
UNCLASSIFIED

Defense Technical Information Center
Compilation Part Notice

ADP023717
TITLE: On Software Protection in Embedded Systems

DISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:

TITLE: Proceedings of the ARO Planning Workshop on Embedded
Systems and Network Security Held in Raleigh, North Carolina on
February 22-23, 2007

To order the complete compilation report, use: ADA485570

The component part is provided here to allow users access to individually authored sections
f proceedings, annals, symposia, etc. However, the component should be considered within

[he context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:
ADP023711 thru ADP023727

UNCLASSIFIED

On Software Protection in Embedded Systems

Jisoo Yang and Kang G. Shin
Department of Electrical Engineering and Computer Science

The University of Michigan
{jisooy,kgshin} @eecs.umich.edu

Abstract Many applications need to protect secret/confidential in-
We argue that the conventional privilege separation of formation, but once an attacker seizes the control of the

a processor has inherent limitations in protecting soft- OS, it is very easy for the attacker to observe/steal the in-
ware with higher security requirements, and hence, a new formation. Any effort to further protect the information
system of protection should be devised to overcome these will be futile as the attacker can exploit the OS's power
limitations. To enable the new protection, an operating to subvert, reverse-engineer, or simply disable the pro-
system needs to be restructured into two layers: the secu- tection mechanism.
rity kernel which implements the new protection system, Second, verifying the correctness of an OS is becom-
and the management kernel which manages resources. ing intractable as its size and functionality continuously
The security kernel protects the applications even when grow-even in an embedded environment-to meet the
the management kernel is compromised. The security increasing demand for more features. Today's mobile
kernel should be made very thin and simple, thus mak- phones, for instance, require some features comparable
ing it suitable for small devices like handsets and smart to those of PCs. Unfortunately, it is difficult to reduce the
sensors & actuators. growing OS verification need due to the coarse-grained

user/kernel separation, where every privileged code has

Limitations of Current Software Protection unlimited power and thus, is subject to verification.
Third, the user/kernel separation generates trust de-

With increasing computation power and storage capac- pendencies among software components, which do not
ity, many embedded systems are adopting the paradigm generally correspond to the relations of the component
of user/kernel separation of a processor [3] to provide providers. This mismatch incurs assurance overhead and
better software protection and management. This protec- generates unwarranted conflicts of interest. For example,
tion paradigm is characterized by a complete separation user applications must trust the OS. To trust the OS, the
of privilege. Code executing in user mode (i.e., applica- application providers need assurance of the OS's trust-
tions) is prevented from performing sensitive operations, worthiness. For the assurance, a complete and unbiased
whereas code executing in kernel mode (i.e., operating validation of the OS is necessary, but doing so generally
system) is considered privileged and hence, given unlim- goes against the interest of the OS provider due to the
ited power. cost of validation and the risk of exposing the system to

This simple protection mechanism is effective in pro- others.
tecting the operating system (OS), but it does not serve
well the security needs of user applications. In an em-
bedded environment, where applications usually perform Challenges in Designing New Application
critical operations and carry sensitive data, the applica- Protection
tion must be protected as strongly as the OS. Although
the OS provides certain protection to the applications, We argue for the need of another system of protection
there are inherent limitations with the simple user/kernel that can deal with the above limitations. The new system
separation and complete reliance on the OS for the appli- should be able to protect applications even in the case
cation protection. of OS compromises, reduce the size of code required for

First, there is no effective second-line of defense that verification, and break the trust dependencies between
applications can resort to in case the OS is compromised. software components. To design and implement such a

protection system, we must overcome the following chal- but also realizing hardware extensions or implementing
lenges. system services without actually changing the real ma-

The first challenge is to define an appropriate threat chine [1]. The VMM is more privileged than the OS and
model for user applications. We need to identify the its perimeter is safe. Therefore, the security kernel can
security properties that the applications/users want for be implemented inside of the VMM.
protecting their information/data, so that the new pro- Although we can implement the security kernel by
tection mechanism can preserve themselves even if the modifying a full-fledged VMM such as Xen [2], a full
OS were compromised. Unfortunately, our problem is VMM is not necessary as we do not have to run multi-
not in the secure communication domain, and thus, it is ple OSes. Instead, a lightweight security kernel is pre-
difficult to borrow familiar security properties from that ferred only by using the techniques and constructs re-
domain. Also, we need to avoid over-protection for sim- quired to enable the hardware extensions and to safe-
plicity. Therefore, we need a threat model that represents guard the VMM's perimeter.
the problem domain and captures essential security needs
of the applications. Impact and Outlook

The second challenge is to preserve the OS's usual
management power. With the new protection, however, The new software protection system will make long-
the OS is restricted somewhat; the new protection sys- term impacts since it relaxes many assumptions currently
tem enforces certain rules and the OS is prevented from made when software systems are composed. For in-
performing actions against the rules. However, the re- stance, the management OS is no longer assumed to be
striction should not obstruct the OS from performing a trusted, thus creating opportunities for design of ambi-
legitimate management job. tious distributed systems which were risky under the as-

The third challenge is to find an implementation that is sumption of trusted OS. Also, existing software systems
small and simple to verify. With the new protection, the can be retroactively redesigned to exploit the enlarged
OS can be verified less stringently, since applications can design space, thus making them more reliable with min-
still be protected even when the OS fails (as a result of its imal additional effort.
compromise). However, the mechanism that implements
the new protection should be fully trusted, and hence,
the correctness of the implemented protection is critical Conclusion
to the security of the entire system. The conventional user/kernel separation is not sufficient

to meet the growing demand for software protection in
Security Kernel embedded systems. We argue for the need of a new

protection mechanism that can protect user applications,
The new protection requires a different OS arrangement lessen verification overhead, and break trust dependen-
which consists of two layers of kernel: security and man- cies. The new protection is enforced by a 'security ker-
agement kernels. Running with complete privilege, the nel' which can be realized as a lightweight software layer
security kernel is a very thin layer that only implements using virtualization techniques, making it suitable for
the new protection system. It must be fully trusted and small devices and embedded systems, such as handsets
must thus be rigorously verified. The management ker- and smart sensors & actuators.
nel, responsible for resource management and schedul-
ing, is a restricted version of a conventional OS. As References
it runs on top of the security kernel, applications are
still protected from any compromise in the management [1] Peter M. Chen and Brian D. Noble. When virtual is better than real.
kernel. In this sense, it does not have to be trusted In Proceedings of the 8th Workshop on Hot Topics in Operating

and verified. Both security and management kernels Systems (HotOS), May 2001.

are protected from user applications by the traditional [2] Boris Dragovic, Keir Fraser, Steve Hand, Tim Harris, Alex Ho,
Ian Pratt, Andrew Warfield, Paul Barham, and Rolf Neugebaer.

user/kernel separation. Xen and the art of virtualization. In Proceedings of the 19th ACM
Since it is small and simple enough, the security kernel Symposium on Operating Systems Principles (SOSP), pages 164-

can be realized entirely with hardware. Equipped with a 177, Oct 2003.
circuitry that implements the protection logic, a proces- [3] Jerome H. Saltzer and Michael D. Schroeder. The protection
sor can extend its ISA to expose a programming interface of information in computer systems. Proceedings of the IEEE,

for the management kernel and user applications. 63(9):1278-1308, Sep 1975.

A software-only solution is also possible by using
virtualization techniques. A virtual machine monitor
(VMM) is capable of not only running multiple OSes,

2

New Direction for Software
Protection in Embedded Systems

Kang G. Shin

Department of EECS
University of Michigan

Feb 22, 2007

Background

® Why application software protection in
distributed embedded systems?

In embedded systems, application programs perform
mission-critical tasks and carry sensitive info
Privacy/integrity of these applications is critical to the
security and robustness of any distributed embedded
system

I Current approach: have the OS protect the
applications

E.g., OS provides process isolation, crypto services, etc.
Apps must trust OS. OS should be protected by
hardware

Processor protects OS via user/kernel separation

My Position

Classical user/kernel separation is too
coarse to confidently protect app
software with high security needs.
The limitation should be overcome by
creating a new protection system.

Classical User/Kernel Separation

Kernel mode User mode

Processor state with privilege Processor state without privilege
- Execution mode for OS - Execution mode for applications
- Ability to execute all instructions - Can't execute system instructions
- Vnrestricted access to hardware - Petricted access to hardware

I An autocratic model for separation of power: the kernel code
executes with absolute power

I Entire security of the system hinges on the trustworthiness of the
kernel mode software (i.e., OS)

I Effective for protecting OS, but this simple dichotomy is too
coarse and there are several limitations

4

2

Limitations of user/kernel Dichotomy

1. No defense against OS compromise
There is no effective 2nd line of defense to applications
Further protection of applications is meaningless as the
attacker can easily disarm any protection mechanism

2.Difficult to reduce the OS verification overhead
Trend: OS is becoming larger and is from diverse sources
The dichotomy dictates any code that requires even
slightest privilege must execute in kernel mode, where
the code is subject to complete verification

3.Undue trust dependencies
App vendors require OS vendors not to spy on the apps
Apps must trust every component of OS
Every OS component must be validated (e.g., device
drivers)

5

New Directions for Software Protection

Need a new protection system
Protect applications even in case of OS compromises
Lessen the kernel verification overhead
Break trust dependencies

" Challenges in designing such a protection system
Identifying an appropriate threat model

a Model that captures essential security needs of apps
Preserving OS's management power

d Restriction by the new protection shouldn't obstruct OS's job
Finding a small and simple enforcing mechanism

d Implementation must be easily verifiable

" My proposal: Separate security from management
The new protection system protects privacy/integrity of apps.
It is implemented by a 'security kernel' (continue)

6

Security Kernel vS. Mgmt Kernel

A pp A pp Secu.i.y ke\ne I
directly protects
the applications Management Kernel

Hardware Trust Base Hardware

Traditional layout Security kernel approach

® Traditional OS - Security kernel + Management kernel
® Management kernel is responsible for resource management

Security kernel is a thin layer enforcing the new protection system
It directly protects privacy/integrity of applications data
Applications are protected even if the management kernel is
compromised

f Management kernel doesn't have to be trusted by applications

7

Implementation Alternatives

App App App [j A TO TO TO

Ke.... i ernel IMmteKernel arlize deploy
Mqmt Kernel (vM I l)~c re e.

VMM with t n Hardware Easy Hard Hard

Hardware with rtectin ic ecurity Kerne VMM Hard Easy Easy

nrtectin logiJ Hardwa re Hrware standalone Easy Easy Easy

1. Hardware 2. VMM 3. Standalone

1. Hardware
Processor is modified to implement the protection logic

2. Software: Using virtual machine monitor (VMM)
A VMM, sitting between HW and OS, can be utilized
Due to size/complexity, verifying the VMM is challenging

3 Software: Standalone security kernel
A thin layer implementing only the protection system
Can be made small and simple, thus easy to secure

8

Impact
® Paradigm shift in designing secure distributed

embedded systems
The new application protection system relaxes many
assumptions currently made
To ensure the security of application software,
management OS no longer has to be trusted
It enables implementing ambitious distributed systems
which were too risky under the assumption of trusted OS

9

Conclusion
® Another system of protection is needed to

overcome the limitations inherent with the coarse
classical user/kernel separation.

® The protection system must
Protect applications even in case of OS compromises
Lessen the kernel verification overhead
Break trust dependencies

i We have been exploring approaches for
implementing such a protection system

10

5

