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Abstract-We are developing a technique for recognizing logic, MFT relies on dynamic logic, which starts with
patterns below clutter based on modeling field theory. The fuzzy statements and derives exact conclusions.
presentation briefly summarizes the difficulties related to
the combinatorial complexity of computations, and analyzes Dynamic logic mitigates combinatorial complexity by
the fundamental limitations of existing algorithms such comparing all models and data simultaneously. Fuzzy
as Multiple Hypothesis Testing. A new concept, dynamic models dynamically converge onto corresponding data using
logic, is introduced along with an algorithm suitable for feedback from a similarity measure. Each model can then be
pattern recognition in images with intense clutter data. This understood as behaving like an intelligent agent by refining
new mathematical technique is inspired by the analysis of its parameters to extract maximum object information from
biological systems, like the human brain, which combines the data. Just like internal visual models "grab" onto the
conceptual understanding with emotional evaluation and corresponding internal retinal signals, internal models of
overcomes the combinatorial complexity of model-based stationary and moving objects converge onto patterns in
techniques. The presentation provides examples of object images that best fit the models. The computational cost of the
pattern recognition below clutter, dynamic logic algorithm (DLA) increases linearly with the

number of object models, while computations of the classical
MHT algorithm increase exponentially with additional models.1. INTRODUCTION
Problem Statement

The algorithm proposed in this paper is developed for aspecific solution but has broad applications. Relating data A common problem with object recognition is the existence
toecific conetu ontent ias thead a ichalenge omatiny c nta of overwhelming clutter data in the image. Figure 1 displaysto conceptual content is the challenge of m any current t e i a e o n oj c o i g i t a g tl n i h u h
methodologies in data mining, sensor\data fusion, signal the image of an object moving in a straight line without the
processing and exploitation. We use modeling field theory addition of clutter. When clutter is added to the image in

(MFT) [1] to relate data and object-concepts. Just as the Figure 2, the object becomes much more difficult to observe.

human mind relates internal visual representations of objects
with retinal signals, MFT associates a moving object-concept 50

model with the input image. Well-known model-based 40

techniques such as multiple hypothesis testing (MIHT) rely
on trying many combinations of models and data to find
the object model that best fits the data. MHT is governed
by formal logic, which starts with exact statements and ,0

derives exact conclusions. But the human mind relates
models to data at a pre-conscious, fuzzy level. The mind .,o
does not sift through every possible internal visual object-
model, in every possible orientation, and in combination
with other objects to recognize an object, such as a car -30

on the road. Rather visual models are associated pre- -40

consciously with retinal signals to quickly accomplish object
recognition. In a similar manner to visual object recognition, -50 -40 -30 -20 -0 x 10 20 (0M

MFT associates models and data "pre-consciously".
The algorithm that accomplishes MFT is referred to Fig. 1. Object signal

as dynamic logic [1]. Whereas MHT relies on formal
The signal to clutter ratio (SCR) is an indication of the

KIMAS 2003, October 1-3, 2003, Boston, MA, USA. difficulty to recognize an object pattern in an image. The
Copyright O-7803-7958-6/03/$17.00 © 2003 IEEE. SCR is defined as the ratio of the maximum absolute
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so describe the object's position, where (*o, ro) are the object's
40 estimated initial component positions and (x, ýry) are its
30 estimated component velocities. The parameter ox represents

the standard deviation of the Gaussian distributions, also in
both the x and y dimensions. The number of terms in the

,0 summation (eq. 2) should be sufficient to accurately model
the entire moving object pattern.

-,0 The total pdf for all pixels is the summations of the conditional
pdfs:-f pdf(n) = pdf(nll) + pdf(nl2). (4)

-30

It is not required that the object pattern be a straight line as
"in the example above. The pattern can exhibit any curvature

_-5 . . . -, o or shape and be modeled by a non-linear equation.
X tiM)

Fig. 2. Object signal + clutter 2. THE DYNAMIC LOGIC ALGORITHM

The procedure of the DLA is summarized as follows [1], [2]:
value of the object signal over the average clutter power.
The iterative recognition algorithm we present is able to 1) Set initial value estimates for the unknown object
positively determine if the object is present in an image, parameters o, o, ,, vy, r2. Also set initial values for the
even for very low SCR (such as Figure 2 with SCR = 2.4 dB). standard deviations or and ary.

Models In absence of any information about the object, we
set the model initial position in the center of the

W e utilize modeling field theory (M FT) to develop an iterative s e th zel vel o sity. in t o Figureo 2,

DLA that is able to determine the presence of an object io w zeo v 0erix t Fgy 2,

signal in an image buried in clutter. A number of models Xo S'O = Om, = - = Om/s.

are introduced that account for the presence of every pixel in The standard deviations are initialized to a large value, in-
the image. The models are probability distribution functions: cluding the entire image, corresponding to the uncertainty of
pdf(nlm), for the signal in pixel n given it came from model knowledge:
m. Clutter is one model that we index with m = 1. The clutter knowedge
model (pdf) is uniformly distributed and expressed as: 0 = VN (5)

where N is the total number of image pixels.
pdf(nf 1) =r 1. (1) The proportion of clutter power and the proportion of object

The parameter f, is a single number that represents the power are initialized to be:

estimated proportion of signal power in the entire image f= [V--_N 1]/j/VN,
coming from clutter. 2 =1-rl. (6)

The moving object model is indexed by m = 2. The model
(pdf) for all pixels n given the signal of a particular pixel 2) With values assigned to the estimated parameters, the
came from the object is expressed as: probability distribution functions, eq. (1), (2), can be

1 computed, as well as the total pdf(n).pdf(n12) = E i'2" G(nl~t, crx), (2)

t 3) The probabilities for each pixel are then computed

where the parameter f 2 represents the proportion of signal as follows: df(I 1

power coming from the object. The pdf for the object model P(nJl) = pdf(n)
is computed using a sum of Gaussian distributions G over (7)
time t = 1, 2,..., T. The parameter xt represents the estimated P(n12) = pdf(n12)pdf(n)"

position of the object over t in both the x and y dimensions.
For instance, if the moving object model is a straight line, thanthe linear equations, This can be interpreted as follows: P(nhl) is the probability

that pixel n "belongs to the clutter model" or that the signal
x = Ro + -ý't, in a particular pixel originates from clutter; P(n12) is the
y = ýo + 3,yt, (3) probability pixel n "belongs to the object model" or that

the signal in a particular pixel originates from the object,
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for n=1,2,...N. P(nll)+P(n12)=1 for n = 1, 2,...N, im= R(m)
in correspondence with the total probability (for each pixel M (13)

in E R(m)
receiving any signal) being 1. m=l

for m= 1, 2.
Note that these probabilities are estimates based on the

current object parameter estimates for a particular iteration. The parameters, Ro, ýa,,, -,, il, i2 are improved estimates
Therefore, these quantities are not "real" probabilities, they for the current iteration.
can be considered as subjective, estimated probabilities.

6) The standard deviations a,, and ou are reduced by a
4) A similarity measure is computed that evaluates the 6 h tnaddvain , n yaerdcdb
4)rreApsimilarioft e measutisomptedmod t that evaltes dth factor between 0.93 and 0.99. (For the examples that are to

Scorrespondence of the estimated model to the image data flo eue atro .6 eddntytotmz

S(n). This can be interpreted as mutual information in models thelconvergne proess .Ce of t orimiwa
abou thedata[1]:the convergence process. Convergence of this algorithm was

about the data [1]: proved in [1])
N

L S(n)ln [pdf(n)] 7) The algorithm iterates to step 2. The process is continued
N (8) until a predefined value (possibly 2 or 3 pixel resolutions) of
E S(n) or and ay is realized. (For our examples it took 80 iterations

n=1 to reach a minimum required standard deviation of 2 pixel
where S(n) is the absolute value of the complex signal data resolutions).
in pixel n.
Dynamic logic maximizes this function over the five unknown Example 1: A Linear Object Pattern
parameters:

max(L) (9) The DLA is applied to a 101 x 101 pixel image
oy 0 ,vvy,r2  that contains an object signal with the parameters:

For the linear pattern equations (3) above, the solution to the xo = -30m, yo = 42m, vx = lm/s, vy = -0.4m/s. The

unknown parameters that incrementally maximize L (for each object signal alone is seen in Figure 1. The image data that

iteration) is found analytically by taking the partial derivative the DLA operates on has clutter at an SCR of 2.4 dB (see

with respect to each parameter. The following equations are Figure 2). There are 21 Gaussian distributions used to model

the result: the object pattern.

"<Xn > XO < I > ±, < t >= 0, Figures 3 through 7 illustrate for several iterations the sum of

"<xnt > _Ra <t> + ý,x <t2 >= 0, Gaussian distributions over t in both dimensions x and y.

"< Yn > -ýo < 1 > + -ry < t >= O, (10) so

40

"< ynt > -- 3O < t > + •ry < t2 > -- 0. 30

Here yn, and Xn are the known position coordinates of each 10
pixel n. The parameter t is the same time vector used in
equations (3). -10-10

The brackets <> represent the following function on the -20

known parameters: _30

N Np-1 -40

E E u(n,t)IS(n)lP(n12) _____ ______"___

< U> n=1 ,O ( ) -So -4o -30 -20 -10 0 10 20 30 40 50

i IS(n)l P(n12) xM)

n=1 Fig. 3. Iteration I

for u = t, t2, x", xt, y", ynt.
Figure 3 shows the first iteration where the initial position

5) Now the proportional power parameter estimates are estimate is at the center of the image with ý'x = ÷y = 0,
computed using the updated pdfs and the image data: and with standard deviations large enough to include most

N df''' of the pixels with non-zero probability. Here the Gaussian

R(m) = E S(n) pdn) (12) distributions are located at the same point since the velocity

n= pdf(n) estimates are zero. In Figure 4 we see a., and ay are reduced
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Fig. 4. Iteration 30 Fig. 7. Iteration 80

50

40 in the location and shape of the estimated distributions,
Figure 7, to the true object path seen in Figure 1, even though
the algorithm was only provided the clutter image in Figure 2.

20

10 Multiple Object Recognition

S0 Determining the presence of more than one object requires
-,0 adding more models to the algorithm. Extending the single

object case, m = 1 represents clutter, m = 2 represents
one object, m = 3 represents a 2nd object ... m = M
represents object M-1. Each object has its own parameters

_40 to be estimated: Om, Yom, ýrxm, ym, lm" The conditional pdf
_50 for clutter is given above, equation 1, and the pdfs for the

-50 -40 -30 -20 -10 xM)1 
10 20 remaining object models are computed as:

Fig. 5. Iteration 50 pdf(nlm) = 1 E f.m" G(nnltm, a.), (14)
t

so for m = 2,3..., M. The parameter Xtm is the estimated
40 position of object m at time t, and fm is the estimated
30 proportion of signal power coming from object m. The
20 total pdf(n) is computed as Epdf(nlm) and the similarity

10 measure L is maximized with respect to the unknown
parameters for all object models.

-10 Example 2: Three Non-Linear Object Patterns
-20 The following is a case with three objects in the image, and
-3D their motion is produces a contoured pattern. Figure 8 displays
_40 the input image to the DLA, and Figure 9 displays the object
.50 signals without clutter. The signal to clutter ratios for the
-50 -40 -30 -20 -10 0 10 20 30 40 50 individual objects are, from the top-right moving clockwise,

-0.70 dB, -0.73 dB, and -1.98 dB.
Fig. 6. Iteration 60

The distributions operating on the clutter image (Figure 8) for
the three object models are seen in Figures 10 through 14.

but the parameters estimates are still at the image center with
no velocity. As or and o~, are further reduced in Figures 5
and 6, the initial position estimates move near the target and
the velocity estimates take on some value. Note the similarity

388



KIMAS 2003 BOSTON, USA

3050W5

3040

3 030 3 80

3020 32

3010 31

2990 -02
2980 

2960 •-

2970 
2970

2960 
2960

- _0 -40 -3 -20 -10 0 10 30 30 40 s0 x (40)

Fig. 8. Object + clutter signals Fig. 12. Iteration 30

03050

29700

300 

-30M310 423010

30000

2050

-94• 2..0-1

29B0
280 eK

2-50 -40 -30 -20 -10 0 10 30 3D 40 50 x m
-50~~~~~~~~~ (4i3n)0-0 0 10 2 0 40 5 M

Fig.9. Ojec sigalsFig. 13. Iteration 70

Fi. 0.2traio

3890

30202,

301C 30100

1301 
2990

290•

298C! 2980

2970
2907 

296O

295W ... "0 -4C -M0 -20 -10 in° 10 20 30 40 50-50 -40 -0 -o -10 x m° 10 20 30 40 so x M

Fig.10.Iteatin IFig. 13. Iteration 70

Again note the similarity between the final result of the
dynamic logic algorithm estimates (Figure 14) and the
object signals (Figure 9). The object models were accurately
estimated at an SCR where recognition was previously
considered unattainable.
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3. CONCLUSION

The dynamic logic algorithm (DLA) is a novel technique
for model-based estimation and pattern recognition that has
proven to overcome previous limitations of model-based
techniques. For example, multiple hypothesis testing (MHT)
is the general state-of-the-art technique for model-based
estimation and recognition restricted by a combinatorial
explosion of computations. The addition of object models
increases the number of computations exponentially with
MHT, whereas a linear increase is expected using the DLA.

Using the DLA on the object patterns illustrated in this
paper has yielded an effective performance. We were able to
successfully demonstrate an application of the DLA to patterns
below clutter, with only a linear increase of complexity for
multiple objects.

REFERENCES

[1] Perlovsky, L.I. (2001). Neural Networks and Intellect: using model-based
concepts. Oxford University Press, New York, NY.

[2] Perlovsky, L.I., Plum, C.P., Franchi, P.R., Tichovolsky, E.J., Choi, D.S., &
Weijers, B. (1997). Einsteinian Neural Network for Spectrum Estimation.
Neural Networks, 10(9), pp. 15 4 1-4 6

390


