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EVALUATION OF PERFORMANCE RELIABILITY
USING REGRESSION MODELS

Seymour K. Einbinder, Picatinny Arsenal
and

Ingram Olkin, Stanford University

0. ABSTRACT. Performance reliability is the probability that a
weapon will perform its prescribed function under given conditions' of en-
vironment at some particular time. Performance reliability models are
defined for continuous performance response variables. Procedures are
then described for the evaluation of reliability with emphasis on the appli-
cation of univariate and multivariate regression analysis to single and
multiple continuous response variables, respectively. Point and confi-
dence interval estimation methods for performance reliability are dis-
cussed, and a sample problem is presented illustrating some of the basic
concepts and results.

1. INTRODUCTION. A major problem during the research and de-
velopment of a weapon or warhead is the assurance of high functioning re-
liability of the final prototype design. The reliability concepts and eval-
uation methods to be described are general and are applicable to a wide
variety of systems and components.

A weapon during its lifetime may be subjected to many environ-
mental factors or stresses such as temperature, vibration, acceleration,
rough handling, etc. In addition, the stresses may be encountered singly,
simultaneously or in sequence. The problem of testing and estimating re-
liability is of importance to the weapon developer in order to assure the
user of a reliable weapon for use in any potential combat situation.

The establishment of high reliability with a high level of confidence
generally requires the testing of larger numbers of items than are usually
available during a development program for a complex and expensive item.
Thus, it is generally necessary to obtain the most information with a
minimum number of samples and tests. Improved and more efficient
statistical methods are required in many cases to solve the reliability
estimation problem.

Before solutions to a problem can be obtained, it is important to
delineate the problem so that a representative mathematical model can
be developed. Obviously, any solutions obtained can be no better than
the underlying mathematical model which is assumed as a prototype of
the problem.
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In a previous paper [3], the emphasis was on test-to-failure and

stress vs. strength analyses for single and multiple environments (stresses).
The present paper is concerned mainly with reliability in the case of a
continuous regression response surface, and thereby is an extension of (3]
Methods of point and interval estimation for the univariate and multivariate
regression problems are discussed.

2. RELIABILITY CONCEPTS. Reliability of a weapon may be defined
as the probability of a successful functioning under required conditions of
the environment at some particular time. Successful functioning might
require the successful operation of several or all components of a system.
The outputs or responses of each component may be attribute or continuous.
In the case of the continuous response, success may require that the response
lie within certain limits (possibly specification limits),

To illustrate these concepts, a hypothetical shaped charge warhead
section for a missile will be used as an example. Successful functioning
of the warhead section may require that the S and A (Safety and Arming
Device) must arm and detonate the warhead on target impact, and the
warhead must then penetrate at least a specified distance into an armor
plate target. This example could be further complicated by specifying
arming limits for the S and A. Failure of the warhead section may
occur in two fundamental ways:

(1) a complete dud or catastrophic failure may result such that no
warhead detonation takes place, or,

(2) the warhead explosive train may be initiated but the armor pene-
tration requirement may not be met.

The reliability of the warhead section is given by

R =(- P RD WHD

where R is the overall warhead section reliability, P is the pro-D
bability of a dud or catastrophic failure, and R is the c onditional

probability that the warhead exceeds the specified performance require-
ment. The latter will be referred to as the performance reliability and
is of prime concern in this paper. The dud probability can be broken down
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further according to various components, In general it is necessary to
evaluate the dud or catastrophic failures separately from the performance
failures since they do not have the same distribution and are mutually ex-

clusive. Dud failures, being attribute, normally require larger sample
sizes for evaluation with the same precision and confidence levels as

would performance reliability based on continuous variables.

The remainder of this paper will be concerned with the evaluation of
the performance reliability, RWHD.

3. MATHEMATICAL MODELS. In this section we define the mathe-
matical models upon which subsequent analysis is based. Univariate and
multivariate responses and single and multiple stresses are considered.
Estimation procedures are described in the subsequent sections.

3.1 Univariate Response. We have defined performance reliability as

the probability that a continuous performance variable lies within certain
specified limits. Thus, it may be required that the arming time for an S

and A Device be greater than some minimum time required for safety. The

performance variable or response may be thought of as a dependent variable
which is a function of one or more environments or stresses which are the

independent variables. In general, this functional relationship is unknown;

however, we can approximate the response function over small regions of

the function space by linear regression methods. Generally, we are con-
cerned with the reliability under some critical stress conditions. These

conditions will be referred to as a critical point or critical reliability
boundary. The regression experiment is designed to provide the best infor-

mation in the vicinity of this point. Figure 1 illustrates the experimental
design in general terms for the univariate case. (xl, . . . , xm) represent

the applied stresses or environments such as temperature, vibration, etc.,
and the elements of the design matrix represent the levels of each of these
stresses. For example, xl? represents the second level of the stress x

etc. The column titled response vector represents the dbserved response
obtained with each treatment combination. The response, y, is a contin-

uous variable such as arming time in the case of the fuze, or possibly depth
of penetration in the case of a shaped charge warhead; the response, y.
for the ith treatment combination may be expressed as a linear combination
of the treatment levels plus some random error. The regression model and
underlying assumptions are:

0i
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y XP + U

n x 1 is the observation vector,
u: n x 1 is the vector of random errors, and is normally distri-

buted with mean vector 0 and covariance matrix a-2 I, i. e.,

E(u) 0, E(u u') - ZI,

X: mxn is the design matrix of rank r, r < rn ,< n,
:m x 1 is the vector of regression coefficients.

A geometrical interpretation of this regression model and its relation to
performance reliability is shown in Figure 2 [T;bles and figures can be

found at the end of the article.] for the univariate response case. (Xl,

Sx) are the stress variables, (Cl, .. I c ) are the components of the'm "''m

critical reliability boundary vector c. The points shown in the (xl, . . . ,x

plane represent the treatment combinations for the regression experiment,
and the average response, y, is represented by the regression surface
shown above the points. The regression equation provides estimates of
the response for any point in the (xi, ... , X) space. The response y at

some point such as the critical reliability boundary c : m x 1 is denoted
(c) 2

by y(c)and is distributed according to N(c' P, a- ). The lower performancey(c) 
(1 n(0)

limit which the response y is required to exceed is denoted by y ,and

consequently, the performance reliability R is given by:

(1) R(c) " pty(c) y(O)O) n(y(c)Ic' p, 2) 2 y(c) g (c ! 2;c),

where n(x a- , o ) is the density function for a normal population with
2

mean •L and variance a- . This expression represents the shaded area
under the normal curve shown in Figure 2.

Thus, our problem is to estimate g which is a function of the un-
known parameters P, 0.2, and the fixed point c, based upon a sample of
size n treated as a single or multiple regression experiment.

0
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3. Z Multivariate Response. The univari ate model will now be ex-
tended to include cases where more than one continuous response may be
observed on a single experimental unit such as S and A arming time,
functioning time, and self-destruct time; also, the responses may be
correlated. Multivariate analysis techniques permit the correlation be-
tween responses to be investigated. As before, the problem is best
illustrated by examining the table shown in Figure 3.; The design ma-
trix X is exactly the same as for the univariate case; (xl, ... , X) is

still the vector of applied stresses. However, instead of a single re-
sponse vector of y's, we now have p responses (yl,, y " ). Thus,

for each treatment combination we observe p responses so that our
response vector for the univariate case has now become a response ma-
trix where the column vectors may be correlated, and the rows which
represent independent response vectors are uncorrelated. The multi-
variate model and assumptions are:

Y =X' B +U,

Y: n x p is the response matrix
X: mx n is the design matrix of rank r_< m <n, p <n-r,
B: mx p is the matrix of regression coefficients,
U: nx p is the error matrix,
u.,j4l, ... , n are the rows of U and are independently and

identically distributed, each having a p-variate

normal distribution with mean vector 0 and
positive definite covariance matrix Z.

From the multivariate model, a p. x 1 response vector y(c) is ob-
tained for the response at the critical reliability boundary vector c: m x 1.

The response vector y(c) is distributed according to N(cIB, M), in which
the p x p covariance matrix E takes into account any correlations be-
tween responses.

The performance reliability R for the multiple response case is
given by:
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(2) R(c) = > (0), _

.. n(y(c) c IB, Z) (c) ... dy(c)
y(0) y(0) ' ~ ' P

yl p

gp (c' B, M; c)

A graphical representation of the performance reliability in two di-

mensions is shown in Figure 4 for the multivariate case. The above in-
tegral represents the volume of the multivariate normal density function
over the shaded quadrant whose vertex y(O) is the vector of specification
limit s.

Thus, the general problem may be summarized as follows: Based
upon the results of a suitable experimental design with a sample of size n,
it is required to estimate the g function for the univariate and multi-
variate cases, both by point estimation and confidence limits.

4. POINT ESTIMATION;. The general problem is to estimate the
performance reliability functions defined for the univariate and multi-
variate responses both by a point estimate and confidence limits based
upon responses observed on a sample of size n subjected to various stress
treatments in accordance with a suitable experimental design. The experi-
mental designs used for exploring response surfaces [1, 21 are generally
suitable for exploring the region around the critical reliability boundary.

4.1 Univariate Point Estimates. The g or R functions to be esti-
mated may be written as follows for the univariate case:

2 2 2r) ex - 2) t
R(P, a)" gl(cIp,a ; c) ?'r)-1/2 exp( /2• dt,

Y(0)_ cP)/G0

40
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where c and f are m x l vectors.

We consider three types of point estimates. Suppose we write

K(P, o-) = (y(O) -c'P)/o

then

(3) R(P, a- = Do (r.) ./2 exp (-t /2) dt.

K(p, a-)

The first estimate of R is based on using K(O,^), where p and "a are
appropriate estimates of P and c.

The least squares estimate of P is given by

(4) P (xx) X y,

where X: mxn, of rank m <n, is the design matrix, and y: nxl is
the response vector. An unbiased estimator of a-? is

AZ (y-X'I)' (yP').
(5) 0* =XI(s)no- m

n-m

Thus, we may use the estimate

^ ^' (y (0)- ,P O
(6) K(P, ) = -yc'O)-

from which we obtain

(7) R(P, aZ) = (2?r)l/Z exp (-t 2 /2) dt.

A second estimate is based on the UMVU estimate of K, namely
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f ( )f

_____ y -CPf g2
(8) K(Poja-) 4 f(0 - Kpo)

where f = n-m , from which we may use

(9) [(P 2) = (z2r)"I/2 exp (-t /2) dt

K(P, a)

as an estimate at R(P, a- )

Although K is a UMVU estimate of K, it is not the case that R
is a UMVU estimate of R. Consequently, a third procedure is based
on the UMVU estimate of R, [4], and is given by

(10) R' m-,
B( f-1 f dt

0 2 '2 )d

_ ((10) f- A'I y - c P) I K( p, cr)
where "I A 2-whref( Z-C,(Xx,-c) 5 2 f(l-c'(XX,) c)

Note that R(p, r) = 1 if Y\> 1, and that the estimate is valid for criti-

cal vectors c such that c'(XX|) 1c < 1.

Unfortunately, comparisons of the risk of these estimators are un-
available, since the determination of the variance is quite complicated,
and was not attempted in this paper.

0
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4. 2 Multivariate Case. In the multivariate case, we have

CPO 00 e-1/Z tr Z-1 (Y-X'B)'(Y-X'B)R(BIM) "I•lpn/Z(?'rP/ dY

0) y (0)

we (a cnie R , )a an estimate of R(B, •), where B -(XX')'Ixy,
and Z ( - X'B)'(Y - X'B) / [p(n-m)ii. The problem, however, is stil
to evaluate the multivariate normal distribution over an orthant. In
fact, whether we use this estimation procedure or another, the diffi-

culty of carrying out such an integration still remains. However, for
any particular problem, one can employ numerical procedures to yield
an answer. Another possibility which has not been considered in the
literature is to obtain a lowe r bound for R(B, •J) in terms of known

functions. Further work in this area is required.

S5. CONFIDENCE INTER VALS. The problem of obtaining confidence

intervals for the g or R functions is considered next. The general
method is discussed in [31, and is now extended to the regression model.
In Section 4, three estimates were presented. For only the second pro-
cedure is the distribution theory known, so that exact confidence inter-
vals can be obtained. However, the first procedure does lead to approxi-
mate or asymptotic intervals based on the normal distrihbtion.

5.f 1 Exact Confidence Intervals. Since R(e, o) is a monotone

function of K(c, ri), if we can find a confidence interval (oe, Kv) for K,

we will then have a confidence interval (s Rn ) for R, where

fucin. Furhe wor /in thsaraisrqurd

11

K.
1

It is shown in Appendix A that K(i , no )/aextende t(f, 5), wherellall 2

c'(XX')c, has a non-central t-distribution with f = nc- m degrees of

freedom and non-centrality parameter.

wewl hnhv ofdneinera R1R2)frR hr
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6/( a) K -)/lla II

Thus, a lower and upper confidence limit with confidence coefficient
1 - a may be obtained by finding the values of 6. for which1.

pA

(11) P t> fK(, 6i- I f,, i = 1, 2, where a = 1 - a/2, and
1aiall I

a, = c/2. Table IV in [6] may be used to obtain 6. for seventeen values
2.1

of E.

The tabulation by Resnikoff and Lieberman [6] of the percentage points
of the non-central t-statistic may be conveniently used to obtain the limits
61 and 62 that satisfy (11). The entries in the table give the values of
x such that

Pt

The table should be entered for the degrees of freedom f = n-m, the
probability e. corresponding to a., and x = K(p, a-)/(ijalI-'f) . The1 1

required non-centrality value 6. =f + 1 K , where K is the stand-x p p
ardized normal random variable exceeded with probability p. The pre-
sent concern was with one sided tails (one sided specification limits) for
both the univariate and multivariate cases. A review of available point
and confidence methods for two sided tails is given in [3]

A 2Z
5. 2 Approximate Confidence Intervals. If we expand R(P, a) about

R(P, o- 2), we obtain the result that

R~g •Z _R(P, a-2)- N(O, V•, _2)),

whe re

v. (p, a-) a [n(y(O) , 2)] {c,(XX,) - c + (y 2-c )2ZETf

0
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Consequently (see Appendix B),

N(O,: 1)

from which we obtain the confidence interval

(T2) + z 2}+,

where z is the 100 a o/o point of the N(O 1) distribution.

6. SAMPLE PROBLEM. In order to illustrate the results of the
previous sections, a sample problem will be solved. A model repre-
senting the performance of a hypothetical shaped charge warhead section
for a missile will be described, and the performance reliability will be
evaluated based upon a Monte Carlo simulation of test results. The point
estimates and confidence intervals obtained using the methods previously
described will be compared with the true value of the reliability. Only
the univariate or independent response cases are considered.

6.1 Performance Model. The warhead section to be evaluated con-
sists of a shaped charge warhead and a Safety and Arming Device. It
is assumed that the warhead is required to penetrate at least 10 inches
into an armor plate target and that the minimum arming time of the
S and A is 0. 5 seconds. The warhead section is expected to meet these
performance requirements under all possible combinations of vibration
and temperature shock that may be encountered. To facilitate the illus-
tration, only two stresses are considered in this problem, but the pro-
cedure is easily extended to more than two stress variables.

The two stresses, vibration in g's and temperature shock in stan-
dard cycles, are denoted by X1 and X., respectively. Coded levels

of the stresses are used throughout this problem to facilitate the analysis
and simulation of test results. The relationship between the coded and
actual stress units is of no importance with regard to illustrating the
reliability evaluation methods and will be disregarded.
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The critical reliability boundary is defined by the vector
ce = (Co, cl, c2 ) where cl, c are the upper stress limits specified

for vibration and temperature shock, respectively and c0 is a dummy

variable required to make the vector c consistent with the design ma-
trix X and is equal to 1. The coded variables, in this example, are
centered on the critical reliability boundary so that c' = (1, 0, 0).

The warhead performance is measured in terms of depth of pene-
tration t into monolithic armor, and S and A performance is measuredW

by arming time tf* The distribution of warhead penetration t and armingw

time tf for the S and A is each distributed according to N Eo0 +

2 ]. The true values of the parameters are

Warhead 13" -0. 6 -0.4 1. 5"

S and A 0. 6 sec. 0.07 0.03 .O33 sec.

These models thus assume that the average penetration decreases linearly
with increasing stress and that the average arming time increases very
slowly with increased stress within the region of interest. Thus, by(l),
we see that the performance reliability for the warhead and S and A, res-
pectively, are

(12) RWHD Pjt(c) > w )0(w
pWtc) 10)=w n(t~ 1 c P, c) dt(c)

10"1

Sg1 (c'' a-; c) - g1 (13", 1.5" ; c) =0.977
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(13) R S and A P.fitc 0. 5y= n(tfc I C' o-r2 )d(c)

(C' G; c)- g 1 (0. 6 , .033 ; c) = 0.999

The performance reliability of the warhead section is thus

R = RWHD SR andA .976.

Dud probabilities were not considered in this model. The evalu-
ation of dud rates requires attribute test methods which are not as effi-
cient as the variables plans and require much larger sample sizes. In
conducting the type of test program described herein an estimate of the
dud reliability may be made by noting the number of dud failures. How-
ever, useful interval estimation with these results may not be possible
with reasonable confidence coefficients. When a dud occurs, it is de-
sirable to repeat the appropriate test under the same conditions in
order to avoid or minimize having to work with missing data in the
test plan.

6. 2. Multiple Regression Analysis. Multiple linear regression ex-
perimental designs of the type used in exploring response surfaces were
used to evaluate the performance reliability of the warhead and S and A
based upon the stated performance model. In particular, central com-
posite rotatable experimental designs [31 were used. The experiments
were conducted with sample sizes (n) of 8 and 30 for both the warhead
and S and A. The treatment combinations and the responses generated
by Monte Carlo simulation of the performance models are shown in
Tables 1 to 4.

Least Squares estimates of the regression coefficients and error

variance were made for the test results, and goodness-of-fit tests were
conducted. In all four cases, a linear regression model was found to
represent the data adequately. The least squares estimates of the re-
gression coefficients obtained for each case are as follows:
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Item n PO P1 P2

Warhead 8 13.99 -. 175 .675
30 12.75 -. 975 .215

S and A 8 .59 .055 .020
30 .60 ,0705 .0205

Tests of significance at the .05 level performed for the regress-
ion coefficients gave the following results. The estimates of P1 and P2
for the warhead based on n = 8 were not significantly different from zero.A.%

For n = 30, P2 was not significantly different from zero, but p1 which

corresponds to the effect of the vibration stress X was found to be signi-

ficantly different from zero, which corresponds to the true situation for
the model. In the case of the S and A,_ "P(temperature shock) was not
significantly different from zero, and p1 (vibration) was significantly
different from zero for n=8 and 30.

Point estimates of the performance reliability R(P, 2) at c'=(l, 0,0)
were made using the UMVU estimate K(P, a) of K(P, a-). Exact one sided
lower confidence limits using the non-central t-distribution were also
obtained. A summary of these results is tabulated below, and a s-ample
computation is given in Appendix C for one case. Estimates of R(p, a-2)
based on the estimates K(MI) and K(p, a) are also included in the appendix.

Case Item n R R(. 95) True R

1 Warhead 8 .974 .832 .977
2 30 .967 .905

3 S and A 8 .983 .891 .999
4 30 .997 .981

where R is the Estimate of Performance Reliability based on the UMVU
estimate KR(p, oa) or K(b, ar) and R(. 95) is the one-sided lower 95% con-
ficence limit for Performance Reliability.
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A point estimate of the warhead section: reliability is given by

R RWHD RS andA

Conservative . 90 confidence intervals for the warhead section reliability
are obtained by multiplying the lower . 95 confidence limits for the war-
head and S and A. This result is easily proven by applying the Bonferroni
inequality to obtain a conservative simultaneous confidence region T
for RWHD and RS and A and by making use of the fact that the product

is monotone in each variable. Thus, we obtain the following results for
the warhead section reliability.

n R R( > .90) True R

8 .957 .741 .976
30 .964 .888
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TABLE I

WARHEAD

EXPERIMENTAL DESIGN NuS

Sample XI XZ tw

1 l1 .1 13.3

2 +1 -1 14.9

3 -1 +1 16.6

4 +1 +1 14.3

5 0 0 12.6

6 0 0 12.7

7 0 0 12.2

S 0 0 15.3

al a Vibration

xz a Temperature Shock

t* 0 Penetration (inches)

1-
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TAB LE 2

WARHEAD EXPERIMENTAL DESIGN N=30

Sample x x2 tw

1 -1 -1 13.8
2 +1 -1 12.1
3 -I +1 13.8
4 +1 +1 12.7
5 0 0 12.1
6 0 0 10.9
7 0 0 !Z.5
8 0 0 12.2
9 -1 -1 13.7

10 +1 -1 10.5
11 -1 +1 12.7
12 +1 +1 11.0
13 0 0 14.8
14 &1 -1 13.7
15 +1 -1 9.5
16 -1 +1 11.5
17 +1 +1 13.0
18 0 0 13.3
19 -1 -1 12.0
20 +1 -1 12.5
21 -1 +1 14.4
22 +1 +1 11.4
23 0 0 13.9
24 -1 -1 14.8
25 +1 .1 11.5
26 -1 +1 15.6
27 +1 +1 14.3
28 0 0 12.0
29 0 0 16.0
30 0 0 12.3

xI a Vibration

N2 a Temperature Shock

tw a Penetration (inches)
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TABLE 3

S &A EXPERIMENTAL DESIGN N=81

Arming Time
Sample xI X2 (seconds)

1 -1 -1 .48

z +1 -1 .63

3 -1 +1 .56

4 +.1 +1 .63

S 0 0 ,6l

6 0 0 s56

7 0 0 .60

8 0 0 .64

*I a Vibration

x? a Temperature Shock
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TABLE 4

S & A EXPERIMENTAL DESIGN N=30

Arming Time

Sampl xI x 2  (second@)

1 -1 -1 .55
2 +1 -1 .63
3 -1 +1 .56
4 +1 +1 .71
5 0 0 .57
6 0 0 .68
7 0 0 .67
8 0 0 .60
9 -. -1 .50

10 +1 -1 .66
11 .1 +1 .53
12 +1 +1 .73
13 0 0 .57
14 '1 -1 .58
15 +1 -1 .66
16 -1 +1 .57
17 +1 +1 .72
is 0 0 .55
19 -1l -1 .46
20 4.1 -1l .64

21 -1 +1 ,54
22 +1 +1 .65
23 0 0 .59
24 -1 -1 .51
Z5 +1 -1 .67
26 .1 +1 .56
27 +1 +1 .70
28 0 0 .53
29 0 0 .61
30 0 0 .60

xI a Vibration

x2 a Temperature Shock

0



493

E i-I NM
xE E E * Ex x x x0

E

(A am cc 4 4 4

w + 0

Of'4)

x -u

->

00

s-I NCMU.



494

E

-~C L

CA E

CA- U~
CA-

LcJ



E "q -M-
xE E *E E Cx x x x E

x x x-x

m -L CL.C

@3n

CL
CL

W E L

u- 4 N- -o@

o rq cm'-



496

Al

-z 0k w

AI-

LL. <

5J - C

,g 0 .



497

APPENDIX A

Define K (1) =/(() c'a}/a. We first

DeieX=(y -c'/ and K(,c Vy

note that B and ' are independently distributed. Since EA =

we have that E(y(0)- } - (,(o) c'•). AJso v - 2 /a has a

X2  distribution, f = n - m, so that
f

Ev1/2 r( )

Hence,

@ wic povs ha K},) - r(f 2 ) -a•
f

which proves that K(,= K(,a) is an unbiased estimator

of K(1c,a). By completeness, it then follows that K is the unique such

estimator, and hence is UMVU.

An alternative approach is also useful, namely, that K(3,a)/IjaIj M t(f,B)

has a non-central t-distribution with f degrees of freedom and non-

centrality parameter

=y(o). c, Kola)

allall llall

where Ilail2 = c -c. To see this, we write
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A A rVar'(c -Io -,

arr(c'O)

A 2 -1 2 11all2.
But c'I = c'(XX')'xy, and hence var(c'•) = a CS )c -- a

Thus,,

A
,(o)_ c't ^IA- I

,AA

K(P,4) = allall allall = t(f .B)
llall a

a

3y noting that Et(f,B) = 7 2 r(f')/"r(E), we can also obtain

E K(O(,a) = K(ao).

APPENDIX B

Since R(A,?) is a function of the sample moments, it follows
A A22

that n(pa ). is asymptotically normal with mean B(,,r ) and variance

I i IA a j(A2)P ) +-C Cov(A1  'ara

AR and 61pou eaueo

AThe cross-product terms involving 131 and drop out because of

A A2
the independence of 1 and a F Prom

3Rbs2 2)-V2 t2
b, ) = f (21 exp(-V12 t) dt,

(y(o). c'b)/s

we obtain
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O •] e..L_•expfl/ 2((o ;,.)-l 2] (- o)_e[) z (() 2~~

=i r2,s s 282 Yfvs 82

Also, Cov(ij) 2 a where A = (XX')"I, Var(A2) =2a a If, and

hence the asymptotic variance is

V (P o•a ) = a 2[n(y( ) c'p) a 2)2 (c' ,)-' c + (Y(O) .3,) 2

But, V(',P ) is a rational function of the sample moments, so that,
A A22

by Slutsky's Theorem, V(0 converges in probability to 1(jp.),

and hence

SA 2  2
-P N(o, 1)

APPENDIX C.

The computation of the point and confidence interval estimates for

the performance reliability of the warhead for the sample size n = 8

is described in this appendix. From the test data in Table I, we

obtain the following results:

Point Estimation

a = 2.958, c' = (1, ,0 0), f =n- =8- 3 5

A A _iO(O)-C 10 - 13.99 - 2.320
( - 1.720

r(f)
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Substituting, these two estimates of K(0,9) in

2

R(pj ) = f (2o) e 12e' dy

gives the two estimates of reliability , and R(OM) ,

respectively. Thus,

CO~cs =1 ( /2y 2 /2
Sy (2,) = .9898, and

- 2.3o2

(P,,) = f (2,3) 2e" 2 e = .974,
- 1.95

Confidence Intervals

la '(') c= for c' = (1, 0, 0)..

Following the notation of Resnikoff and Lieberman, a confidence

interval may be obtained using the non-central t-tables in [6].. The

percentage points of t are denoted by x(f,bc) where x is the

value such that P > x I f.5) E

/f~=i(~A = nK(p,a) = (-2.320) =-2.935.

The one sided lower .95 confidence limit for R is obtained by

finding the corresponding limit for K(P.,a) because of the monotone

relation between R and K(Pa). The 1-a confidence limit for

K(P,cy) is obtained by solving



0x(n - m, 1i-C 1-a) =a) 
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'f flall

x(5, 8.951 .95) = - 2.935

Making use of the relation x(f,B,e) = -x(f,-8,l-e), we obtain

x(5, -8,95, .05) = 2.935

From the Resnikoff-Lieberman table of percentage points of t. we
obtain a non-centrality value 8 = Vf + 1 K = 16 (1.107) = 2.712

p
by interpolating on K . Since 8 - the .95 lower confi-P 11all
dence limit for K(P,a) is

K(13,.) Ia) l 95 -2.712 .959

895 95 In 18

Finally, the .95 confidence limit for R is

R(P•,d) f f (2)-1/12eY/2 dy .832
.95 K(P, )

.95

5 may also be computed using the Johnson-Welch table IV and
.95

following the procedure on page 372 of [5].

0
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