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Abstract - A mixed element approach using these techniques is formulated using an
right hexahedral elements and right prism integral equation (JE) and implemented using
elements for the finite element-boundary the Method of Moments (MoM) or one of its
integral method is presented and discussed variants. One particularly relevant example, a
for the study of planar cavity-backed spiral antenna, is given in [0]. While this
antennas. The mixed element method is method is highly accurate and well studied, it
shown to decrease the required suffers from the fact that it produces fully
computation time for geometrically dense matrices leading to memory demands of
constrained geometries by reducing the O(N2) and computational complexity of
unknown count on the open aperture on the O(N3) where N is the order of system. In
cavity. By reducing the unknown count on
the surface, the memory and computational addition, the most efficient MoM formulations

cost associated with the boundary integral are based on surface equivalence and hence

portion of the solution is decreased versus are restricted to piecewise homogeneous

solutions using only prism elements. The materials.

accuracy of the mixed element approach is
shown to be comparable with that of a Recently, techniques have been developed to
single element approach, especially for far reduce the computational complexity of
field parameters such as radiation pattern integral equation formulations to O(Nlog2 N)
and radar cross section. by exploiting the fact that many of the

unknowns are physically distant from other
unknowns [0]. A different approach, the

I. INTRODUCTION Finite Element (FE) method [0-0], is based on
a partial differential equation (PDE) approach

Efficient numerical modeling of antennas is an and therefore leads to very sparse system
integral part of the antenna design process. matrices that can be stored and solved in a
Numerical modeling can aid in the rapid very efficient manner. In addition, since it is a
design of an antenna prior to prototype PDE-based approach, the FE method readily
fabrication, therefore drastically reducing the permits analysis of inhomogeneous materials
design time and reducing cost. One of the in an antenna design. However, the FE
challenges inherent in the numerical modeling method does not enforce the Sommerfeld
of antennas is how to model the antenna in the radiation condition for electromagnetic waves
most accurate, yet efficient manner. as part of its formulation and hence is

susceptible to spurious reflections from the
Various numerical techniques have been used mesh truncation surface. To solve this
to model antennas with size on the order of a problem, often local conditions, such as an
few wavelengths. One of the most popular of absorbing boundary condition (ABC) or
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Perfectly Matched Layers (PML) are used. combined with the flexibility of prisms to
These methods are particularly useful for reduce overall complexity of a solution.
scattering calculations since the Radar Cross
Section (RCS) is a far-zone quantity and hence This paper presents the mixed element
the effect of local errors on the solution tends formulation as applied to three-dimensional
to be diminished via integration. Solution cavity-backed antennas. Section II of the
accuracy is a particular concern for antenna paper develops the theory for the mixed
modeling using such an approximate condition element formulation. Section III shows some
since important antenna parameters (e.g. input numerical results comparing the mixed
impedance, mutual impedance, etc.) depend on element formulation with the single element
accurate local field solutions. A technique formulation. Section IV compares the
combining the FE method and an integral computational time required for the two
equation, termed the Finite Element-Boundary methods. Section V presents some
Integral (FE-BI) method, is an attractive conclusions and future directions for this
alternative since it implements an exact work.
relationship between tangential electric and
magnetic fields on the mesh boundary as well H. FORMULATION
as the Sommerfeld radiation condition [0-0] Figure 1 illustrates a cavity-backed aperture
via a properly constructed Green's function. A lying in an infinite, metallic groundplane. The
third approach uses a harmonic expansion of computational, and antenna, volume is denoted
the exterior field as a mesh closure condition by V while the aperture is denoted by S. The
[0]. An excellent summary of these various portion of the groundplane, including any
conditions is given in [0]. metal in the aperture, is indicated by Sper The

fields within the computational volume areHowever, the FE-BI method suffers from a denoted by (Ein, Hn hl xenlfed

well-known drawback: The boundary integral (Ent ) while the external fields

portion of the system takes up the majority of are indicated by (EeXt Hext). The material
memory and time for solution. In two within the cavity may in general be
dimensional cases, the use of triangular inhomogeneous and anisotropic; however, for
elements on the surface of the geometry to this work a simplified formulation assuming
achieve the greatest modeling flexibility can isotropic materials is presented. Expressions
lead to electrical oversampling which causes for anisotropic cases can be found for prisms
larger than needed memory demand and in [0] while expressions for hexahedral
computational time. Quadrilateral elements, elements may be similarly developed.
while not as flexible in modeling, can be used s
to reduce the unknown count for some cases / • ,EH

[0], e.g. narrow slots. The mixture of
triangular and quadrilateral elements can
therefore allow a flexible modeling solution
while reducing the effects of oversampling.
For the case of three-dimensional cavity- V (
backed antennas, quadrilateral elements can be
extruded into right hexahedral elements while
triangular elements can be extruded into right
prism elements. Hence, the volumetric
efficiency of quadrilateral elements can be Figure 1: Cavity backed aperture recessed in an

infinite ground plane with multiple loading layers.
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This type of geometry represents flush- function of the second kind, 2 is taken to
mounted cavity-backed antennas where the e2i

local surface in the vicinity of the antenna is be the half-space Green's function [0].

planar. Antennas found in this type of The unknown electric field is expanded

configuration include both narrow bandwidth using the same functions as used for testing

apertures (e.g. microstrip and slot antennas) as (e.g. Galerkin's method) is
N

well as wide bandwidth apertures (e.g. packed E'= L EjLj (2)
elements such as I-dipoles as well as spiral and j=1
log-periodic antennas). A systematic modeling where Ej indicates complex-valued unknown
of these antennas through the use of highly expansion coefficients. Inserting (2) into (1),
efficient computational algorithms is important the final expression is given as
to determine the optimal configuration of these
systems. N l,(VxLý).(VxLj) dV-/6,.j.Lj dV

The problem domain is separated into two j= I(
distinct regions, the region composed of the ,4 " Js Js.(2xG2(, yli,y')xý)-Li
interior volume of the geometry, and the (_jk3 f)1, ,,"dV.
region composed of the surrounding free space Ji
area above the ground plane. The interior, FE, This matrix equation is separated into two
region is then coupled to the exterior, BI, parts, one representing the finite element
region by enforcing tangential magnetic field portion, written as IF, and the other
continuity, fi x Hxt = fix H"-, on the aperture representing the boundary integral portion,
surface (S) while tangential electric field written as IT as
continuity, fix Eext = f1 x Eint, on that same
surface is assured via the use of similar basis 1 f(V x L). (V x L j ) dV
function for the interior and exterior-- v
representations. The final hybrid expression, ko2r.J L L d V (4)
usually known as the finite element-boundary = ,
integral equation, is given by Ij =

v (VxI ).(VxE) dV-/gef If .1  dV- -k4 i5sLi .(•X k 2(x,y x',y')x•).L. dS'dS

f 2 (5)JJ .(2x&(xyiYI )x2)e dS~ S= where the latter has support only when both
test and source edges lie in the aperture. These

-jko fv4.,•.P dV (1) integrals represent the matrix entries in the
following linear system

where Li is the vector testing function iFFE +B1I IIY S• fO
associated with the ith row while JPP Iij +i Ii ji FE iFE fm`t (6)
represents an impressed current source as the Ij iF IiI E it j f
antenna feed. The relative material parameters,

•r and •, are associated with each element where E indicates unknown field expansion
and may vary on an element-by-element basis coefficients associates with the aperture
while ko and Z0  are the free-space surface, E"t are the expansion coefficients for
wavenumber and wave impedance, the interior basis vectors and fjlf is the
respectively. The electric dyadic Green's excitation term associated with an interior
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current source. Evaluation of (4) and (5) disadvantage of oversampling the aperture and
require specification of the basis functions, therefore inefficiently using resources. Figure
Li. These will be different for the different 2 illustrates one possible realization of a right

types of elements used in the mesh; hence their prism element where the local node numbering

wi of 1  o scheme is shown along with the encircled localwill be two different specifications of I•E one eg ubrn ceeedge numbering scheme.
for prisms and one for hexahedra, and four 3
different specifications of IBi to represent all T
possible combinations of surface element 2

coupling. The functions for a right prism are
presented first followed by those for a right
hexahedral. Cz

Right Prisms
Right prism elements have been used
successfully in the FE-BI method in the past
[0]. These basis functions posses the required 6. 4
properties to be used in the FE-BI method.
They enforce tangential field continuity across
element faces and are curl conforming. The
elements used in this work are also
divergence-free and CT/LN elements [0].

4

Prisms have the advantage of providing great Figure 2: Right prism element shown with its defined
flexibility in modeling geometries that are local nodes and local edges (encircled numbers).
irregular in two dimensions but regular in the The nodes are ordered in a counter-clockwise
third dimension, such as cavities recessed in direction in order to ensure that the normal
ground planes, the case presented here. Prisms vector of the element points towards the top of
also have the advantage of making it quite the element and therefore points out of the
simple to extrude a three-dimensional mesh computational volume in the aperture of a
from a two-dimensional mesh composed of cavity-backed antenna. The edge-based
triangles. In addition, the prism basis expansion functions for the prism element are
functions are derived from the two derived from the Rao-Wilton-Glisson (RWG)
dimensional basis functions for triangles so basis functions for triangles [0] with a linear
they reduce to the two-dimensional triangular depth variation to allow for three-dimensional
basis functions used in the boundary integral; support. Assigning prism vector expansion
hence, prisms are similar to triangle elements functions as L = W,, the nine vector functions
and therefore automatically enforce the associated with the prism are given by
essential boundary condition in the aperture.
However, for some geometries such as narrow
slot spiral antennas, prism elements have the
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WzV - (z-z) is, ~ ~,•(~•i

z z I C e [ ( z = 1 , 2 , 3 ,Wz=Mi-(zi -z) lisi [(x-xJ)ý-(y-yi)i'] "=4,5,6,

c 2S' "= 7,8,9,

W = Ks =Z-•[(XklYk2-Xk2Ykl)+(Ykl--Yk2)X+(Xk2--Xkl)Y],

(7)
where 1i is the length of the ith edge, s, is the Right Distorted Hexahedrals
sign of the ih edge to ensure field continuity A common example of a regular hexahedra
betweenelemensi ofar the edgegcon y element is the brick element where all the
between elements , (x,, y4) are the global edges are either parallel or orthogonal to any

coordinates the local nodes, (z1 ,z,,) are the other edge in the element [0]. Distorted
global coordinates of the upper and lower hexahedral elements have edges that are not
faces of the prism, c = z, - z, is the height of necessarily parallel or orthogonal to the other

edges. Distorted hexahedral have been used by
the prism, and Se is the area of the triangle [0] and discussed in [0]; however, not in
that forms the top (or bottom) of the prism. For conjunction with other elements. The edges
the vertical edges, k1 and k2 are defined in in the extrusion direction are orthogonal to the
Table 1 quadrilateral element used to form the
Table 1. Definition of the indices used to construct hexahedron. Distorted hexahedral elements are
the vertical prism expansion functions, important because they have the ability to

X ki k2 model irregular surface geometries with
7 2 3 potentially fewer edges than prisms (e.g.

narrow slots). This leads to less computational
and memory demand for the same geometry
modeled with hexahedral elements as opposed
to prism elements. Distorted hexahedral

where X is the local edge number and (kI k 2  elements, however, have the disadvantage of
indicate local nodes. The curls of these basis not having closed-form matrix entry formulae
functions are defined as and hence require more computational effort

as compared to prisms with similar field

"xV. = - -7iS-[(x - x.)i + (y - y,)ý - 2(z - z')j], representation capability.

The basis functions used for hexahedral
V×M = s[(x-xi)i+(y-yi),+ 2(z, -z)M], elements are the so-called rooftop functions.2cSe

"Rooftop basis functions are most often used in
VxK• M [(xk2 xkl)X+(Yk- Yk2)Y" brick elements [0-0]. Brick elements are very

easy to use but suffer from the fact that they
(8) can only model Cartesian-type geometries

Note that these expansion functions are effectively. In order to model more irregular
functionally identical to [0]; however, since geometries distorted hexahedral elements can
they are expressed in global rather than local be used. Due to their distortion however the
coordinates, it is relatively easy to use these integrals in (5) can be very difficult to
functions in conjunction with anisotropic compute numerically. Numerical integration
materials specified in terms of global over brick shaped volumes is readily
properties.
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implemented and for this reason it is mapped into a brick before integration.
advantageous if a hexahedral element is
Figure 3 shows the transformation of a distorted hexahedral element in the (x, y, z) coordinate
system to a unit cube in the (4, n, q) coordinate system.

4 4 3
3

11

S.... .8 . ...... ........ ...... ......

7
5 6

6
5

z

Y~ L i

x

Figure 3: Hexahedral in (x, y, z) coordinates mapped into a cube in (4, 11, ;) coordinates.

where the edges of the hexahedral and the for the edges parallel to the • direction
brick are defined in Table 2. N ý!'.I + i4)(1 + )V 7
Table 2 : Local edge numbering for a distorted 8
hexahedral element. (10)

Edge Node 1 Node2 for the edges parallel to the Ti direction, and
1 1 2 finally
2 3 4 N is
3 1 4 8
4 2 3 (11)

5 5 6 for the edges parallel to the ý direction, where6 7 8

7 5 8 1, denotes the length of the ih edge. Based on
8 6 7 the definition of the gradient, these equations
9 1 5 can be equivalently written as
10 2 6
11 3 7 N, + mix1 +i
12 2 6 8 "

N. =JsAi(I + 4 + QiOr',
From [0] the vector edge-based basis functions 8 =1
can be writtenlas Ni =isi(I + asilix, + 4iýý.

N -- Lf(l + r/,N/)( + (',(")V 8"

l (12)
(9)
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Therefore, the basis functions for hexahedral using one element or the other, the two types
elements are now defined in the mapped of elements can be combined. This allows the
coordinate system where numerical integration use of prism elements where their flexibility is
can be performed over a cube rather than a needed, such as at sharp contours and areas of
hexahedral volume, rapid varying fields, while still allowing the

use of hexahedral elements where fewer
The integrands in (5) are still represented in unknowns are needed, such as areas of slowly
terms of global Cartesian coordinates. varying fields or for narrow slots. Only a few
Defining the Jacobian matrix as additional equations need to be introduced in

ax ay az order to make this mixed element formulation

a ý a ý a ý possible. To be more specific, only the
boundary integral terms where a prism edge is

= a x ay a Z interacting with a hexahedral edge need to be
a9q a7 a q 1 C derived.
ax ay az

a; a a The equations for mixed element interactions
via the boundary integral can be derived by

(13) using the basis functions for the triangular and
the elemental volume of the integral can be quadrilateral elements in (5). For the case
written as [0] when triangles are used as test elements and

quadrilaterals are used as source elements, the
dV = dxdydz = det[J]d~dird4 . following equations are used

(14) F•1 = • [lr. I ^ I^ T- •,1 , -/f

From [0] the following vector operations can
be defined 2zS-1_1 R

1.(VXN) I aN7 aNf 1 (17)

det[J] aý a q 1' ]kdýa,
(15) z--R

1y~__(5 (18)
(VXN -det[J] where R = /(x- x')2 + (y - y,)2

-i-i -_ aViW (16)
ra-4' +ql-a- +A . Conversely when quadrilaterals are used as[V aJ] test elements and triangles are used as source

elements, the following equations are derived.
The above equations can be used to derive the 1) 9 1 1 -eV
equations needed to implement the FE-BI J1JE=r (+)je d)d [J.]d~dd1dr,
method using hexahedral elements. ('1R
Mixed Element Formulation (19)1!!kcR
Traditional formulations of the FE-BI method //'(2)= 1 r.(jxI.)V.
use one of the previous two elements __ jjj R

described as the sole type of element used to (20)
model the geometry. This works well in Using the following relations
practice and many implementations of this us (OaNf aN ,
type have been successful. Each method has V . (2 x N1 ) = a (21)
its advantages and disadvantages as described det[J•] a. ar )
previously. To gain benefits not obtainable
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V *(ix W,) - , (22)
Sie

the equations needed to implement the mixed element formulation are written

ýP Bl(1)- gliljsisj l7A delj ] C• •d-]-JI@jI•l k~16zS- 1 J-J J'(l+?q)[L(x' -x 1 ) -(Y'-~Ys)=&1- det[J0 ]d 6d~dij'

1 6k Se (1+77[) (x' )L_(y, _y.)rll -

= () J'det[J.]dS'dqdi1

- Moreu -yj Prsm 0-
16Z0ý Mor1u -1 5d ay &IoR

and 1iss q'J R (23)0• i e t[j ,d & , (3

~pj:BI(1) - ' jisj' 11S'~d -15-)-•
U -- o

,1p fBI(2)= liii M+-2U0 - p

S[ e 'J --dS'd~d71,-'s-1-1

r P 7 •: ( I)= Tiil Isi I~i a4 ei[o d-eS' [Jdl ,:°R•&7

where p S denote acte eithR t-1e-1-1 S R2) o

1 jko R 2

;= _ _I~ I ý [f: - --Sd'd rl' ,

I°" 8;rSi -1 -1 R-,

8 Se s -1-1 R3 3.2 3!4 3!6 38 4 4.'2 4.4 4'6 4'8 5

wher p dnote thefac theeithr th tes orFrequ-n,¢[GHzI
source edge are associated with a test Figure 4: Radar Cross Section of a 6cm x 5cm x 2cm
element. prsm cavity with a 3cm x 2cm slot aperture, 00-pol.

III. Numerical Results -15

To validate this mixed element, formulation, -N

two simple test cases were constructed. The
first was a 3cm x 2cm slot antenna cut into a .. .
6cm x 5cm x 2cm cavity. The cavity was [-o

filled with a dielectric material with a
dielectric constant of Fr = 2.17. The geometry
was modeled once with only prism elements -40

and a second time with a mixture of prism r
elements and hexahedral elements. The RCS .2 34 1. 38 4 42 4... 486...

of this antenna is shown in Figures 4 and 5. Figure 5: Radar Cross Section of a 6cm x 5cm x 2cm
cavity with a 3cm x 2cm slot aperture, pq(p-pol.
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The results above show that the mixed element The above results show that the mixed element
formulation is nearly identical to the single formulation again matches the prism-only
element formulation when modeling the radar formulation results very closely. Different
cross-section of the slot antenna. mesh densities around the feed point for the

two different methods cause the discrepancy in
The second test case consisted of a 3cm x 2cm the value of the input resistance at the resonant
patch antenna residing in a 6cm x 4cm x point of the patch antenna. Due to the extreme
0.0762cm cavity filled with a dielectric local nature of input impedance small changes
material with er = 3.2. The patch antenna was in electric field values caused by slightly
excited by a probe feed located at x = 3cm, y = different sampling rates at the feed point can
2.1cm. As with the slot antenna this antenna lead to moderately different results for the
was modeled once with only prisms and again value of the input impedance. Also, probe
with a mixture of prism elements and feeds such as the one used in the above
hexahedral elements. Figure 6 shows the example can be extremely sensitive to small
radiation pattern of the patch antenna at 5.4 changes in the field, which makes them
GHz and Figure 7 shows the input resistance somewhat unreliable for accurate simulations
of the probe feed from 5-6 GHz. of input impedance value. The most important

0 result in the above example is that the structure
has a resonant point at the same frequency

-10 using both the prism element formulation and
the mixed element formulation.

-20

-r2vM-- IV. Solution Efficiency Comparison
To compare and contrast the computational

-40 demand required to model geometries with
only prism elements as opposed to a mixture
of prism and hexahedral elements a few, more
complex, cases were considered. These cases

___0_ were chosen since they represent a class of
-100 -80 - - -20 0 20 40 0 0 100

e Pr'o] problems where the triangles used with prisms
to represent the aperture, "oversample" the

Figure 6: Normalized radiation pattern for a 3ca x aperture from an electromagnetic viewpoint.
2cm patch antenna in 6cm x 4cm x 0.0762cm cavity. This is best understood by considering a

narrow slot antenna. Since the electric fields in
-'0 7 the slot have only a component perpendicular

to the slot sides, quadrilateral elements very
efficiently model this slot. In contrast, using an
identical sampling density, triangle elements

10 o would require one additional degree-of-
"freedom (e.g. edge) per equivalent

50 quadrilateral element.
The first of these cases included a four-arm

.4 5. So.8.. 6 5 spiral antenna with one, two, and three turns.

The second was an I-dipole array consisting of
Figure 7: Input resistance of a 3cm x 2cm patch one, four, nine, and sixteen dipoles. The time
antenna in 6cm x 4cm x 0.0762cm cavity, required computing a single radiation pattern
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cut, with an INTEL XEON 550 MHz 12 GHz for the spiral antenna and 4GHz for
processor running the Linux operating system, the I-dipole array. Figure 9 illustrates the time
was recorded for each of the aforementioned required to compute a radiation pattern cut for
geometries. Figure 8 shows examples of the the four-arm spiral antenna versus the number
different geometries used for the results along of turns in the spiral. Figure 10 illustrates the
with the meshing used. Table 3 describes the time required to compute a single radiation
different mesh parameters for the example pattern cut for the I-dipole array versus the
geometries. A single pattern cut was number of dipoles in the array.
computed in the X-Z plane at a frequency of

•~ •R2.0cm•

(a) (b)

3.14 cm :-

35.5 cm

(c) (d)

Figure 8: A four-arm, one-turn spiral and a 3x3 I-Dipole array (a) spiral with mixed elements, (b) spiral with
prism elements, (c) I-Dipole array with mixed elements, (d) I-Dipole with prism elements.

Table 3: Mesh comparison for a four-arm, one-turn spiral antenna and a 3x3 I-Dipole array.

Spiral Mixed Spiral Prism I-Dipole Mixed I I-Dipole Prism
Surface Elements 1313 2338 2280 3600
Surface Edges 2544 3569 3980 5437
Surface Unknowns 1296 1941 2880 4013
Total Elements 14443 25718 15960 25200
Total Edges 44080 56380 43747 56362
Total Unknowns 37684 48579 37705 48539
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14D000 [._ Elements computational demand. The main memory
MPrs Eleýment

12000 Mand computational savings were due to the fact
that the mixed element formulation produced

10000 fewer surface unknowns, for a comparable
electromagnetic representation, than the prism

08000 - element formulation for the same geometry.
6- Slight discrepancies between the mixed

element and prism element formulations were
4000 seen in the modeling of impedance for

complex geometries. Dissimilar mesh densities
2°..... .surrounding the feed points causing different

1 . . 2. input powers to be produced at the feeds
,Numb'r of Spira,' Tr ' caused these discrepancies. These

Figure 9: Required computation time for a single discrepancies were not seen in radar cross-
radiation pattern cut for a four arm spiral antenna. section simulations as RCS measurements do

not include a feed model.
7
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