorrelation function was introduced as a stochastic representation of
seafloor roughness by Goff and Jordan [1988], who describe many of its properties. A three-
dimensional Fourier transform yields the power spectrum:

32 I (v+3/2)

“1/2 0, T -1 —(v+3/2)
T 1IQI “[k Q 'k+1] €]

2 T
Pk) = [pr(x)e™ *av(x) = 8
This spectral density has principal axes €,,e,,e; with comer wavenumbers k, k, 11 k; it is flat
below these corners and rolls off above them at an asymptotic rate of -(2v+3). Reahzatlons of
this Gaussian field are thus characterized by two outer scales: k! in the xy plane, and (nk) in
the z direction. The dimensionless parameter n is termed the aspect ratio of the heterogeneity.
At scales much smaller than (nk) , the field is statistically self-affine with scaling parameter v,
and it has a Hausdorff (fractal) dlmension of

D= 4-v 9
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(see the appendix of Goff and Jordan [1988] for definitions and proofs). The special case v =
1/2 corresponds to the exponential correlation function, p(r) = e, that has been commonly
used in theoretical studies of wave scattering [e.g., Chernov, 1960].

In summary, we have constructed a dimensionless vector field s that has a transversely isotropic
stochastic symmetry. Its statistics are described by a single dimensionalized garameter, the
characteristic horizontal wavenumber of the heterogeneity k, ([k]=length "), and three
dimensionless numbers: the aspect ratio of the anisotropy &, the aspect ratio of the heterogeneity
1, and the fractal dimension D. Figures 1 and 2 illustrate sections taken through some
realizations of this Gaussian random field for k! = 200 km, D = 3.2, and several values of & and

n.

A B EAARAATRIA RN
- / R [ /1.
:||// ‘l\“\\\ \ , s 71|
R AN N AN =y /
~ NN AR R R Ry
N S N N N IR RN A SRR R A I
/,‘sy-l.\\\\\\\\\\—' /'/"—I-//X3
/I|~'///l\\\\\\\"""N /] 11 T T R A
It ¢ :—'-l\\\\\\‘//"_ /7 1 ! . [ R 2
b N\ .\\l-\\.,.\,/// sy 2 N
}_\\,.lll - - . e N - _/',sl//
DD 20 B UL G S 'Y el et —_——3
Xl X2
\‘/ll L2 T U T A S IS N N U S S
Y R I I B A A A I T U N N
- I\\\“I\\"\\\\\\
2o T U T W U UL T S . T U T T e B
- | L T T | |\\\\\\\\\—-_
P 4 -.—_-I\\\\\\_~’—
PR . - I N N T A e S e
l\-- .\a‘\_\.xlfll//
- /7 - . 4/////
AT .
. v 1 2 /17
X
1 —]
r 1
100 km

Figure 1. A realization of the vector field s for k™ =200 km, D =3.2,and £= 1= 1. The vectors are calculated on
a 20 km x 20 km grid and displayed as their projections onto the sides of a 500 km x 200 km x 200 km rectangular
domain. Lower right panel is a grayshade plot of the x, coordinate of s in the x,-x; plane, showing the structure of
the field at higher resolution than the vector sampling. In this case, the field is statistically isotropic in all directions
in both the vector orientation and the heterogeneity.
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Figure 2. Realizations of the vector field s for k =200 km, D = 3.2, and £ =35, and values of the heterogeneity

aspect ratio 7 equal to 1 (10p), 5 (middle), and 10 (lower). In each case, the left and right panels are plotted with the
same conventions as the upper-left and lower-nght panels of Figure 1, respectively. The field in the top panel has
statisticaily isotropic heterogeneity but anisotropic vector orieniation. The field in the lower panel corresponds to an
anisotropic stochastic laminate ( >> 1). All realizations are isotropic in the x;-x, plane.
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Representation of the Elasticity Field. The Gaussian random field structure of s(x) is mapped
onto the elasticity tensor field C(x) through a deterministic functional relationship C(s). If Cis
a functional of s, then it must be hexagonal with symmetry axis s. Any hexagonally symmetric
elasticity tensor with components C;j;;; can be represented by six elastic parameters, which are
taken here to be

Ciini=0a; =a, Ciizz = 2 = b, C3333 = ;33 = ¢,
Ciiza=ci3= 1, Ci212 = C44 = M, Ci313 = ¢55 = L. (10
Only five of these parameters are independent, because the symmetry requires

b=a-2m. (1)

An alternative and analytically convenient representation is the Backus [1970] harmonic
decomposition:

@ p | D O | RO O | gD @) g0 O
Cijwi = By H "+ DypH " + By H ™ + diph™ +d b (12)

Here H> and h‘” are harmonic polynomials of degree £ , and .Z(;k), (f,zl are the /th -order
differential operators ( §; ; is the Kronecker delta),

1
_(;;()l = Z!'al o"j z?kﬁ,, (133')
5 1
m() =‘i—'( a"k6‘1+5k,6<9 +5kc9j¢?,+5ﬂz9idk+6”o"jo7k+6jké'ic7,), (13b)
z(j(;c)l = 0;;0;; + 050, + 0;;0 (13¢)
1 1 1 1
4(]“ = (6 (9k (91 +5k1(9 0 261kaj (91 - Eéﬂo"iﬁk -—56”81-0,( —Eéjkai (9,), (134d)
O 5 6 - 0,6, - 25,6 (13e)
ijkl — Yij kl_2 ik Yl ) ilYjk-

For a hexagonal fourth-order tensor with symmetry axis s, the harmonic polynomials are

H®(r) = 8H,r* P,(§'1), (14a)
H®@) = —2H,r* P,(8"p), (14b)
H(r) = Hy, (14c)
K@) = —2m,rP Py(8'E), (14d)
hO(r) = h, (14e)
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where P,(cosA) is the Legendre polynomial of order £ and A = acos(s' r) is the angle between
r and s. As shown by Backus [1970], the three polynomials { HY ¢ =0,2,4} represent the
totally symmetric part of C, whereas the two polynomials {h(l) : £=0,2} represent its
antisymmetric part. The elastic constants in (10) are related to the coefficients H, and /s, by

a = 3H, + 6H, + 3H,, (152)
b = Hy+2H, + Hy + 2y + g, (15b)
¢ = 8H, -12H, + 3H, (15¢)
f = -4H, - Hy+ Hy~ Iy + by, (1)
z=-4H4-H2+HO+%h2--;-hO, (15€)
m=H4+2H2+HO—h2—%hO. (1)

(Here we have corrected some errors in equation (34) of Backus [1970].)

To complete the functional relationship between C and s, we specify the elastic parameters to be
monomials in the vector length s:

Hy(s) = Hys", hys) = hys", (16)

where 7 is a non-negative integer that is constant for all /. We call this additional model
parameter the strength exponent. In the case n = 0, the harmonic coefficients are independent of
position, and C;;{X) is a constant tensor rotated to have an axis of symmetry s(x).

Voigt Average. The Voigt average is the expected value of the elasticity tensor, Ejk, =
( C}jk,(x)), which can be calculated directly from the expected values of the harmonic
polynomials. The latter can be expressed as sums over the integrals

f s" Py(cosA(S)) p(s)dV(s). (17)
Integrating the Legendre polynomials term-by-term yields

H®(r) = H, (351 -30L" +3I)r* Py"r), (18a)
H?®) = -H, L - I])r* P,(E"r), (18b)
HO@) = HyI}, (18c)
RO = —h GBI - IJ)r? B@E™D), (184)
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hOr) = k. (18e)

Hence, the Voigt average is transversely isotropic with a vertical symmetry axis, as expected for
a random medium whose statistics have this symmetry. The integrals appearing in (18) are

Z (&) f[l . (52 l)x ](n+3)/2 dx (19)

We give explicit forms forn =0, 1:

I =1, (20a)

L == S asinhyE -1 - 1|, (20b)
3 —1k,l§2 1

0 0

T _1)(1 310), (20¢)

I} = =5 atan JE7 1 @1

[ ) -4 a)
EZ-1

1__ 1 (a1 1

L=k 3), @1b)
1 (1

I = gT-_l(E -312‘). 21c)

Application to the Upper Mantle. We have applied this theory to the interpretion of the
anisotropy observed by Gaherty and Jordan [1995]. Their model AU3 has a radially anisotropic
region extending from the M discontinuity at 30 km depth to the L discontinuity at 252 km
depth. The magnitude of the anisotropy in such a transversely isotropic model is measured by an
S-wave anisotropy ratio, (vsy—Vsy)/ Vgy, and a similar ratio for P wavespeeds. At the base of
the AU3 anisotropic region, these ratios are both about 4%. In comparison, the anisotropy ratios
calculated for a pyrolite mineralogy in which the olivine and pyroxene crystals have been
completely aligned by shear deformation in the horizontal plane (but randomly oriented within
that plane) is about 7% [Estey and Douglas, 1986]. Within the context of our stochastic model,
this type of average corresponds to § = o, describing the (geologically unexpected) situation
where all the s vectors are horizontal. As & decreases, the anisotropy ratios decrease, achieving
values comparable to AU3 for & =2-3. Figure 3 shows this behavior for the Voigt average in the
case where n = 0. An anisotropy aspect ratio of this magnitude is geologically reasonable,
although it must be admitted that not much is known from direct observation about what & should
be. The results in Figure 3 at least suggests that our approach to the stochastic modeling of fine-
scale upper-mantle structure might be on the right track.
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Figure 3. Plot of the P-wave anisotropy, (Vpy— Vpy ) / Vpy , versus the S-wave anisotropy, (vgy~Vey)/ Vey. The
point with the 1-o error ellipse is the upper-mantle value from model AU3 of Gaherty and Jordan [1995]. The large
square is the value calculated by Voigt averaging the hexagonally symmetric pyrolite model of Estey and Douglas
[1986] assuming complete crystallographic alignment in the horizontal plane (& = ). The small squares are Voigt
averages for a strength exponent n = O at integer values of the anisotropy aspect ratio &, showing how the apparent
anisotropy decreases as the local orientation becomes statistically more isotropic. This calculation suggests that the
value of §approprate for the Australian upper mantle is on the order of 2 or 3.

Our analysis is not complete, however. The one-point probability density p(s) is independent of
the two-point correlation parameters; hence, the Voigt average depends only on the aspect ratio
of the anisotropy & and the strength exponent n. On the other hand, the effective anisotropy
sensed by low-frequency waves must also be dependent on the aspect ratio of the heterogeneity
n. This illustrates the well known fact that the Voigt average can be a poor approximation to the
effective elasticity tensor governing low-frequency wave propagation [Backus, 1962; Berryman,
1994].

Self-Consistent Effective Media Theory: The Second-Order Born Approximation. Better ap-
proximations can be obtained from self-consistent theories of effective media based on an

integral-equation formulation of the scattering problem. This technique was developed and first
applied to polycrystalline aggregates by Korringa[1973], and Zeller and Dederichs [1973]; see
reviews by Gubernatis and Krumhansl [1975], Domany et al. [1975], and Berryman [1994]. In
the long-wavelength limit, the time derivatives of the dynamic displacement field commute with
ensemble averaging, so that the effective elasticity tensor

tjkl = {0, ,><8k1> (22)
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can be calculated from the static problem. The development of these theories begins by
expressing C; jk,(x) as the sum of a constant tensor C, 1 and a perturbation 6C; Jk,(x) then, the
condition for static equilibrium can be put in the form of a Lippman-Schwinger equation

e,-j(x) = s,-(])-(x) + fGijk,(x,x‘)éCk,mn(x‘)emn(x')dV(x’). (23)

Gijy; 1s the strain Green's function corresponding to C;;/(X). In operator notation, this equation
can be written as € = €9 + G dC € and solved iteratively via a Born series. The series can be

summed to obtain

g =¢" + GTSO, (24)

T = 8C(I -GdC)! = 8C + 8CGHC + dCGICGIC + ---. (25)

The fourth-order tensor defined in (25) is equivalent to the 7 matrix of quantum mechanics, and
the nth-order term in its series (Born) expansion expresses the scattering process of order n - 1.
Using (24) in (22) yields the exact solution

C=C’+ad-{GTHNT). (26)

Because the exact evaluation of the second term in (26) is infeasible (e.g., G must be calculated
for C(x)), we resort to a self-consistent approximation: C”, which has thus far been arbitrary, is
chosen to equal C, so that (26) is recovered if (T) 0. Substltutmg the Born expansion in (25)
generates a sum in which the nth term is a contraction of the (n-1)th outer product of G against
the n-point moment of 8C.

Truncating the Bomn series at first order yields the Voigt average, C= C To obtain a better
approximation, we have carried the expansion to second order. Since C-C ~ O3C), the
second-order Born approximation takes the form of an implicit integral equation,

Cijkl = ijkl+prqrs(x)q/iqurskl(x)dV(x)v (27)
where Gp rs 18 the strain Green's function for a transversely isotropic medium with a constant
elasticity tensor C, x> and V0, are the components of the eighth-order, spatially stationary
covariance tensor ‘V(X) = Ccclx),

14 ijklpqrs(x) = ([Czjkl( x')- E’ijkl][cpqrs(x' +X)- qurs] > . (28)

YV (x) can be evaluated from the Backus harmonic decomposition (12) by integrating two-point
products of the harmonic polynomials against the joint p.d.f. p(s',s'+s). This allows us to fully
exploit the transversely isotropic stochastic symmetry of the C field. Moreover, we can obtain
considerable simplifications by rewriting the second term in (27) as an integral over the
wavevector k; e.g., the 3D Fourier transform of G(x) depends only on k, and the spatial
derivatives in (12) reduce to multiplications by k;,. We are currently developing an iterative
method for calculating (27) using this approach.
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