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Abstract- In this paper a method for the solu- II. WAVELETS ON THE INTERVAL AND
tion of scattering problems is proposed. In partic- OPERATORS
ular the EFIE is solved by a collocation point pro-
cedure, where the unknown current density is ex- The concepts of scaling functions, wavelets, time-
panded by Daubechies wavelets on the interval and scale analysis, multiresolution analysis are here
the integration is performed in the wavelet domain
by the integral operator, hence without the use of considered known [1]; there are many wavelet
any quadrature formula. Comparison with induced bases available in the literature, and we chose the
currents calculated by a standard MoM and with Daubechics Wavelets on the interval [2] for their
fields calculated by a FEM code are reported. numerical properties. In particular the choice of

wavelets that "survive" only on intervals is adopted
because we are interested in the solution of a bound-

I. INTRODUCTION ary value problem.
From the wavelet theory we know that WE must

Wavelet Expansion (WE) has become a widely be performed starting from a signal known at a

used tool in electromagnetic analysis. The main dyadic number of samples. This number is equal to

reasons can be found in the strong interpolating the dimension of the basis on which we perform the

properties of the wavelet functions and to the fact WE; hence a signal represented by n = 2' sam-

that WE and reconstruction can be performed by ples when expanded in the wavelet domain leads

the use of fast algorithms (see for example [1] - [3]). to a number of 2m coefficients. For the com-
pact support wavelet there is an important rela-

The analysis of scattering problems can be car- tion that allows a straight computation of the co-
ried out expanding the unknown functions in terms efficients at the higher resolution of a generic func-
of a chosen wavelet basis and performing a Galerkin tion: it is possible to obtain them from the sam-
procedure using the same wavelet functions as test ples of the functions itself according to the relation
functions (see [4] - [6]). The integration is then (OJ,k, f) = 2J/ 2

f(2Jk), where (PJ,k is the scaling
performed by the use of quadrature formulae. function of order J, k of the adopted wavelet basis.

In this paper the EFIE for the scattering on a Then, the vector of wavelet coefficients g represent-

conductive body is solved in a different way. By uti- ing the wavelet transform of a function 9(x) can be

lizing Daubechics wavelets on the interval the un- obtained by multiplying a matrix W related to the

known current is expanded, then a collocation point adopted wavelet basis and the samples g(xj) corre-

method is used and the integration is performed sponding to 2' equally spaced points in the inter-

by the use of the integral operator for Daubechics val [0, 1]. Further details about wavelet numerical
wavelets on the interval developed by the authors computation can be found in [3].

(see [8]). In this way the need of quadrature formu- When performing WE of a function, the nota-

lae is avoided; furthermore the well known capabil- tion that will be used throughout the paper is the

ity of the wavelet functions of representing irregular following:

signals with few coefficients, allows us to use bases
of low dimension (if compared with the number of f(t) = S fibi(x) = b~x)f (1)
unknowns of a standard MoM); for these reasons
both accuracy and CPU time saving are achieved, where b(x) = [bi(x),... b,(x)] is the wavelet basis

1054-4887 © 2003 ACES
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and f = [fi,", fnjT is the vector of coefficients Suppose that we want to compute
constituting the wavelet expansion of the signal. 1 1

Also operators can be represented in the wavelet 1 1
domain, as described in [7]. The authors have ob- f(x)dx = x3dx = 4x4 0 g(x)j1 = (5)
tained the representation of the integral operator 0 0
for the Daubechies wavelets on the interval (see for Then starting from equation (4) it must be con-
example [8]). The convenience in using operators in sidered that the primitive function (g) is already
the wavelet domain is that the integral of a function calculated, and we only need to evaluate it on the
f(x) can be calculated by the matrix-vector prod- borders of the interval. Hence it yields
uct Tf where T is the constant sparse matrix rep-
resenting the operator in the wavelet domain and 1
f is the wavelet expansion of the function f(x). In f (x)dx = big-bog (6)
the previous operation the result is the primitive J
function of f. In order to better understand the 0

previous statement let us define f(x) = x3; we can which can be rewritten as
write that 1

J d J4 ( f(x)dx= bTf - boTf (7)f (x)dx = xdx = -_x= g(x) (2) o

[0,1 [0 As evidenced in equation (7) the calculation of

where the integral limit [0, 1] indicates that we are the definite integral of a function f(x) can be per-
considering the interval [0, 1]. Expanding (2) ac- focrmed knowing its WE f, the integral operator ma-
cording to (1) in the wavelet domain we can write trix T and the border vectors. The quantities T,
that bo and b, are known once a wavelet basis has been

f chosen, so they need to be computed only once, and
b(x)fdx = b(x)g (3) not at any analysis.

[0,11
III. METHOD OF MOMENTS AND WAVELET

where f and g are the wavelet expansion of the two EXPANSION
functions. Left multiplying by b(x)T and taking A. General Considerations
into account the definition of the integral operator

T In the study of scattering from conducting cylin-
( Tders, an integral equation can be formulated, which

erties of the wavelet basis (Id = (b(x), b(x)), whith in general has the form of

Id being the identity matrix) we can write that

Tf =g (4) 1

+V ff V' •J(r')G(r.,r')ds' =Ei(r=rs)
Hence as clearly stated in equation (4) the cal- = Et

culation of function g(x) can be performed in the (8)
wavelet domain by multiplying matrix T by vector where 71 = (iP/f) and 032 = w

2
Pte; J, is the cur-

f, the wavelet expansion of the function f(x); then rent density induced on the scatterer, G is the green
the result, vector g, is inverse transformed, obtain- function for the three dimensional scatterer, r' and
ing the function g(x). rr are respectively the integration variable and the

In order to compute a definite integration directly observation point, both on the surface scatterer;

in the wavelet domain, two new (row) vectors must and E' is the incident field.

be introduced: vectors b 0 = b(0) and b, = b(1) In a simpler way and in one dimension equation

that are the values of the basis functions on the left (8) can be in general rewritten as

and right border, respectively, of the interval [0, 1]. dx
The meaning of these two vectors is the following: g(x)K(x, x')dx' + c(x)g(x) = h(x) (9)
given a function f(x), its left border value f(0) can
be obtained by the coefficients of its WE simply by where g(x) is our unknown function. In the lit-
the use of the vector b0 as f(0) = b0 f. erature [5], function g is expanded in the wavelet
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domain, and the expansion is substituted in (9). In (11) there is the product between two functions, in
order to obtain a linear system for the unknown particular one of them is known (f(x)) while the
coefficients, the resultant equation is tested with other is our unknown. As explained in [8] it is
the same expansion functions (Galerkin's method). possible to obtain the wavelet expansion of a the
Quadrature formulae available in the literature for product between two functions y(x) = f(x)g(x) as
wavelets and scaling functions are used, and a the product between a constant diagonal matrix F
square system is obtained, which solved gives the and a vector g, where g is the wavelet expansion of
unknown coefficients. the function g(x) and F is a diagonal matrix whose

Due to the high interpolating properties of the entries are the samples at n = 2' equally spaced
Daubechies wavelets on the interval, we have points of the values of f(x) in the interval. This
adopted this family of wavelets, for which the au- approximation is as much accurate as the number
thors have developed the representation of the inte- of samples is high, hence as the resolution of the
gral operator. Wavelets on the interval (and so op- chosen basis increases. In case the two functions
erators in the wavelet domain) are defined on [0, 1], are know the above described procedure is useless,
hence the contour of the scatterer must be mapped since the expansion of y(x) can be performed di-
into the interval [0, 11. As it is suggested in [6] for rectly. But in the cases when one of the two func-
an arbitrary contour of the scatterer two steps must tions is unknown then the procedure is fundamen-
be performed: tal, since it allows to keep g as the unknown vector
. The contour of the scatterer is discretized in and anyway perform the wavelet expansion. Hence
boundary elements and then each boundary ele- equation (11) can be expressed in the wavelet do-
ment (simply a first order element) is mapped into main as
one dimensional standard element through shape
functions or interpolation functions. k f b(x)Fgdx = b(x)h (12)
* The standard elements are mapped into corre- 0
sponding portions of the interval [0, 11. where F is the diagonal matrix with the samples

In this way the basis functions are defined in a of the Hankel function, g is the vector of unknown
standard way on the interval [0, 1], since the contour coefficients and h is the expansion of constant h
has been mapped on this interval, on the interval [0, 11 i.e. considered as a constant

B. Scattering from a Conductive Body function on the whole interval. By left multiplying
equation (12) by b(x)T we obtain

In case of a two dimensional problem with TMZ

polarization the EFIE equation is the following: 1

kb(x)T b(x)dxFg = b(x)Tb(x)h (13)

.f4 Jz(P.)H 0 (/3 Pm - P'H)dc' = E'(pm) (10) 0

and taking into account the definition of the inte-
where Pm is any observation point on the scatterer, gral operator and the orthogonality properties of
p' is any source point on the scatterer and C is the the chosen basis we obtain
contour of the scatterer.

After the mapping on the elemental interval [0, 1] kTFg = h (14)
(described in the previous section) is performed, we
perform a classical collocation point procedure: we In this way equation (14) establishes a relation
evaluate equation (10) at a particular point pm of between the primitive of the product f(x)g(x) and
the contour; hence equation (10) can be rewritten the constant function h(x) = constant. This is
as actually something different from what we want,

1 hence the two vectors b0 and b, (introduced in sec-
k / f(x)g(x)dx = h (11) tion II) must be employed. Hence we can write that

0 blkTFg - b0 kTFg = h (15)

where k f(x) = H (2)3p 1p - p'j) and g(x) = Equation (15) is characterized by known matri-

JV(p'). ces T and F and known vectors b 0and bland by
Then the wavelet expansion in the space domain the unknown vector of coefficients g. Once the res-

is performed. It has to be noticed that in equation olution of the wavelet basis is chosen the number of
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basis functions is consequently fixed, hence equa- calculated current density on the surface scatterer

tion (15) must be written for a number of n points for a number of 64, 128 and 256 wavelet functions

on the interval itself. This leads to a sparse linear for a frequency of 1 GHz.

square system whose unknowns are the coefficients
g and which can be solved in low CPU time. 0.02

0.018 .

IV. NUMERICAL RESULTS
0.01o .

The numerical results presented here are relative 0 .0 1 4 . . . . . . .-. . . . . . . . . . . . . . . . . . .

to the scattering of a square conductive object illu-
minated by a polarized TM, field. The geometry 0.012-

of the system and the input signal are reported in - 001

figures 1 and 2.
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EiC Fig. 3. Current density on the scatterer calculated by the
use of 64 wavelets

It is evident that together with the increase of the
resolution from 64 to 256, the accuracy of the re-

sults becomingh higher. Nevertheless even at lower
Ir Hi resolutions the obtained current (at a very lo CPU

time cost) is consistent witht the problem.

Fig. 1. Geometry of the system
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0 0.5 1 1.5 2 2.0 3 3. Fig. 4. Current density on the scatterer calculated by the
001 (0) X 010 use of 128 wavelets

Fig. 2. Input signal Figure 6 shows the comparison between the cal-
culations performed by the proposed method with

The diagonal of the scatterer is of 0.2m and the a resolution of 256 wavelets and a standard MoM

frequency content of the input signal is of the order (with collocation point) technique with 500 points

of GHz. FFT has been used in order to obtain the on the whole perimeter. It can be seen the very

behavior in the time domain. Figures 3 - 5 show the good agreement between the two different methods.
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the only important result from an engineering poin
0.02 of view, a comparison with results obtained by the

0.018 use of a FEM code of the total field are also re-

0.016 ported. In figures 7 and 8 the electric field in point

0.014 P = (-0.2,0) and P = (0,-0.2) are reported,
0.012 evaluated by the FEM code and by the proposed

S0.012

method, by using a wavelet basis of 256 functions.

-- tern solution
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Fig. 5. Current density on the scatterer calculated by the 2
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Fig. 6. Current density on the scatterer calculated by the 0
use wavelets and MoM

As for the CPU time the method proposed is -0.2

of the order of 2-4 times faster than the standard -0.

MoM, due to the high numerical efficiency of the -o ....
wavelet expansion and integration, as described in -0.6 -- oh...o

the previous sections: the construction of the inte-
gral operator matrix and the border vectors is done 0 0.5 1 1.0 2,e 2.0 3 3.0 4

only once and can be seen as a pre processing activ-
ity, while the integration is performed by a simple Fig. 8. Electric field evaluated at point P (0, -0.2)

matrix - vector product, without the need of any
quadrature formula. Furthermore the well known
numerical properties of the wavelet functions (well Figure 9 reports the comparison between two so-
addressed in the literature) allow the choice of bases lutions obtained by the proposed method at dif-
of small dimensions in order to obtain accurate re- ferent resolutions, in particular with 64 and 256
sults. wavelets, and shows the robustness of the method

Since the calculation of the current density is not in terms of calculated fields
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high ~of Nonuniform MTL Equations with Nonlinear Loads
ow resnion by Wavelet Expansion in Time or Space Domain"
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2000, Vol. 47, n. 8, pp. 1178 - 1190
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