
UNCLASSIFIED

Defense Technical Information Center
Compilation Part Notice

ADP015055
TITLE: Accuracy of Three Unconditionally-Stable FDTD Schemes for
Solving Maxwell's Equations

DISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:

TITLE: Applied Computational Electromagnetics Society Journal. Volume
18, Number 4, November 2003. Special Issue on ACES 2003 Conference.
Part 1

To order the complete compilation report, use: ADA423296

The component part is provided here to allow users access to individually authored sections
f proceedings, annals, symposia, etc. However, the component should be considered within

[he context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:
ADP015050 thru ADP015064

UNCLASSIFIED



ACES JOURNAL, VOL. 18, NO. 4, NOVEMBER 2003 41

ACCURACY OF THREE UNCONDITIONALLY-STABLE FDTD SCHEMES
FOR SOLVING MAXWELL'S EQUATIONS

Guilin Sun and Christopher W. Trueman

Electromagnetic Compatibility Laboratory, Concordia University,
7141 Sherbrooke Street West, Montreal, Quebec, Canada H4B 1R6

Abstract - This paper discusses accuracy limitations due [8] suggested an Alternate-Direction-Implicit (ADI)
to numerical dispersion and time step size for three method. In 2001, Beggs and Briley [9] reported a two-
implicit unconditionally-stable FDTD methods: factor scheme by combining a characteristic-based
Alternate-Direction-Implicit (ADI), Crank-Nicolson approach to spatial differencing with an implicit lower-
(CN) and Crank-Nicolson-Douglas-Gunn (CNDG). It is upper approximate factorization that avoids the solution of
shown that for a uniform mesh, the three methods have a tridiagonal system. Very recently, Sun and Trueman [10]
the same numerical phase velocity along the axes, but proposed a Crank-Nicolson scheme with Douglas-Gunn
have large differences along the diagonals. The ADI algorithm (CNDG).
method has two orders-of-magnitude larger anisotropy This paper compares the numerical dispersion and
than that of CN and CNDG. CNDG has no anisotropy anisotropy of the ADI, CN and CNDG methods used in
at certain Courant numbers and mesh densities. At the FDTD, and analyzes some of their common characteristics
limit of zero spatial mesh size, the three methods have and differences. For simplicity, Yee's mesh [1] in 2D is
different "intrinsic temporal dispersion" for a given used with a TE, wave in a linear, isotropic, non-dispersive
time step size: CN has no anisotropy; ADI has positive and lossless medium. This paper is organized as follows.
anisotropy and CNDG has negative anisotropy, which is In Section II, the amplification factors are listed for the
much smaller than ADI. The Nyquist sampling three methods. In Section III, their numerical dispersion
theorem provides a fundamental upper bound on the relations are given and compared for a given mesh density.
time step size for all three methods. It is shown that for In Section IV their numerical anisotropy is analyzed and
ADI and CN the practical upper bound is close to the compared at different Courant numbers. In Section V the
Nyquist limit, but for CNDG is half the Nyquist limit, time step size limits are discussed and related to the

Nyquist criterion. In Section VI the accuracy limit due to
Keywords - Maxwell's Equations, Finite-difference time- dispersion is analyzed for zero spatial mesh size.
domain method, Alternate-Direction-Implicit method,
Crank-Nicolson method, Douglas-Gunn method, II. Amplification Factors
numerical dispersion, numerical anisotropy, accuracy,
Nyquist criterion. The update equations for the ADI-FDTD, CN-

FDTD and CNDG-FDTD methods are listed in
I. Introduction Appendices. The ADI-FDTD uses two sub-steps [7]

(Appendix I). The first sub-step advances time from step n
Yee's Finite-Difference Time-Domain (FDTD) to step n+1/2. The field component Eyn1/2 is fully implicit

method is popular for solving Maxwell's Equations [1]. It

is second-order accurate in both time and space [2]. Since it and requires solving a tridiagonal matrix. The second sub-

is an explicit method [3], it is easy to program and efficient step advances time step from n+1/2 to n+l, and the field

to run. However it suffers from the Courant-Friedrich-Levy component E"+' is fully implicit and also requires solving
(CFL) limit or the Courant limit on the time step size a similar tridiagonal matrix. The time step n+1/2 is
required for stability. For objects with fine geometrical intermediate and the field values at this step are non-
features, using a fine mesh size greatly reduces the physical. The amplification factors for the two sub-steps
allowable time step size, which causes the CPU time to be are [7,11]
prohibitively long. To eliminate the CFL limit,
unconditionally-stable methods working with large Courant 1 2

numbers are desirable. Early in 1984, Holland [4] proposed 1 --- t n-e )(1)

an implicit method but it was not completely stable. In 1+ (

1995, Shang [5] developed an efficient characteristic-based

algorithm and Fijany [6] proposed a parallel Crank-
Nicolson (CN) method by decomposition of the 1 + r ()+r(
eigenvalue/eigenvector for the wave equations of the 2 = - e --
second order. In 1999 and 2000, Namiki [7] and Zhen et al. y
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where j = I-, r, = cAt sin(/xA, /12)l/A, ry= magnitude. On the other hand, in ADI, the intermediate
time is (n+1/2)At, and each sub-step has its own

cAtsin(8y Ay /2)/Ay, At is the time step size, c =I/f-V amplification factor. The magnitudes of the two

is the physical velocity, s and/p are the permittivity and amplification factors for the two individual sub-steps are

permeability of the material respectively, Ax and Ay are reciprocals. Their product is the magnitude of the
amplification factor for one full update cycle, and is unity.

the spatial meshing sizes along x and y axes; Note that the unity magnitude of the amplification factors

x = /J cos(0), /3 • fisin(l), 6j2 
= X +fly where f is ensures that the three implicit methods are unconditionally

the numerical wave phase constant; and angle 0 is the stable and strictly non-dissipative.

direction of travel with respect to the x axis. III. Numerical Dispersion
The CN scheme averages the field components at

time step n and n+I to maintain second order accuracy in The numerical dispersion relation can be written
time [6, 10] (Appendix II). It has no intermediate time step. for the three methods [10, 11] as
But the resulting block tridiagonal matrix is very expensive
to solve by direct methods such as the Gaussian 2 2 2

elimination or the banded matrix method, as well as by tan2(oAt/2) = rx + ry +gr;ry (
iterative methods such as Successive Over-Relaxation
(SOR) or the iterative Alternate-Direction-Implicit (IADI) where the factor g is
method [3]. Since the discretization of the Poisson
Equation and heat equation also leads tosu ch a block ADI
tridiagonal matrix, several other methods to solve it can be
found in Refs. [3] and [12]. Finjany et al. [6] solve the g = 0 CN
block tridiagonal matrix by eigenvalue/eigenvector tan2 (coAt/2) CNDG (6)
decomposition.

Different solution methods for the blockDiffrentsoltion metods or he bock Given a frequency co , a mesh size Ax and Ay , a time step
tridiagonal matrix may have different amplification factors
and different numerical dispersion relations. This paper size At, and direction of travel 0, Eqn. (5) is solved
assumes a direct solution method of the block tridiagonal implicitly for the phase constant 67. For a wave to
matrix such as the Gaussian elimination for the CN-FDTD propagate 8 must be real. The numerical dispersion is

mto.Teamplification factor for this CN method is poaae/ utb el h ueia iprinimethod. The quantified by the relative velocity that is defined as the
ratio of the numerical velocity to the physical velocity.

±jtan-' (IADI2-(-/r~1]-_ýCN = e "(3) 0.99S -

2. q0

Note that the magnitude of the amplification factor for the .9 C

CN method is unity. \o .985-

The CNDG method avoids an expensive direct s=

solution (Appendix III). It factorizes the block tridiagonal 0. 5=10
matrix and has two sub-steps: the first sub-step finds the -, - .

intermediate field value H:, and the second sub-step gets 0 0.97N

the solution at the time step n+l [10]. Thus, like the ADI 0.970 CNOG CN N

method, the CNDG method needs to solve a tridiagonal /.-.
matrix at each sub-step. The amplification factor is . " . . .

0 10 20 32 40 50 60 70 80 90
0 . Oirection of Travel 0

±jtan-' (

ýCNDG = e (1-r)(l-ry) J (4) Fig. 1 Numerical dispersion with mesh density 100 and
s=1, 5 and 10, for ADI, CN and CNDG.

Though ADI and CNDG both have two sub-steps, there are The numerical dispersion relation in Eqn. (5) for
some differences. In CNDG, the time level of the the ADI and CNDG methods has been validated with
intermediate step is unknown, and there is only one numerical experiments [10,11]. Fig.1 shows the relative
amplification factor for the two sub-steps, of unity velocity as a function of the direction of travel, using
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Ax = Ay with mesh density N = 100 cells per wavelength, anisotropy is -0.148*0.01 for CNDG and 0.082*0.01 for

at different Courant numbers s = cAt / Ax equal to 1, 5 and CN; at mesh density 55, their absolute anisotropy values

10. Note that the numerical dispersion curves of the CN are the same, about 0.066*0.01. However, at mesh density

method and the CNDG method are almost identical, and 60, CN has 0.055*0.01 but CNDG has only 0.038*0.01.
are difficult to distinguish visually in Fig. 1. The relative
velocity along the axes is exactly the same for the three
methods, but along the diagonal ADI is quite different 0.05 5=10

from CN or CNDG. Thus their numerical anisotropies are
significantly different, which will be discussed in the next T 0. 04

section. _

The "grid-related numerical dispersion" is defined 0 e.03

as the dispersion at zero timest ep size. Since the cross
term r in Eqn. (6) goes to zero as time step size 0 a.02

approaches zero, the grid-related numerical dispersion is
the same for the three methods, and is the same as that of Z0.01

Yee's FDTD [2, 13]. _

IV. Numerical Anisotropy O7 .0 50 1.0

Mesh Density 5I1I

The velocity-anisotropy error is often used to Fig. 2 Numerical anisotropy of the ADI method at Courant
quantify the numerical anisotropy [2]. In an isotropic numbers 1,5 and 10.
medium, the wavefront of a cylindrical wave is a circle,
that is, the phase velocity is the same in all directions, s=12 CN
However, in the numerical domain, the numerical wave =

velocity usually depends on the direction of travel. Like 9 0,05 s=1 CN
Yee's FDTD with a uniform mesh, the ADI and CN -
methods have the largest velocity along the diagonals and
slowest along the axes, as shown in Fig. 1.

However, the CNDG behaves differently from .... ...................

CN or ADI. At certain combinations of the mesh and time .s
step sizes, the velocity U4 5. along the diagonals can be .s= CN.G

slower than the velocity u0o along the axes. To evaluate . " =1 CNOG

this phenomenon, the following definition of the velocity : -a.0 =12 CNOG
anisotropy is used for a uniform mesh

50 60 70 E30 90 100

Au= U45- -UO x100% Mesh Density ([CN & CNDGI

minfu4 5 U~O- (7) kFig. 3 Numerical anisotropy for CN and CNDG.

This error definition has the same magnitude as that Notice that the anisotropy changes its sign for
Taflove and Hagness [2], but can be positive or negative, CNDG at certain combinations of the mesh density and
depending on which velocity is larger. Fig. 2 and Fig. 3 Courant number. This suggests that at certain Courant
show the numerical anisotropy at mesh densities from 50 to numbers, a mesh may have no anisotropy. Fig. 4 shows the
100 cells per wavelength for the ADI, CN and CNDG relation between the Courant number and mesh density
methods. The anisotropy of ADI is about two orders of with zero anisotropy. Note that neither ADI nor CN has
magnitude larger than that of CN and CNDG. As the this behavior.
Courant number increases, the anisotropy in ADI increases
significantly. The CN and CNDG have the same behaviour. V. Time Step Size Limitations
For the Courant number smaller than about 11, the
anisotropy of CNDG is always smaller than that of CN; for In the numerical dispersion relation of Eqn. (5), if
the Courant number larger than 11, the anisotropy of the tangent is infinite, the phase constant becomes complex
CNDG is larger than that of CN at coarse mesh density (for for all the three methods. This limit is reached when
example, 50), but it quickly becomes smaller than that of 1
CN after certain mesh densities. For instance, if the Courant At = -(

number is 12, at the mesh density 50, the numerical 2f (8)
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Fig. 4 The relation of the Courant number and mesh Fig. 6 Intrinsic temporal anisotropy with zero mesh size
density at zero anisotropy for CNDG. for ADI.
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Fig. 5 Time step size limits with respect to mesh density for Fig. 7 Intrinsic temporal anisotropy with zero mesh size for
the three methods. CNDG.

Eqn. (8) is recognized as the Nyquist limit for the time 1 4 (.At I 2
sampling. For a given mesh density N, the Nyquist limit sin 2 (,F2, 45. x /4) = 2+V1-tan 2t2)

can be written in relation to the Courant number as (s tan(oAt / 2)) (10)

N where 1845. is the phase constant along the diagonals. If

2 (9) tan(coAt /2) > I, then the phase constant 68 becomes a

However, Eqn. (5) implies a smaller time step size limit complex number. Thus tan(coAt / 2) = I is the limit for the

than the Nyquist limit. For example, along the x-axis, CNDG method. This corresponds to s = N / 4. The three
sin(fiAx / 2) must be smaller than or equal to one if /3 is to curves shown in Fig. 5 are the Nyquist limit, and the step

be real.Fo r the ADI and CN methods, the minimum size limits for the ADI and CN methods and for the CNDG

velocity always occurs along the axes, so the limiting method. If a method uses a Courant number larger than its

Courant number for a give mesh density can be found from limit shown in Fig. 5, numerical attenuation will occur,

Eqn. (5) to satisfy tan(zs / N) = s. For the CNDG method, which does not correspond to the physical reality.

at larger Courant numbers, the minimum velocity is along VI. Intrinsic Temporal Dispersion
the diagonals. For Ax=Ay, Eqn. (5) for the CNDG

method leads to In Yee's FDTD, as the mesh density increases, the
numerical dispersion decreases. In the limit of an
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infinitely-fine mesh, that is, zero spatial mesh size, there is method is two orders-of-magnitude larger than that of CN
no numerical dispersion because the Courant limit forces and CNDG. In the limit of zero mesh size, ADI and CNDG
the time step size to be zero. Hence, Yee's method have anisotropy but the CN method does not. Different
collapses to the continuous case, that is, no discretization from the ADI and CN methods, the CNDG method may
for time and space. But for the unconditionally-stable have slower velocity along the diagonals than along the
implicit methods, because there is no Courant limit, fine axes, and may have zero anisotropy at certain combinations
mesh size can be accompanied by very large time step size of Courant number and mesh density. The three methods
and the method remains stable. Even in the limit of zero have time step size limits that are smaller than the Nyquist
spatial mesh size, the methods are still stable for any time criterion. CNDG has the smallest time step limit. The
step size, but there is numerical dispersion. The numerical intrinsic temporal dispersion is a fundamental accuracy
dispersion at zero mesh size is an intrinsic limitation and limitfor the three methods and is much larger for ADI than
may be termed "intrinsic temporal dispersion", previously for CN or CNDG along the diagonals.
called "time-splitting-related dispersion" [11]. The
intrinsic, temporal dispersion is different for the three APPENDIX I Update Equations for ADI-FDTD
methods. With some manipulation, it can be written as

The ADI-FDTD has two sub-steps. The first sub-
u o At / 2 1 + 1 + g(tan(oAt /2) sin 20)2 step is advancing time from step n to step n+l/2 by use of
c tan(•At/2) 2 (11) the following update equations [7]

Numerical calculations using Eqn. (11) show that the E÷/(i+ 1/2,j) = E' (i+/2,j) +a
intrinsic temporal dispersion as a function of the direction Hn (i + l/2, j+ / 2) - Hn(i + 1/ 2,]j -1/ 2)} / Ay (1-1)
of travel is similar to that shown in Fig. I but smaller in

magnitude. From Eqn. (11) it can be seen that the relative
velocity is not a function of direction of travel for the CN E+ (i,j+l/2) =E"(ij+l/2)-al{
method. Therefore CN's anisotropy is zero at the zero Hn+l/ 2  ,jlj1/2)_H+l/2(il/2,j+l/2)}/Ax (1-2)
mesh size limit. But for ADI and CNDG, there is
anisotropy, as shown in Fig. 6 and Fig. 7. This anisotropy
is termed the "intrinsic temporal anisotropy." Note that the Hn+I/2 (i + 1/2,j + 1/2) = Hz(i + 1/2,j + 1/2) + a2{
ADI's anisotropy is about 30 times larger than that of En(i+l/2j+l)-En(i+l/2,j)}/Ay
CNDG at the time step size of one-tenth Nyquist time step E+ )+ I / 2 j) A
size limit. - +a2{1,j+l/2)-Ey+'/2(i,j+l/2))/Ax

Note that in Eqn. (11) the tangent cannot be larger (1-3)
than unity for CNDG method; otherwise the velocity will
be a complex number. This time step size limit where a, = At / 26, a 2 = At/ 2p, At is the time step size;
corresponds to e and p are the permittivity and permeability of the

material respectively; Ax and Ay are the spatial meshing

At CNDG= (12) sizes along x and y axes; i and j are the integer-number
2 2f indices of the computational cells; and n is the time step

index. In this step, Ey+l/2 is impitan nbefudy

This is half of the Nyquist limit, and coincides with that in plicit and can be found by

Section V for the time step size limit of the CNDG solving a tridiagonal matrix of the form

method. For non-zero mesh size, the numerical velocity is
always smaller than the intrinsic temporal dispersion, E" 1,]+/2)-f(Ax 1a 2 +2)E"+ + 1 /2)
therefore Eqn. (11) is a fundamental accuracy limit for the +E" 2 .(i+1,j+12) =(AX2 /aa)E(ij+1/2) +
three methods.

(Ax/a 2){H'(i + 1/2,j + 1/2) - H(i - 1/2,j + 1/2)}
VII. Conclusion +Ax/Ay{E'(i+l/2,j+l)-E"(i+l/2,j)+

This paper has discussed several aspects of the EX(i-1/2,j)-E (i-1/2,1+l)}
ADI, CN and CNDG methods. The magnitude of the (1-4)
overall amplification factor for all three methods is unity;
hence they are all unconditionally stable. The numerical The second sub-step advances time step from n+1/2 to n+1
dispersion is the same along the axes for the three methods, and the update equations are
but differs along the diagonals. The anisotropy in the ADI
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E~ 'i+ 1/ 2, j) =En~j1 '2(i + 1/ 2, j) + a, fIrý'(i +l/,j +1/2) -aia2{I-4'(i +3/2,j +1/2) +

H2n~ (i + 1/ 2,1j + 1/ 2) - H n+ (i + 1/ 2,1j - 1/12))}IAy (1-5)( H7 1 -1/2,j +lI/2)-2Hz"+'Q-H+/2,j +1/2}/Ax2

E'(j+1/2) = E "(y~ l2- 1  2H~'Q+1(+/Zj+l/2)j/Aj/
H12 (i+12j12-Hzn 1(i-l1/2j+1/2))/Ax (1-6) Hzn(i+1/Z1+1/2)+ala2{IJr'(i+3/2j+1/2)+

Hzn'(i 1/,j 1/) =Hn+'(i+ 12,j+ 12) a112f(i- 1/21j+1/2) -2H,'(i + /2 + 1/2) }/Ax2

E~nj'(i + 1/2,1+ 1) -Exn*(i +I1/2,j)}/Ay +a(riI~+1)Ir(+1,-1)

a2{Eyn (i + 1Ij + 1/2) -Eyn (i,j + 1/2))/Ax (1-7) 2Hr,(i+i1/2j+i12)}/Ay/

Since En~ is implicit and it is found by solving a [.E~(i±1,j+l/2)-E'Y(i,j+l/2)]/Ax} (11-4)

tridiagonal matrix of the formn

E~n'~'(i+ 1/2,1-1) - Ay'l/a~a2 +2)E~n 1 (i +1/2,1) + APPENDIX III Update Equations for CNDG-FDTD

Exn~'(i +1/ 2, j +l1)= laia2 )Ex +1'(l/ 2,1j) _A2 n+ 2 The update equations of CNDG-FDTD are the

(Ay~2)W,7+'12 i + / 2 j -1/ ) -same as the CN method. The difference between the CN-
(Ay/a12 {H 1 1 ( l2, l2- FDTD and CNDG-FDTD is the method used to solve the

H2 (i +1/2,j+1/2)1 block tridiagonal matrix. In CNDG-FDTD, it is factorized

+Ay/AX{E~Q+1/2j j+1/2)-En+ 1(i]+l1/2)± into two sub-steps [101

En+112( n+/2ij

H;*(i-1/2]+1/2)-2H;(i+1/2,j+l/2)}/AX
2

APPENDIX 1I Update Equations for CN-FDTD =H,(Q±1/2]+1/ 2)+a~a2 {Hn(i+312,j+l/2)+

The CN scheme averages the field components at Hn (i-1/2ZI+l/2)-2Hn(i+I/ 2,j+1/2))/AX2

time step n and n+l to maintain second order accuracy in +a~a2 {Hn(i±1/2,j+3/2)+Hn(i+l/2,j-1/ 2)-
time as follows [6, 10] 2Hi1Z~/)/Y 2

H7Q+1/21+ 1/2) = -"i '+1/Zj-2}Ay(1) + +a, [E(i +l/2,j+l2) -aEa{H' (i+ 1/2,j] +32)

9,'(i+l/2j+1/2) -Hn'(i l/2,j+-112)}/Ay (11-2 At eac subj+ /)-se a~a H~ triiaoa mari mus bej+ 2

solved. It can be seen that the ADI method solves the
Hn+'(i + 1/2,]j+ 1/2)=H Hn(i + I/ 2,j + 1/2) + electric fields implicitly, but the CN and CNDG methods

a2{+ (i +1/2,1+1) - EX 1 12j(i+( + / 2,]) + solve the magnetic field implicitly in the 2D TE~cas e.

E2(i + 112,1+1) - En(i + I/2 ,j)}/Ay -REFERENCES
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