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ABSTRACT

Rational design and selection of candidate porous biomaterials to serve as tissue
engineering constructs rests on our ability to understand the influence of the porous
microarchitecture on the transport of chemical species (e.g., nutrients and signaling
compounds), fluid flow, and cellular locomotion and growth. We have begun to study the
behavior of chemotactically mobile cells in response to unsteady signaling molecule
concentration fields using a computational simulation-based model. The model couples
fully time-dependent finite-difference solution of a reaction-diffusion equation for the
concentration field of a generic chemoattractant to biased random walks representing
individual moving cells. This model is a first step in building a quantitative, pore-level
model of mass and cellular transport in porous tissue-enginecred constructs. In these
proceedings, we focus on our recent findings regarding the influence of flux-reactive
boundary conditions in heterogeneous 2D domains on the chemotactic response of otherwise
randomly moving cells. In particular, we find that, when cells are forced to “crawl” around
obstacles in order to approach a point source of chemoattractant, the reactivity of the
obstacle surface with respect to the chemoattractant strongly determines the morphology
of the cells’ paths of locomotion. Cells crawl along non-reactive surfaces and strongly avoid
reactive surfaces, due to the nature of the chemoattractant concentration gradients near
the surface. We show further that tuning the reactivity of the surfaces of two obstacles
defining a gap can control the passage of cells through the gap. From our work, we infer
the importance of a proper treatment of boundary conditions in any future pore-level
quantitatve modeling of mass transport and cellular response in porous media.

INTRODUCTION

Current technology gives us the ability to construct a wide variety of porous
biomaterials for therapeutic applications, including tissue engineering and immuno-isolated
implants. In fact, this ability far outpaces our understanding, at a fundamental level, of
why one porous material performs better than another in any given application. In many
applications, one of the most important performance requirements is that the material
allow for easy development of healthy, internal capillary networks [1]. This
neovascularization within an implant greatly reduces the impediment to biochemical
transport relative to diffusion through the otherwise present fibrous capsule characteristic
of the classical foreign body response (FBR) [2]. Mitigating the FBR in this way allows for
optimal nutrient /waste transport for engineered tissues grown on porous scaffolds {3] and
has the potential to guarantee rapid, controllable dosing in drug delivery and
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Figure 1. Schematic of capillary sprout growth in angiogenesis, showing a close-up of the
tip in longitudinal cross-section.

immuno-isolated gene and cell-based implant therapies [4]. It is therefore vitally important
that we explore ways to control this neovasculature development. One goal must be
incorporating this ability, which we refer to as “directed angiogenesis,” into design
strategies for porous biomaterials. This requires in part a fundamental understanding of
the interactions between porous microstructures and growing capillary sprouts.

The directed migration of endothelial cells (ECs) is the mechanism underlying the
construction of capillary networks as a response to stimulants such as vascular endothelial
growth factor (VEGF) and tumor angiogenic growth factor (TAF) [5]. The morphology of
a sprout is determined by (i) the biased locomotion path of the single EC at the sprout tip,
and (ii) the proliferation of cells in the tubule following the sprout tip, as depicted in
figure 1. The EC locomotion is directed over large length scales, while at small length
scales it is apparently random, owing to inhomogeneities in the ECM and void space
through which these cells must crawl, as well as concentration variations in stimulants and
nutrients, among others. This biased locomotion is categorized as a mixture of
“chemotaxis,” in which the direction of cell motion is influenced by external concentration
gradients, and “chemokinesis,” in which the speed of cell motion is influenced by these
gradients.

There is evidence in the experimental literature that chemotaxis can he harnessed to
induce EC penetration of porous scaffolds which would normally not allow for EC
penetration. Various biocompatible porous scaffold materials, including expanded
poly(tetrafluoroethylene) (ePTFE) [6] and poly(viny! alcohol) [3], have been shown to
admit EC penetration in vitro when the mean pore size is greater than ~60 pm. However,
Kidd et al. showed that when an ePTFE disc is treated with cellular detritus rich in
growth factors on onc side, microvesscl penetration is possible even through pores as small
as 30 ym [7]. A similar pretreatment strategy was employed by Sanders et al., who
demonstrated the feasibility of “prevascularizing” a polyurcthane mesh biomaterial implant
by placing it in temporary contact with the relatively active vasculature of the
chorioallontoic membrane of quail embryos [8]. The quail vasculature readily penctrated the
implant, which was subsequently removed from contact with the membrane and implanted
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in rats. This means that both sets of authors inferred that concentration gradients of some
type of signaling molecule influenced the direction and location of vessel growth.

The great interest in the biomaterials community in directed angiogenesis has led to a
variety of empirical optimization approaches. The biomaterials engineer can imagine and
construct a variety of materials with different microporous architectures, can biochemically
modify these structures, and design any number of protocols for ex vivo culturing. In the
face of this variety, we must place rational limits on the amount of trial-and-error, and
therefore the expense, required to decide which porous biomaterial design strategy best
suits a particular application. A significant step forward in this regard would be a
simulation model which allows for rapid in virtuo testing of a proposed microarchitecture,
together with a proposed biochemical pretreatment and culturing protocol, prior to its
fabrication and in vitro/in vivo testing. Such a model must, at a minimum, capture the
3-D microstructure of a porous material and account for chemotaxis and chemokinesis in
cell migration, to quantify effects of length scales and correlations in the porous structure
and biochemical pretreatment techniques on the rate of cell penetration.

No such model yet exists. However, our work toward such a model has led us to
investigate chemotactic locomotion in well-controlled simulations in inhomogeneous 2D
domains. Living cells are too complicated to model with complete accuracy. In
multicellular simulations, simple rules governing cell behavior are imposed, and emergent
behavior from cell populations is observed and analyzed. A “cell” is a computational entity
that can move, divide, die, perhaps transform itself, consume nutrients, and produce
wastes. The task of the simulation developer is to come up with sensible rules governing
this behavior, so that, to an observer, the cell mimics the behavior of a living cell. This
non-trivial task means that several dozen parameter values must be carefully assigned
based on existing experimental results, and in some instances, free parameters are fit to
experimental results in the process of building the model. !

A popular method in multicellular simulations is cellular automata (CA). In CA, an
automaton is an array of “cells” (not in the biological sense), each being a box in space
that can have one of many states. In biological applications, a cell can be unoccupied, or
occupied with a computational cell. In each simulation pass or time-step, each occupied
cell is given the chance to change its state based on its local environment. Relatively
simple rules for division and death result in surprisingly rich and structured behaviors, as
anyone who has watched J. H. Conway’s “Game of Life” screensaver can attest [9]. A
relatively more complex set of rules was used to model growing endothelial cells in
pioneering work by Zygourakis et al. (e.g., [10, 11]). Quite recent work has used CA in
conjunction with simple transport models to probe the effects cell-to-cell signaling in the
development of microvascular structures [12].

A related technique in multicellular simulations is the biased random walk
(BRW) [13, 14, 15]. This type of model has found widespread usc in the simulation of
angiogenesis. This path may generally tend toward a source of chemoattractant, but also
has some tunable random contribution. Most studies to date have assumed that the
concentration field of chemoattractant is steady in time. The only true distinction between
CA and BRW cell models is that CA restricts cell positions to lattice sites, which BRW are
typically off-lattice. In only one instance has a BRW multicellular simulation been coupled
with the fully transient solution of a reaction-diffusion equation for chemoattractant [14],
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and this was done in a 2D homogeneous domain. This is a significant advance because it
dynamically coupled the concentration of chemoattractant and migrating cells. Tong and
Yuan [14] demonstrated that this interplay is responsible for the well-known
“brush-border” effcct. in which a very high density of capillary branching occurs near the
source of a growth factor, screening the parent vessel from the growth factor and
ultimately slowing the total process of angiogenesis.

We have developed a BRW multicellular simulation in the same spirit of Tong and
Yuan, with an eye toward the eventual development of a multicelluar /transport simulation
mode] of tissue ingrowth in porous constructs. The purpose of this contribution is to
discuss our recent work investigating the effect of surfaces which consume chemoattractant
on the chemotactic response of crawling cells in heterogeneous 2D domains. The goal
generally is to understand how both the geometry and reactivity of surfaces in a structured
domain modulate concentration fields of stimulants (chemoattractants) and how these
modulations can be engineered to control cell locomotion.

MODEL AND SIMULATIONS

Our model, described in detail elsewhere [16), inclndes (1) a fully time-resolved finite
difference solution which governs the transport of chemoattractant, and (2) a “biased”
random walk simulation of mobile cells which couples the direction of cell motion to the
simultaneously evolving concentration field of chemoattractant. The model considers the
following fundamental events: (i) release of a chemoattractant from sources or cells; (ii)
diffusion of chemoattractant in the domain; (iii) randomness in the direction of cell
migration, presumably due to other underlying variables which yet we do not have enough
information; (iv) chemotactic response of cells.

Transport of chemoattractant

The major task of the finite difference solver is to obtain the concentration of
chemoattractant as a function of position and time, ¢(r.t) (boldface denotes a vector
quantity). The governing transport equation is as follows:

O P(1) .
o —‘DVc+§i: . 5(r— 1), (1)

where D is the diffusivity of chemoattractant and r; is the location of the 7’th point source.
Point sources produce at a rate P(t). v, is the volume of a cell, so P;}(’) represents the rate
at which the concentration of chemoattractant is introduced by a poicnt source at position
r;. 8(z) is the Dirac delta function:

1, z=0
é(r) = { 0. z£0 (2)
For simplicity at this stage of model development, cell division, uptake and degradation of

chemical species are neglected. Numerical values of the relative quantities in this model
appear in Table I. Eq. 1 is solved numerically using a finite-difference technique referred to
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as the “hopscotch method” [17, 18]. The 2D homogeneous solution domain measures

2 mm x 2 mm, as shown in Fig. 2, and is discretized onto a mesh of 200x200 nodes. The

origin of the domain is the lower-left corner, and the center point of the domain is node

(100,100). From here on, lengths are reported in units of mm unless otherwise stated.
The following initial and boundary conditions on the solution ¢{r,¢) are enforced:

c(r,0) = 0 (3
—-DVe = ke (4)

Eq. 4 represents reactive boundary conditions applied along boundary curves in the
domain. The proportionality constant & measures the reactivity of the boundaries. For this
early stage study, we have assumed first order kinetics. As is standard in these types of
“reaction-diffusion” problems, the dimensions of the constant k are length/time; we choose
to measure & in units of cm/s. The various boundary curve geometries considered (defining
the heterogeneous domains) is described in the “Simulation Protocols” section.

The dimensionless parameter which measures whether diffusion or reaction dominates
the boundary condition given in Eq. 4 is the Péclet number:

kh
Pe = D 5
where we have chosen the lattice spacing h as the relavent length scale. For the parameters
given in table I (D = 107 cm?/s, h = 103 cm), in addition to considering the case of
k =0 (ie., “no-flux” boundaries), we have chosen to sweep values of k from a “low” Pe of
1073 to a “high” Pe of 100. :

As presented, the only sink for chemoattractant so far discussed is reaction at boundary
curves, controlled by the reactivity k. Additionally, we employ “global” boundary
conditions of Dirichlet type; these too are discussed in the “Simulation Protocols”
section.

Biased random walk simulation of chemotaxis

Random walks are propagated in the following way. We first stipulate that a walker
make a step on average with a frequency fr, and that step lengths are randomly chosen
from a Gaussian distribution with mean (Al) and standard deviation oa;. fr and (Al) are
constrained relative to one another to guarantee that, over long times, cells move with an
average velocity, vy, observed experimentally. We freely choose fr and oa;, but these
values (shown in table I) are the same for all simulations discussed here. For each mesh
update (every 2 s of integration time) each cell in the simulation is given the opportunity
to move. The probability that a cell will take a step is the probability of observing an
event which occurs with a frequency fr in a time interval At: Pp = frAt. If a uniform
random variate between 0 and 1 is chosen less than Pr, the cell under consideration takes a
step. The direction of a step, denoted by the unit vector p, is computed as

I‘(t) - I‘(t —_ Atcell) Ve

p= +ﬁ|vcl+

=% e (t) — x(t — Atear) | (1-a-HA ()
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Table I. Nomenclature; Baseline values or ranges of important model parameters.

Parameter Description Value or Range
Atcone Time step for mesh update 23
h Mesh discretization 10 pm
D Growth factor diffusivity 107% em?/s [14]
P Chemoattractant production rate per cell 1 pg/h [19]
fr Average frequency of random walk updates 0.0167 s~!
Umazr Maximum cell speed 20 um/h [13]
(Al Mean step length 0.333 pm
[N Width of Gaussian step length distn. 0.083 um
a Step persistence parameter 0
8 Step chemotactic parameter 0-1
Te Cell radius 10 pm [14]
Ve Cell volume o grd
k Rate constant for boundary reactivity 0 and 107%-0.1 cm/s

The vector p is the weighted sum of three unit vectors. The first term, which is weighted
by o, defines persistence, representing the fact that mobile cells keep a “memory” of their
previous step direction. The second term, which is weighted by /3, represents the
chemotactic response. The final term, carrying the remainder of the weight, is a random
direction, A, chosen uniformly. We interpret this “random” component of the direction as a
lumping together of all underlying processes governing cell migration for which we have no
information or purposely ignore for simplicity. Also for reasons of simplicity in this early
study, we have chosen to negleet persistence, setting a to 0 for all cascs.

The motion of cells are coupled to the transport of chemoattractant because a cell must
“measure” a local concentration gradient. Because cell positions are off-lattice, a cell at an
arbitrary location in 2D space samples ¢ and V¢ by linear interpolation among the four
nodes nearest it. At each cell position update, the instant values of average ¢ and V¢ are
used in the determination of p. When a cell injects chemoattractant into the domain, it
likewise partitions the amount over the four nodes nearest it via linear interpolation.

An important component of the model is the pair of threshold conditions required for

concentration of chemoattractant along their length [20]. It has also been shown in
experiments that high chemoattractant concentration results in cell movements which are
completely decorrelated from the direction of a chemoattractant gradient [21]. Therefore,
we prescribe that the coefficient /3 also serve as a switch on the chemotactic response. For
any particular cell's average ¢ and Ve, the value of 3 used to determine the direction of its
next step is set to 0 if \Zcrc < 0.005, which we refer to as the “gradient threshold.” We also
employ a “concentration threshold,” setting 8 = 0 when ¢ < 107!° g/cm® [19)].
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Figure 2. Schematic simulation domains for the four types of chemotaxis simulations con-
sidered here. (a) Single walkers around single obstacle. (b) Dual walkers around single
obstacles. (c) Dual walkers around dual obstacles.

Simulation Protocols
Single walks around single obstacles

We first consider the simple scenario in which an immobile point source at the center
point produces chemoattractant at a constant rate (P = 1 pg/h). Cells are launched from
a distance of 0.5 mm from the source for randomly chosen values of polar angle, 8. A
circular “obstacle” of diameter 0.2 mm is located 0.3 mm to the left of the source
(figure 2a). A global Dirichlet-type boundary condition, ¢(R,t) = 0, is enforced at R =
1 mm. 100,000 walks are conducted for various values of chemotacticity § and surface
reactivity k. The primary observable is the time required for the cells to traverse the
0.5 mm distance from the launching radius to the source, referred to as the
“time-to-contact,” ., as a function of angular position, 6.

Dual walks around single obstacles

We next consider the scenario in which two cells are placed initially 0.4 mm apart with
the midpoint of the segment defined by their positions lies on the center point. Centered
on the center point is a circular obstacle of diameter 0.2 mm (figure 2b). The same global
Dirichlet boundary condition from the previous case is employed. The two cells produce
chemoattractant in pulses defined by a duty cycle: secretion at a rate of 6P for a random
“on” time, toq, selected uniformly in the range 10 min < ¢,, < 30 min, followed by no
secretion for a random “off” time, t.g, selected uniformly in the range 50 min < t,x <
150 min. (We demonstrated previously that this random “pulsed” secretion of
chemoattractant guarantees that two cells can successfully signal one another in a
homogeneous domain [16].) 100 statistically equivalent individual dual-cell simulations are
performed for various values of 8 and k. The primary observable is the time required for

43




k=0(10°F cmh.

150

)y — v ((‘)
(a) =001 - %< (b) Lunching k=100
- = z 130 | poim
- e
= F -
= s £
T g g 110
£ E 6 z
P ot s
£ g =
c £ a
& :
- 70
£
0 0 50
o o5 1 15 2 10?107 10! a0® 10t 10l 20 40 60 80 100 120
8 (m radian) k (I()'3 cm/s) x (.01 mm)

Figure 3. (a) Distributions in time-to-contact over 8, for single walkers in the domain with
the single obstacle, for various obstacle boundary reactivities k; units of k in the figure are

1072 em/s. (b) Mean of each distribution in (a). (¢) Example locomotion paths for sclected
reactivities; 8 = 0.30.

the two cells to reach one another, again referred to as the “time-to-contact,” t..

Dual walks around dual obstacles

The next scenario we consider is similar to the previous, except that we now place two
circular obstacles of diameter 0.2 mm separated by a distance D, with their midpoint on
the center point. The quantity L = D - 0.2 mm is referred to as the “gap spacing.” as this
is the minimal distance between the two bounding curves of the obstacles. Dual cells are
launched at 180° opposition such that, in order to reach one another, they must crawl
through the gap between the obstacles (figure 2¢). We examined the effects of both surface
reactivity k and gap spacing L on the chemotactic signaling and response of the two cells.
Here, the primary observable is whether particular values of & and L permit successful
passage by one or both cells. Our aim is to make a first attempt at understanding the

synergistic roles of both pore size and surface reactivity on chemotactic response in a
simple model system.

RESULTS AND DISCUSSION
Single walks around single obstacles

In figure 3a, we present the time-to-contact distributions as a function of angle 8 for the
case of a single obstacle offset from the origin. Each curve represents the results of runs
with different obstacle boundary reactivity, k. First, note the expected result that, in
general, for cells launched in the vicinity of 8 = m, for which the point source at the origin
is eclipsed by the obstacle, the contact time is higher than the average. We see that, the
more reactive the surface, the more influence is felt by the contact time distribution. We
show the mean of each distribution in figure 3b. The contact time appears most sensitive
to k in the range 10~% em/s < k < 1072 em/s. The saturation at high reactivities is
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Figure 4. (a) Mean contact time for two cells forced to move around an obstacle vs,
obstacle boundary reactivity, k, to secreted chemoattractant, for various chemotacticities, 3.
(b) Example locomotion paths from the dual-cell, single-obstacle runs, for various obstacle
boundary reactivities; 8 = 0.30.; values of k in the figure are in units of 103 cm/s

unambiguously determined by the global boundary condition at r = R. As can be seen in
figure 3¢, for highly reactive surfaces, cells initially move away from both the obstacle and
the point source. This is because V¢ always points away from reactive boundaries. Because
of the global boundary, there must exist a radius at which Ve in the r direction in the
vicinity of # = 7 changes sign. In this region, the gradient threshhold is violated and cells
“lose signal” for some time until they can diffuse into a region in which some gradients are
detectable. These gradients invariably lead the walkers around the obstacle to the source.
We learn from this small study that, because reactive surfaces cause gradients in ¢ which
point away from the surface, chemotactically active cells tend to avoid reactive surfaces,
even if that leads them further from a point source of chemoattractant.

Dual walks around single obstacles

In figure 4a, we show the mean contact times for two chemotactically active mobile
cells, each producing chemoattractant using the pulsed protocol described previously, vs.
obstacle boundary reactivity for various values of chemotacticity. For each k and 3, 100
individual simulations contribute to each average. We observe a similar trend as that seen
for the single walkers, namely, that the greatest sensitivity to k occurs in the range
1075 em/s < k < 1073 cm/s. Furthermore, the stronger the chemotacticity, the smaller is
the influence of the boundary reactivity on the mean contact time. We also show example
locomotion paths in figure 4. This illustrates the reason for this sensitivity: for large
reactivities, cells initially move away from the obstacle and each other, until feeling the
influence of the global boundary, at which time they are led to one another while
“confined” between the obstacle at the origin and the global boundary. The stronger the
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Figure 5. (a) “Phase-diagram” of successful passage of signaling, chemotactically responsive
cells through a gap of size L defined by two circular obstacles with boundaries with reactivity
k. Solid points denote the region in (L.k)-space for which passage is allowed, and open
symbols those regions where passage is not allowed. In all cases, 8 = 0.30. (b) Example
locomotion paths for a gap spacing of 0.4 mm and k¥ = 0. Horizontal line segments denote
the launch positions. (c¢) Same as (b), with k = 1.0.

obstacle boundary reactivity, the closer arc the cells pushed toward the global boundary
while moving toward one another. These results again demonstrate that chemotactically
active mobile cells respond predictably to the presence of obstacles with surfaces that
consume chemoattractant.

Dual walks around dual obstacles

We now turn to our simulations of two mobile chemotactically active cells separated by
a gap defined by two circular obstacles (figure 2¢). The two cells on either side of the gap
secrete chemoattractant in pulses describing a random duty cycle which is known to result
in successful chemotaxis in a homogencous domain. Our objective was to determine how
both the gap spacing L and the surface reactivity, &, both dictate whether one or both cells
can enter or pass through the gap. In figure 5a, we report in phase-diagram format the
results of our dual-walker simulations at various gap spacings L and obstacle boundary
reactivitics, k. Solid points represent those values of L and k for which one or hoth of the
cells pass through the gap sucessfully, while the open symbols refer to those cases for which
no successful passage through the gap is observed. We have considered gap spacings
generally between 0.2 and 1.2 mm, much larger than an EC (~ 10 gm) or the minimal pore
size through which ECs are known to pass (~ 60 um). For low &, no hindrance to passage
is observed for any gap size considered; an example of locomotion paths for k = 0 and L =
0.4 mm is shown in figure 5b. However, at moderate to high reactivities, gap sizes of 0.2 -
0.5 mm prevent passage; an example of locomotion paths for for £ = 107® ¢cm/s and L =
0.4 mm is shown in figure 5¢. One can sce that the cells are simply forced away from the
gap by the reactive obstacles. Because of the system’s symmetry, cells are not able to
acquire signal from one another by moving off the centerline, so cells are prevented from
reaching one another, in contrast to the case with the single obstacle. This is somewhat
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surprising: apparently, obstacle boundary reactivity in this particular gap geometry can
raise by an order of magnitude the minimal gap size allowed for passage of a
chemotactically active cell.

We undertook this study as a first attempt to understand how an imposed geometrical
length scale (such as a pore size in a porous domain) together with chemoattractant
transport with possible surface reactions influence chemotactic cell behavior. Clearly, both
parameters are important, as demonstrated by figure 5a. It remains to be seen whether
this understanding can be translated into the behavior of chemotactically active cells
navigating through a fully random porous domain in three dimensions, which is our current
object of study.

CONCLUSIONS

We have developed a simulation-based model of the locomotion of cells which both
secrete and detect chemoattractant, coupled to transient concentration fields of this
chemoattractant, for 2D heterogeneous domains with boundaries that consume (or
produce) the chemoattractant. This model serves as a preliminary step toward developing
a comprehensive model of chemically-stimulated tissue ingrowth in porous scaffolds, and is
particularly suited to modeling angiogenesis. Clearly, chemotactic response is not the only
phenomena governing tissue ingrowth; transport of nutrients and wastes, as well as, cell
adhesion, spreading, proliferation must eventually be taken into account. We have simply
sought to understand better the possible roles played by chemotactive response given that
(a) cells use diffusing cytokines to signal one another, and these signals are a crucial
element of tissue growth, and (b) in porous media, the chemical nature of the surfaces can
be engineered. We have found that the presence of obstacles with reactive surfaces greatly
influences the chemotactic response of crawling cells. Generally, reactive surfaces repel
migratory cells which would normally respond by moving in the direction of increasing
concentration. We have seen that moderate surface reactivities are sufficient to prevent
successful transmission of chemical signals through gaps much wider than the minimum
required for cell transit. These results, while applicable only in a generic sense, hint at
possible mechanisms for guiding the directionality and speed of cell migration with fine
detail, possibly offering guidance as to how to engineer chemically the internal pore
surfaces of a porous scaffold to enhance the likelihood of successful tissue ingrowth.
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